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The study of cancer biology has mainly focused on malignant epithelial cancer cells, although tumors also contain a stromal
compartment, which is composed of stem cells, tumor-associated fibroblasts (TAFs), endothelial cells, immune cells, adipocytes,
cytokines, and various types of macromolecules comprising the extracellular matrix (ECM).The tumor stroma develops gradually
in response to the needs of epithelial cancer cells duringmalignant progression initiating from increased local vascular permeability
and ending to remodeling of desmoplastic loosely vascularized stromal ECM. The constant bidirectional interaction of epithelial
cancer cells with the surrounding microenvironment allows damaged stromal cell usage as a source of nutrients for cancer cells,
maintains the stroma renewal thus resembling a wound that does not heal, and affects the characteristics of tumor mesenchymal
stem/stromal cells (MSCs). Although MSCs have been shown to coordinate tumor cell growth, dormancy, migration, invasion,
metastasis, and drug resistance, recently they have been successfully used in treatment of hematopoietic malignancies to enhance
the effect of total body irradiation-hematopoietic stem cell transplantation therapy. Hence, targeting the stromal elements in
combination with conventional chemotherapeutics and usage of MSCs to attenuate graft-versus-host disease may offer new
strategies to overcome cancer treatment failure and relapse of the disease.

1. Introduction

Tumors are organ-like structures [1] composed of numerous
cell types whose interactions are required to drive and
promote their growth andmetastasis [2, 3]. Carcinogenic cells
recruit nontumorigenic cells both locally from the neighbor-
ing tissues as well as from the circulation to construct the
tumor microenvironment, which through reciprocal cancer-
stroma interactions coevolves to promote cancer progression
through paracrine signaling and physical interactions [4–
8]. The tumor microenvironment contains cancer-associated
fibroblasts (CAFs) [2], endothelial cells [9, 10], immune
cells [11, 12], adipocytes [13], cancer stem cells (CSC) that
differentiate intometastatic epithelial cells [14, 15],mesenchy-
mal stem/stromal cells (MSCs) that can differentiate into
fibroblasts and other types of cells representing mesenchy-
mal lineages [16], and various types of extracellular matrix
(ECM) proteins [3] needed for reciprocal messaging and the
stimulation of tumor growth. The stroma, especially MSCs

and stromal cells originating from MSCs, has recently been
recognized as a player in carcinogenesis, affecting tumor
growth, development, and progression beginning at the early
steps of tumorigenesis [4] and influencing the construction
of the microenvironment, epithelial mesenchymal transition,
and metastasis, that is, functions that are essential for tumor
maintenance and metastasis to other tissues [17–21].

2. Evolution of the Tumor Stroma

Simultaneous with the changes causing the immortalization
of epithelial cells, there is a gradual evolution of the tumor
microenvironment that includes (i) increased local vascular
permeability; (ii) the extravasation of plasma and macro-
molecules, such as fibrinogen and plasminogen; (iii) the acti-
vation of coagulation mechanisms in the developing tumor
microenvironment; (iv) the formation of fibrin gel deposits;
(v) the formation of a provisional stroma comprising cancer
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cells, fibroblasts, and immune cells; (vi) the initiation of
angiogenesis in the provisional stroma; (vii) the degradation
and replacement of the provisional stroma fibrin with highly
vascularized granulation connective tissue; (viii) the transfor-
mation of the stroma to desmoplastic, loosely vascularized,
and dense connective tissue; and (ix) the remodeling of
the stromal ECM, inducing local cancer cell migration and
metastasis [22–26].

2.1. Increased Vascular Permeability. MSCs may contribute
to increased vascular permeability alone or by attracting
mast cells that are able to both initiate and sustain cellular
trafficking. Increased vascular endothelial growth factor-A
(VEGF-A) production is one of the main drivers of vascu-
lar hyperpermeability [27, 28]. VEGF-A binding to VEGF
receptor 2 (VEGFR2) induces a conformational change
and subsequent dimerization of the receptor, leading to
autophosphorylation and initiation of downstream signal
transduction [29]. The activated signal transduction leads
to increased vascular permeability through two alternative
mechanisms: by the synthesis of transcellular endothelial
pores or by the transient opening of paracellular endothelial
junctions. The action of VEGF depends on reactive oxygen
and nitrogen species (ROS, RNS), the activation of the SRC
family of protooncogenes, and their contact with adherens
junction VE-cadherin proteins [28, 30]. According to recent
reports, mast cells contribute to vascular permeability by
secreting histamine, serotonin, and platelet-activating factor
that activate TR3/Nur77 orphan nuclear transcription factor
signaling. TR3/Nur77 increases vascular permeability by sup-
pressing the expression of endothelial cell adherent junction-
associated proteins (VE-cadherin, 𝛽-catenin, 𝛾-catenin, and
p120) and tight junction protein CLAUDIN 5 that maintains
vascular homeostasis [31, 32]. Alternatively, mast cell secreted
histamine induces vascular permeability by nitric oxide-
(NO-) dependent vascular dilation and PKC/ROCK/NO-
dependent endothelial barrier disruption or by binding to
H1 G-protein coupled receptor that activates endothelial cell
calcium influx enhancing vascular permeability related signal
transduction [33, 34].

2.2. Development of the Fibrin Matrix-Derived Provisional
Stroma into Mature Stroma. The extravasation of plasma
components, such as fibrinogen and clotting proteins (pro-
thrombin and factors V, VII, X, and XIII), through the
endothelial cell layer is one of the earliest changes in the pre-
cancerous lesion environment and initiates a tissue response
similar towoundhealing [22, 24, 27, 34, 36–40].The synthesis
of fibrin from fibrinogen by the action of thrombin demar-
cates the firstmilestone in tumor stroma development [22, 27,
36, 39, 41, 42].Thrombin cleaves fibrinogen into soluble fibrin
monomers and activates the clotting factor XIII to factor
XIIIa, which then converts the soluble fibrin monomers
into insoluble fibrin polymers to form a cross-linked fibrin
matrix [43]. The formation of the fibrin matrix dramati-
cally changes the tissue composition by creating a gel that
absorbs and arrests plasma solutes, resulting in tissue edema.
Therefore, the fibrin gel forms an initial “provisional” stroma

where the parenchymal tumor cells, mesenchymal stromal
cells, and hematopoietic inflammatory cells can migrate to
comprise the final tumor microenvironment [44]. Fibrin gel
itself enhances angiogenesis, another early tumor stroma
phenomenon, by protecting angiogenic growth factors from
degradation, by inducing the production of proangiogenic
molecules, and by directly creating angiogenic factors, such
as fragment E [45]. The next phase in the development
of the tumor microenvironment and the formation of the
mature tumor stroma is a result of the coordinated actions
of infiltrated macrophages and fibroblast-derived proteases
that degrade the “provisional” stroma fibrin, replacing it with
loose connective tissue [22, 39]. The loose connective tissue,
which resembles the granulation tissue in healing wounds,
stimulates the growth of fibroblasts and new blood vessels.

2.3. Development of Stromal Desmoplasia. One of the histo-
logical cornerstones of cancer development is the formation
of a dense fibrotic stromal matrix comprising ECM and
activated fibroblasts (myofibroblasts). In this last phase of
stromal development, the granulation tissue transforms into
desmoplastic dense connective tissue characterized by poor
vascularization. The activation of the stroma, desmoplasia,
can be interpreted as an attempt by the tumor tissue to heal
the injury produced by the infiltrative and destructive growth
of cancer cells, indicating the invasive and malignant charac-
teristics of the tumor. However, it has been suggested that the
increased collagen synthesis in desmoplasia, together with
myofibroblast-induced tissue retraction, may paradoxically
constitute a protective mechanism with invasive character-
istics [10]. Mechanistically, the desmoplastic response is a
poorly understood process associated with invasive tumors,
such as diffuse infiltrative pancreatic and gastric carcinomas
and infiltrating ductal (scrirrhous) carcinomas of the breast,
and involves the excessive production of types I and III
collagens and elastin [10]. In scrirrhous carcinomas of the
breast, myofibroblasts, together with fibrin and collagen III,
are mostly present in the immature mesenchymal stroma
at the tumor periphery, while collagen-I is expressed in
the mature sclerotic connective tissues of the tumor center
[11].

In several types of tumors, such as thyroid cancer, the
desmoplastic stromal reaction is a relatively common phe-
nomenon, being present in up to 80% of medullary thyroid
cancers and correlating with lymph node metastasis [46].
Indeed, the activated stroma has been considered amarker of
invasion and metastatic cancer development. In thyroid can-
cers, desmoplasia induces increased production of collagen
by stromal fibroblastsmore prominently in anaplastic thyroid
and medullary thyroid cancer than in papillary thyroid
cancer, directly correlating with increased aggressiveness
and lymph node metastasis [46]. It is therefore used as an
intraoperative prognostic marker [47, 48]. The desmoplas-
tic stroma in thyroid cancer contains activated fibroblasts
(cancer-associated fibroblasts (CAFs) ormyofibroblasts) that,
together with the other stromal components, initiate the
remodeling of the extracellular matrix [49]. ROS have been
shown to promote the activation of these fibroblasts, which
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then increase tumor cell proliferation, tumor-associated
inflammation, and angiogenesis by expressing invasion-
associated factors and enzymes, such as fibroblast activation
protein𝛼 (FAP𝛼) andmatrixmetalloproteases (MMP),which
are able to degrade and remodel the ECM [50–52].

2.4. Remodeling of the Stromal ECM Facilitates the Migra-
tion of Cancer Cells. The remodeling of the ECM induces
the migration, invasion, and metastasis of cells by stim-
ulating epithelial cell transformation and local migration
by altering the cross-linked stromal structure. It there-
fore represents a critical element of cancer progression.
Proteolytic degradation of the ECM affects the integrin-
mediated anchorage of the cells, focal adhesions at cell
membranes, cellular cytoskeletal organization, and the signal
transduction regulating these structures. One of the main
nonreceptor tyrosine kinases affected during this process is
focal adhesion kinase (FAK), which directly signals through
the SRC oncogene family kinases, linking integrin signaling
to RAS-BRAF-MEK-ERK mitogen pathway signaling, thus
inducing the malignant progression of tumor cells [53,
54].

3. MSCs and CAFs in the Tumor Stroma

In tumors, the MSCs either differentiate or maintain their
primitive phenotype, thus participating in the construction
of the stroma and supporting cancer cell growth through
their secretion of cytokines and growth factors [55–58]. The
source of tumor MSCs has not been completely clarified,
although they have been isolated from most tissues [59],
suggesting that they have a local origin. Another poten-
tial source is the circulating bone marrow-derived MSCs
that extravasate from the circulation and then home and
engraft onto growing tumors [60–62]. Evidence of the tumor
tropism of MSCs has been obtained from in vivo studies,
in which transplanted MSCs were demonstrated to migrate
to tumors [60]. Interestingly, the migration of MSCs to
tumors seems to be increased by cell damage, which typically
characterizes the clinical treatments used for cancer, such as
radiation therapy, possibly due to the increased cytokine and
chemokine secretion from the injured tissues [61]. Although
the detailed mechanism(s) underlying the migration and
homing of MSCs to tumors are not well documented, MSCs
have a similar homing mechanism to inflammatory cells,
hematopoietic stem cells, and cancer cells in that they utilize
the same adhesion molecules and cytokines/chemokines,
most notably the CXCR4-CXCL12 receptor-ligand binding
system [63, 64].

Cancer-associated fibroblasts (CAFs) are derived from
both mesenchymal stem/stromal cells and local fibroblasts
[60, 65], thus supporting observations suggesting the pres-
ence of primitive undifferentiated MSCs even in advanced
cancers. MSCs and CAFs are both heterogeneous pop-
ulations that may have different phenotypic characteris-
tics even within the same type of cancer [66, 67]. CAFs
are a rich source of growth promoting molecules (e.g.,
HGF, LOXL2, and TENASCIN-C) and proangiogenic factors

(e.g., VEGF), hence playing an important role in cancer
progression and metastasis [65] by stimulating epithelial
mesenchymal transition (e.g., by TWIST1 and SNAIL pro-
duction), by causing epigenetic changes, and by altering
three-dimensional structure of ECM (e.g., by MMP and
plasminogen activator protein production) [67, 68]. CAFs are
known to support survival and proliferation of cancer cells in
metastasis in a similar mechanism as in primary tumor. An
interesting characteristic of CAFs is their ability to migrate
together with epithelial cancer cells, thus suggesting a role
in the intravasation and extravasation of epithelial cells in
metastasis process by promoting cancer cell transmigration
through endothelial cell layers [69, 70], hence supporting
the hypothesis that primary tumor may be able to facilitate
metastasis by providing the microenvironment.

Previous papers have demonstrated that in certain cases
CAFs, similarly with MSCs, maintain normal fibroblast
tumor suppressive characteristics. Receptor-ligand ROBO1-
SLIT2 cancer-stroma interaction has been shown to reduce
tumor cell proliferation by reducing PI3K-𝛽-catenin and
SDF1-CXCR4 signal transduction and consequent cancer
cell malignancy [71, 72]. Interestingly, aggression of cancer
cells lacking ROBO1 receptor molecule was increased by
CAFs expressing SLIT1 ligand [73], whereas RNAi SLIT1
increased hepatocyte growth factor-mediated cancer cell
migration and invasion by upregulating CDC42 Rho GTPase
activity [74], thus giving more insight into the inhibitory-
stimulatory mechanism of CAFs that may depend on phe-
notypic differences of stromal cells and malignant epithelial
cells. The study of Takahashi and coworkers corroborated
selective tumor suppressor properties of CAFs. According
to their observations, podoplanin positive CAFs predicted
poor survival and outcome among lung adenocarcinoma
and squamous cell carcinoma patients, whereas in small cell
lung cancer podoplanin positivity suggested better prognosis
[75]. While the characteristics of MSCs and CAFs are well
documented in tumor support, more work is needed to study
differentiation of MSCs to cancer-associated fibroblasts and
tumor suppressor properties of these cell populations.

3.1. TumorMSCsDiffer fromNormalMSCs. It is important to
note that the MSCs and CAFs localized in the tumor stroma
have a different phenotype compared toMSCs and fibroblasts
isolated from normal tissues, which may be a result of the
constant exposure of these cells to inflammatory and cancer
cell-secreted cytokines inducing procancerous characteristics
[76–78]. Although the tumor-associated MSCs share similar
cell surface markers and functionality with normal tissue
MSCs, the paracrine effect on cancer cell proliferation is
different [58]. Whereas normal tissue MSCs have been sug-
gested to reduce inflammatory and cancer cell proliferation
[79, 80], tumor-associated MSCs increase their growth [53–
55]. The phenotypic and functional modifications of MSCs
are further supported by case reports demonstrating unusual
papillary thyroid carcinoma- and lung carcinoma-associated
intratumoral heterotrophic ossification [81, 82]. However, the
heterotopic ossification caused by the differentiation ofMSCs
into osteoprogenitor cells and further differentiated cells [83]
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may also be the result of abnormal differentiation signaling
originating from the surrounding tumor stroma.

3.2.MSCs Support Parenchymal Cells in the TumorMicroenvi-
ronment. Most transformed cell lines are not able to survive
after transplantation and are therefore considered to be cells
continuously growing without tumorigenic characteristics.
Even among highly carcinogenic cell lines, only a small subset
harboring stem cell-like characteristics are able to initiate
tumor growth in vivo [84]. Due to their phenotype and func-
tional properties, cells with clonal tumor-initiating capac-
ity are called cancer stem cells (CSCs) or tumor-initiating
cells (TICs). The CSCs/TICs reside in specific niches in
the tumor microenvironment that maintain their plasticity,
protect them from immune defensemechanisms, andmodify
their metastatic potential. MSCs have been shown to interact
with CSCs/TICs, supporting parenchymal cell growth and
causing increased resistance to therapy [35], cancer cell
dormancy, and evasion from the immune system [85] either
through paracrine secretion [35, 57] or gap junction contact
[85]. Alternatively, MSCs can affect epithelial cancer cell
function by direct contact, causing increased expression of
microRNAs, such asmir199a and stem cell-associated factors,
in the epithelial cells [86]. MSCs secrete various growth-
supporting cytokines, growth factors, andmicroRNAs that in
some cases are stored inside extracellular vesicular particles
(exosomes) [87]. Exosomes are small (40–100 nm in diam-
eter) membrane-bound organelles that function as part of
an intercellular communication mechanism. During tumori-
genesis, exosome-bound factors have been demonstrated to
modify the phenotype of the epithelial cancer cells or tumor
stromal cells to support the aggressive phenotype and tumor
progression. The exosomes characteristically include various
types of molecules, including matrix metalloproteases [88],
platelet-derived growth factors [89], molecules that activate
signal transduction [90], oncomiRs, bioactive lipids, and
metabolites [91].

The gap junctions between stromal cells and parenchy-
mal cells are an important gateway for microRNA trans-
fer. Interestingly, gap junction-transferred CXCL12-targeting
microRNAs mir127, mir197, mir222, and mir223, can reduce
cancer cell proliferation and even induce dormancy that
may last for decades, eventually leading to a relapse of
the disease due to bone marrow metastasis [91]. A recent
study demonstrated that there was gap junction-mediated
intercellular communication between bone marrow MSCs
and primitiveOct4-expressing breast cancer tumor-initiating
cells [91], suggesting that there is a preference for gap
junction-mediated connections between cells harboring
stem cell characteristics, also suggesting that these cells
show similarities to hematopoietic stem cell dormancy [92,
93].

In addition to the gap junction structures, it has been sug-
gested that breast cancer cells form hybrids with MSCs [94].
Recently, a number of publications have suggested that there
is a direct connection betweenMSCs and cancer cells, result-
ing in increased epithelial cell growth and survival [55, 95–
99]. The direct connection between cancer cells and stromal

cells has been studied in a cancer cell-stromal cell coculture
system that could itself promote cell-to-cell contacts. Char-
acteristically, primary nontransformed cells avoided direct
contact with other cells, limiting their growth and migration,
a phenomenon known as contact inhibition [100]. We have
studied the interaction of transformed cells and human bone
marrow-derived mesenchymal stem cells and demonstrated
that physical MSC-MSC or MSC-cancer cell interaction is
mediated through temporal membrane protrusions, which
direct the movement of the cells (Supplemental film 1 in
Supplementary Material available online at http://dx.doi.org/
10.1155/2016/4824573) [97]. Unlike primary cells, cancer cells
have lost the contact inhibition phenotype [101] and therefore
characteristically create network connections by reaching
towards other cancer cells and nontransformed primary cells,
such asMSCs (Supplemental film 2).The aggression of cancer
cells in coculture can induce damage to theMSCs and activate
apoptosis, with the consequent loss ofMSCs locomotion [97].
The damaged stromal cells that are immobilized and unable
to avoid contact are vulnerable to cancer cell aggression,
resulting in material transfer from stromal cells to epithelial
cancer cells (Figure 1) [97, 99]. Consequently, the tumor
initiating and prometastasis effects of the transformed cells
increase significantly, and this is linked to increased mito-
chondrial activity. Importantly, we demonstrated by serial
dilution transplantation and a flow cytometric analysis of
clusters of differentiation markers that the transformed cells
did not show any stem cell characteristics, suggesting that
increased metabolic activity mediates the aggressiveness of
the epithelial cells. Interestingly, a cell-count analysis of the
transformed cells suggested that there was onlyminor growth
during cytoplasmic material transfer, whereas control cells
grown in the absence of damaged MSCs showed continuous
cell proliferation (Figure 2) [97]. Thus, these observations
may suggest that cancer cells can remove injured and dying
tumor cells, thereby temporally increasing their own growth
characteristics. This hypothesis is corroborated by findings
suggesting that there was increased mouse tumor cell growth
in the presence of apoptotic cancer cells or fibroblasts,
underlining the importance of cellular damage in direct cell-
to-cell contact and the transfer of cellular macromolecules
[55, 97, 102, 103].

In addition to the paracrine-mediated, gap junction-
mediated, and direct contact-based support of tumorigenesis,
stromal cells have been shown to affect the transcriptome of
tumors, especially in patientswith a relapse of the disease.The
dataset analyses have demonstrated upregulation of the gene
expression patterns associatedwith poor patient survival [19–
21]. Analyses have shown that colon cancer patients had
significantly higher expression levels of genes related to the
risk of recurrence, such as TGF-𝛽, CALD1, POSTN, FAP,
IGFBP7, and MPG, in their stromal cells compared to their
epithelial cancer cells [19, 20]. Notably, among all stromal cell
populations, the CAFs showed the strongest expression level
of the stem/serrated/mesenchymal transcription subtype of
colorectal cancer [20]. Thus, the “stromal signatures” char-
acteristic of different colorectal cancer subtypes may have
clinical relevance and may even serve as a prognostic marker
of the disease [20].
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Figure 1: Time-lapse images of HEK 293T and bone marrow mesenchymal stem cell culture [35]. Apoptotic MSCs were surrounded and
consumed by the HEK 293T cells during the 120-hour period.

4. MSCs in Cancer and in Graft-versus-Host
Disease Therapy

Although preclinical cancer therapy studies in MSC
xenograft mouse models have given contradictory results,
which may be due to model systems used in the experiments,
timing of MSC transplantation, and protocol of propagating
cells ex vivo [104], MSCs have maintained their therapeutic
potential in cancer treatments. In ongoing phase I/II
study (NCT02008539) autologous MSCs transduced

with herpes simplex virus-thymidine kinase (HSV-TK)
retrovirus are intravenously injected into patients with
advanced gastrointestinal tumors followed by ganciclovir
treatment to study safety and tolerability of the therapy
[105]. Significantly more excitement has received the
property of MSCs to enhance hematopoietic stem cell
engraftment and to prevent graft-versus-host disease
(GVHD). GVHD, the attack of transplanted immune cells
against recipient tissues, is a frequent complication of
autologous bone marrow transplantation in the treatment
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Figure 2:The results of cell count analyses of HEK 293T cells grown
in the absence (control cells) or presence of apoptotic MSCs (MSC-
treated) [35]. The analyses suggest that there was decreased growth
of the MSC-treated cells during 0–48 hours of cytoplasmic material
transfer from the MSCs to HEK 293T cells.

of hematologic malignancies. MSC transplantation has been
demonstrated to be safe in a clinical pilot study in which
twenty patients with hematologic malignancies received
MSC transplantation together with allogeneic hematopoietic
cell transfusion. The cotransplantation resulted in 10%
one-year nonrelapse mortality, 80% overall survival, 60%
progression-free survival, and 10% graft-derived death.
Similar treatments without MSC cotransplantation have
resulted in 37% one-year nonrelapse mortality, 44% overall
survival, 38% progression-free survival, and 31% graft-
derived death. In another clinical trial, the effect of MSC
transfusion was studied in 75 patients with persistent acute
GVHD that did not respond to immunosuppressive agents.
The GVHD status before MSC treatments was improving
in 2.7% of patients, was unchanged in 29.3% of patients,
and was worsening or showing maximal GVHD level in
66.7% of patients. Serial MSC transfusions demonstrated an
encouraging 61.3% overall response rate that was followed
by 78.1% 100-day survival level, whereas patients who did
not responded to MSC infusions had 100-day survival of
only 31%. The ex vivo culture of MSCs before transfusion
decreases the overall survival of the patients although the
phase I/II clinical trials have demonstrated safety of the
procedure [106–109]. Currently new clinical trials (EudraCT
number 2006-004101-26, EudraCT number 2009-014980-38,
NCT01763099, NCT01763086, and NCT01941394) are
recruiting patients to further explore the ability of MSCs
to prevent GVHD. Hence, based on the observed data and
ongoing studies, MSCs transplantation is a promising tool to
improve the efficiency of cancer treatments.

5. Tumor Stroma as a Drug Target and
Mediator of Drug Resistance

Molecular-targeting drugs against activated oncogenes
whose continues expression is essential for the survival of

cancer cells, a phenomenon known as oncogene addiction,
represent the latest development in cancer treatment. How-
ever, the efficacy of these therapies is reduced by the devel-
opment of drug resistance. Cell autonomous drug resistance,
also known as primary resistance, is caused by the constitu-
tive activation (mutation) of signal transducers downstream
of the targeted molecule or by the simultaneous activation of
compensatory pathways. Secondary or acquired resistance
is observed when neoplastic cells originally sensitive to
molecular inhibitors lose their response to these drugs. This
can occur by target reactivation or by compensatory bypass.
The cell autonomous mechanism implies that there are
secondary mutations in the oncogenic kinase that render it
refractory to the treatment. In contrast, compensatory bypass
involves the compensatory activation of alternative kinases,
thereby reducing the biological effects of the drug [110].

Together with the cell autonomous mechanisms of resis-
tance to molecular inhibitors, many studies have suggested
that an important role is played by noncell autonomous
signals, originated by the cellular components of the tumor
microenvironment [110]. A striking feature of metastatic
tumor cells is their ability to plastically adapt to diverse
microenvironmental conditions and to overcome single-drug
treatment. The mechanisms underlying this mode of drug
resistance are largely elusive and have thus been the sub-
ject of intense preclinical investigation. Recent studies have
highlighted a crucial role for the interaction between cancer
cells and the tumor microenvironment, leading investigators
to hypothesize a completely different and unconventional
mechanism of resistance to molecular inhibitors [97, 99,
103]. Although these studies were conducted in coculture
systems, they form a proof of principle, demonstrating a
novel mechanism by which cancer cells can survive under
extreme stress and even utilize the severe culture conditions
to improve their growth characteristics.

Poorly vascularized, desmoplastic stroma supports
tumorigenesis and simultaneously forms a barrier for
chemotherapeutic drugs, making it as an attractive drug
target. Combination treatments targeting both the stroma
and cancer cells with cytotoxins have shown promising
results in preclinical and clinical experiments. A complete
depletion of stroma by IPI-926 and a sonic hedgehog
inhibitor, together with gemcitabine administration,
increased the drug delivery in a preclinical mouse model,
thus underlining the importance of the stroma for tumor
development and maintenance and further suggesting the
efficacy of combination therapy that targets both cancer cells
and tumor stromal components [111]. A clinical study with
partial stromal depletion using CD40-activatedmacrophages
as well as a preclinical work utilizing enzymatic depletion of
ECM hyaluronan demonstrated improved patient survival
and increased drug delivery into the tumor [112]. In addition
to the destruction of the whole stroma, preclinical studies
have shown reduced tumorigenesis after depletion of stroma-
supporting myofibroblasts using antibodies targeted against
fibroblast activation protein (FAP) [113]. Clinical studies
have demonstrated safety of anti-FAP infusion into patients
with colorectal carcinoma, metastatic colorectal cancer, and
small cell lung cancer although no tumor response has been



Stem Cells International 7

observed [114, 115]. Despite poor success in cancer therapy,
a recent anti-FAP preclinical study of malignant pleural
mesothelioma, an incurable disease resulting from exposure
to asbestos, suggested lysis of FAP positive cells, inhibited
tumor growth, and significantly prolonged the survival of the
mice [116]. The data encouraged the research team from the
University of Zurich Switzerland to open a new clinical phase
I trial (NCT01722149) to study the effect of FAP-specific CD8
positive T cells in malignant pleural mesothelioma patients.
In the trial the patients are infused with 1 × 106 adoptively
transferred FAP-specific retrovirally reprogrammed T cells
directly in the pleural effusion to evaluate the safety and the
efficacy of the immunotherapy. Besides antibodies FAP vacci-
nation studies have resulted in some excitement in preclinical
level demonstrating significantly reduced tumor growth and
metastasis in B16/F10.9 melanoma, 4T1 breast cancer, and
EL4 thymoma mouse models [117, 118]. Mechanistically the
vaccination sensitizes fibroblasts to CD8 T-cell attack, which
leads to decreased collagen production and the significantly
increased uptake of chemotherapeutic drugs [119].

Stromal fibrosis can also be inhibited using antioxidants,
such as high-dose vitamin E, which increase survival in rat
models [120] or by targeting angiotensin II type 1 recep-
tors and angiotensin-converting enzyme activity [121]. In
an anaplastic thyroid cancer xenograft model, bevacizumab
(Avastin) treatment reduced the macrophage infiltration
and inflammatory cytokine expression. More importantly,
bevacizumab treatment reduced vascular permeability, thus
affecting the first step of tumor stroma development [122].
There have so far been no convincing clinical studies showing
the efficacy of tumor stroma inhibition in themost aggressive
forms of thyroid cancer. However, because there is no
treatment for the anaplastic form of thyroid cancer, studies
of combination therapies targeting both the cancer cells and
stromamight offer clinically relevant protocols and treatment
alternatives.

Collectively, the continuously developing tumor stroma
that simultaneously contains different stromal developmental
phases has the versatile ability to support epithelial cancer cell
growth. Although the presence and function ofmesenchymal
stem cells in the tumor microenvironment is still incom-
pletely understood, the current knowledge suggests a crucial
role for MSCs in the construction of the microenviron-
ment, nurturingCSC/TIC cells, and supporting differentiated
epithelial cancer cells. Based on this knowledge, targeting
the stromal components in combination with the cancer cells
themselves may increase the efficacy of cancer therapy.
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[99] M. Pietilä, P. Lehenkari, P. Kuvaja et al., “Mortalin antibody-
conjugated quantum dot transfer from human mesenchymal
stromal cells to breast cancer cells requires cell-cell interaction,”
Experimental Cell Research, vol. 319, no. 18, pp. 2770–2780, 2013.

[100] M. Abercrombie, “The bases of the locomotory behaviour of
fibroblasts,” Experimental Cell Research, vol. 8, pp. 188–198, 1961.

[101] H. Eagle, G. E. Foley, H. Koprowski, H. Lazarus, E. M. Levine,
and R. A. Adams, “Growth characteristics of virus-transformed
cells. Maximum population density, inhibition by normal cells,
serum requirement, growth in soft agar, and xenogeneic trans-
plantability,”The Journal of Experimental Medicine, vol. 131, no.
4, pp. 863–879, 1970.

[102] E. I. Azzam, S. M. de Toledo, and J. B. Little, “Direct evidence
for the participation of gap junction-mediated intercellular
communication in the transmission of damage signals from
𝛼-particle irradiated to nonirradiated cells,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 98, no. 2, pp. 473–478, 2001.



Stem Cells International 11

[103] Q. Huang, F. Li, X. Liu et al., “Caspase 3-mediated stimulation
of tumor cell repopulation during cancer radiotherapy,” Nature
Medicine, vol. 17, no. 7, pp. 860–866, 2011.

[104] A. H. Klopp, A. Gupta, E. Spaeth, M. Andreeff, and F. Marini
III, “Concise review: dissecting a discrepancy in the literature:
domesenchymal stem cells support or suppress tumor growth?”
Stem Cells, vol. 29, no. 1, pp. 11–19, 2011.

[105] H. Niess, J. C. von Einem, M. N. Thomas et al., “Treatment
of advanced gastrointestinal tumors with genetically modified
autologous mesenchymal stromal cells (TREAT-ME1): study
protocol of a phase I/II clinical trial,”BMCCancer, vol. 15, article
237, 2015.

[106] F. Baron, C. Lechanteur, E. Willems et al., “Cotransplantation
of mesenchymal stem cells might prevent death from graft-
versus-host disease (GVHD) without abrogating graft-versus-
tumor effects afterHLA-mismatched allogeneic transplantation
following nonmyeloablative conditioning,” Biology of Blood and
Marrow Transplantation, vol. 16, pp. 838–847, 2010.

[107] J. Kurtzberg, S. Prockop, P. Teira et al., “Allogeneic human
mesenchymal stem cell therapy (remestemcel-L, Prochymal)
as a rescue agent for severe refractory acute graft-versus-host
disease in pediatric patients,” Biology of Blood and Marrow
Transplantation, vol. 20, no. 2, pp. 229–235, 2014.

[108] M. L. MacMillan, B. R. Blazar, T. E. DeFor, and J. E. Wagner,
“Transplantation of ex-vivo culture-expanded parental hap-
loidentical mesenchymal stem cells to promote engraftment in
pediatric recipients of unrelated donor umbilical cord blood:
results of a phase I-II clinical trial,” Bone Marrow Transplanta-
tion, vol. 43, no. 6, pp. 447–454, 2009.

[109] H. M. Lazarus, O. N. Koc, S. M. Devine et al., “Cotransplanta-
tion of HLA-identical sibling culture-expanded mesenchymal
stem cells and hematopoietic stem cells in hematologic malig-
nancy patients,” Biology of Blood and Marrow Transplantation,
vol. 11, no. 5, pp. 389–398, 2005.

[110] S. Corso and S. Giordano, “Cell-autonomous and non-cell-
autonomous mechanisms of HGF/MET-driven resistance to
targeted therapies: from basic research to a clinical perspective,”
Cancer Discovery, vol. 3, no. 9, pp. 978–992, 2013.

[111] K. P. Olive, M. A. Jacobetz, C. J. Davidson et al., “Inhibition
of Hedgehog signaling enhances delivery of chemotherapy in
a mouse model of pancreatic cancer,” Science, vol. 324, no. 5933,
pp. 1457–1461, 2009.

[112] G. L. Beatty andY. Paterson, “IFN-𝛾 can promote tumor evasion
of the immune system in vivo by down-regulating cellular levels
of an endogenous tumor antigen,” The Journal of Immunology,
vol. 165, no. 10, pp. 5502–5508, 2000.

[113] M. Mersmann, A. Schmidt, J. F. Rippmann et al., “Human
antibody derivatives against the fibroblast activation protein for
tumor stroma targeting of carcinomas,” International Journal of
Cancer, vol. 92, no. 2, pp. 240–248, 2001.

[114] R.-D. Hofheinz, S.-E. Al-Batran, F. Hartmann et al., “Stromal
antigen targeting by a humanised monoclonal antibody: an
early phase II trial of sibrotuzumab in patients with metastatic
colorectal cancer,” Onkologie, vol. 26, no. 1, pp. 44–48, 2003.

[115] A. M. Scott, G. Wiseman, S. Welt et al., “A phase I dose-
escalation study of sibrotuzumab in patients with advanced or
metastatic fibroblast activation protein-positive cancer,”Clinical
Cancer Research, vol. 9, no. 5, pp. 1639–1647, 2003.

[116] P. C. Schuberth, C. Hagedorn, S. M. Jensen et al., “Treatment
of malignant pleural mesothelioma by fibroblast activation
protein-specific re-directed T cells,” Journal of Translational
Medicine, vol. 11, no. 1, article 187, 11 pages, 2013.

[117] J. Lee, M. Fassnacht, S. Nair, D. Boczkowski, and E. Gilboa,
“Tumor immunotherapy targeting fibroblast activation protein,
a product expressed in tumor-associated fibroblasts,” Cancer
Research, vol. 65, no. 23, pp. 11156–11163, 2005.

[118] S. Gottschalk, F. Yu,M. Ji, S. Kakarla, and X.-T. Song, “A vaccine
that co-targets tumor cells and cancer associated fibroblasts
results in enhanced antitumor activity by inducing antigen
spreading,” PLoS ONE, vol. 8, no. 12, Article ID e82658, 2013.
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