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The study of human balance recovery strategies is important for human balance

rehabilitation and humanoid robot balance control. To date, many efforts have been

made to improve balance during quiet standing and walking motions. Arm usage (arm

strategy) has been proposed to control the balance during walkingmotion in the literature.

However, limited research exists on the contributions of the arm strategy for balance

recovery during quiet standing along with ankle and hip strategy. Therefore, in this study,

we built a simplified model with arms and proposed a controller based on nonlinear

model predictive control to achieve human-like balance control. Three arm states of

the model, namely, active arms, passive arms, and fixed arms, were considered to

discuss the contributions of arm usage to human balance recovery during quiet standing.

Furthermore, various indexes such as root mean square deviation of joint angles and

recovery energy consumption were verified to reveal the mechanism behind arm strategy

employment. In this study, we demonstrate to computationally reproduce human-like

balance recovery with and without arm rotation during quiet standing while applying

different magnitudes of perturbing forces on the upper body. In addition, the conducted

human balance experiments are presented as supplementary information in this paper

to demonstrate the concept on a typical example of arm strategy.

Keywords: arm strategy, model predictive control, energy consumption, ankle capacity, synergetic joint

coordination, balance recovery, quiet standing

1. INTRODUCTION

Balance control mechanism of human has been researched to enhance balance ability of human and
humanoid robots (Winter, 1995). In specific, principal balance recovery strategies, namely, ankle,
hip, and stepping strategies have been studied based on human experiments (Nashner, 1985; Horak
and Nashner, 1986; Horak et al., 1990) and artificial systems (Kuo and Zajac, 1993; Kuo, 1995;
Shen et al., 2020b). These strategies have been considered as efficient means to help preventing falls
and analyze the mechanism of balance control during standing and walking motions in human
rehabilitation and humanoid robot control. For instance, human upright posture (UP) dynamic
stability with a simplified inverted model or hip-ankle model has been studied based on bifurcation
analyses to improve balance ability related to fall prevention and rehabilitation (Chagdes et al.,
2013; Chumacero et al., 2018, 2019). Additionally, arm strategy has been considered as an efficient
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means to contribute to balance control and reduce the effects of a
fall (Marigold and Patla, 2002; Roos et al., 2008; Pijnappels et al.,
2010; Shen et al., 2020a).

Many studies related to the arm strategy have been conducted
through human experiments and simulations. Cordo and
Nashner (1982) studied rapid postural adjustment associated
with a class of voluntary movements, including arm rotation,
that disturb the postural balance. Ledebt (2000) concluded
that arm postures help stabilize the body to maintain the
upright position and that balance control improves because of
the arm movement. Furthermore, he considered maximization
of the gait efficiency based on an organism’s propensity for
convergence toward a stable coordination between the arms
and legs. Atkeson and Stephens (2007) studied optimal control
with boundary constraints from one optimization criterion to
realize a multi-link model balance control and observed the
movement of shoulder joints for the different perturbations.
Aoustin et al. (2008) showed that arm swinging can help
minimize the energy consumption during walking. Nakada et al.
(2010) reviewed the mechanism of arm strategy for balance
recovery and proposed Q-learning to produce appropriate arm
control torques for humanoid. They concluded that the arm
rotation strategy can widen the range of perturbation impulses.
Bruijn et al. (2010) studied the influence of arm swinging on
balance control for a perturbation as well as the local and
global stability of the steady-state gait and concluded that arm
movements contributed to the overall stability of human gait.
Milosevic et al. (2011) estimated the effectiveness of armmotions
in clinical balance and mobility. Boström et al. (2018) verified
that in a dynamic balance task during challenged locomotion,
the contribution of the upper body motions, particularly the
one of arm movements, to human balance regulation increases
with the difficulty of the task. The considered balance recovery
tasks are in anteroposterior (A/P) direction. Objero et al.
(2019) showed that arm movements are important for the
control of mediolateral (M/L) postural sway, based on human
experimental data.

It is worth noting that all the previous works did not cover
the verification of the arm strategy with multiple cases, e.g.,
active arms, passive arms, and fixed arms, in their human
experiments to discuss the usefulness of arm rotations. To
our best knowledge, these arm strategies are relevant for
stability improvement and energy efficiency in human and
humanoid/bipedal walking and standing. Furthermore, they
did not leverage nonlinear model predictive control (NMPC)
for addressing multiple constraints of the ankle, hip, arm
joint angles, and torques and reproducing human-like balance
recovery controller in their artificial systems. The features
of NMPC consistent with the capacity of the human body
and brain such as constraints handling, predictive horizon,
optimization, and robustness are not considered very well in all
the previous work.

Therefore, we further developed the mechanism of arm
strategy for balance recovery based on previous works and
compared the results with human balance recovery experimental
results. The contributions of our study are summarized
as follows.

(1) A three-joint, five-link model is built to represent the human
body structure for studying quiet standing balance recovery
in the A/P direction. This model includes the foot, the lower
body, the upper body, and the arms.

(2) An NMPC with the system states and the input constraints
is proposed from a neuroscience perspective to reproduce
human-like balanced behavior evoked by the human central
nervous system.

(3) Various indexes are verified to evaluate the capability of
balance recovery. The root mean square (RMS) deviation
and energy consumption are compared for different cases,
namely, active arms, passive arms, and fixed arms. These
three cases of arm usages are recruited for balance recovery.
The obtained data indicate that balance recovery with active
arms is the most effective strategy, and balance control with
arm usage is better than that without arm usage.

(4) Phase portraits of joint angles and whole body center of mass
(WB-CoM) are considered to analyze the control pattern of
balance recovery motion.

(5) Ankle torque boundary constraints are set with different
values. Besides, the relationship between ankle capacity and
active arm usage is discussed since in our daily life ankle
is easy to be injured, we want to observe how arm usages
contribute to balance in this case.

(6) By comparing the results of the numerical simulation and
human experiments, human-like balance recovery with arm
strategy is implemented and arm movements are found to
enhance the capability of balance recovery.

The paper is organized as follows. In section 2, the simplified
model with three different arm usages and their dynamic
equation are introduced first. And, the balance recovery
controller based on NMPC is proposed in section 2.2. In section
3, the results of simulation and human experiments are discussed
to verify if actuated arm usage contributes to balance control. The
conclusions of this study are summarized as well as future work
in section 4.

2. MODELS AND METHODS

2.1. Dynamic Equation of Simplified Models
To achieve quiet standing balance control, we regard the human
body structure as a simplified three-joint and five-link model
consisting of left-right arm joint, hip joint, ankle joint, and right
arm, left arm, upper body, lower body, fixed foot (e.g., Figure 1).
Table 1 summarizes the physical parameters of our model. Based
on an existing anthropometric database (Kouchi et al., 2000) and
the previous work (Atkeson and Stephens, 2007) dealing with
optimization-based balance recovery strategy, the height and
mass of the whole-body are 1.7 [m] and 69.3 [kg], respectively.
Further, m4, m3, m2, m1, and m0 represent the masses of the left
arm, right arm, upper body, lower body, and foot, respectively;
L4, L3, L2, L1, and L0 represent the lengths of left arm, right
arm, upper body, lower body, and foot, respectively; and q3, q2,
and q1 represent the left-right arm angle, hip angle, and ankle
angle, respectively. Note that the body segments between the
head and the left-right arm joint, between the left-right arm joint
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FIGURE 1 | Structure of the three-joint and five-link model. m4, m3, m2, m1,

and m0 represent the masses of the left arm, right arm, upper body, lower

body, and foot, respectively. L4, L3, L2, L1, and L0 represent the lengths of the

left arm, right arm, upper body, lower body, and foot, respectively. q3, q2, and

q1 represent the left-right arm angle, hip angle, and ankle angle, respectively.

Here, the right arm and left arm share the same joint motor.

TABLE 1 | Physical parameters of the three-joint, five-link model.

Link Mass [kg] Length [m] Height [m]

Foot 1.3 0.3 0.1

Lower body 35 1.0 –

Upper body 25 0.6 –

Right arm 4 0.6 –

Left arm 4 0.6 –

Total mass [kg] 69.3 – –

Total height [m] – – 1.7

and the hip joint, and between the hip joint and the ankle joint
are ignored.

First, the dynamic equations of motion for this three-joint,
five-link model controlled by the arm, hip, and ankle joint
torques are computed based on Lagrangemechanics (Paul, 1981).
The Lagrange equations and dynamic equation of motions are
derived for the model with three different arm states separately:
active arms, passive arms, and fixed arms, as shown in Table 2.
In that table, T and V represent the kinetic and potential energy,
respectively; τarm, τhip, and τankle represents the arm torque, hip
torque, and ankle torque, respectively;M11,M12,M13,M21,M22,
M23,M31,M32, andM33 are the inertia terms; and C1, C2, and C3

denote the total centrifugal, Coriolis, and gravity forces.

2.2. Proposed NMPC for Balance Recovery
In this section, an NMPC scheme (Grüne and Pannek, 2017)
is proposed to resolve the balance recovery problem. This
problem can be solved as an iterative open-loop optimal control
problem with a finite horizon and an observable initial states for
each sampling time. The procedure of NMPC with constraints
is illustrated in Figure 2 to strengthen the NMPC concept

explanation. For example, let NMPC starts at k = 0 with a
prediction horizon Nt (here Nt = 5) and the initial states x(0) =
x. The predictive optimal control sequence for the entire horizon
can be obtained as follows,

τ opt =
[

τ opt(0), τ opt(1), τ opt(2)...τ opt(Nt − 1)
]

(1)

The sequence of the predicted states is denoted by,

xopt =
[

xopt(1), xopt(2)...xopt(Nt)
]

(2)

Then, the first sample of the optimal control sequence τ opt(0) is
applied to the system to produce the state x(1). And, the initial
state is updated by x(1) for the new optimal control problem at
the sampling time k = 1. Then, the above-described optimization
process is repeated with the concept of receding horizon (moving
horizon) to obtain a new optimal control sequence for the current
system. Subsequently, the new initial states can be computed for
the next optimal process. Therefore, NMPC is considered as a
receding horizon iterative optimal control algorithm.

The cost function considered in the optimal control problem
of the NMPC is given by

J
(

x(0), τ (0,Nt−1)

)

=

Nt−1
∑

0

l(x, k, τ )+ Vf , (3)

l(x, k, τ ) =
1

2

(

xT(k)Qx(k)+ τ
T(k)Rτ (k)

)

, (4)

Vf =
1

2
xT(Nt)Qf x(Nt). (5)

The penalty weighting dimension and constraints of the NMPC
differ for the model with the three different arm states, including
active arms, passive arms, and fixed arms.

The cost function (3) is considered such that Q, Qf , and
R are positive definite symmetric matrices. The states and the
control torques can be penalized by tuningQ and R, respectively.
Increasing Q is aimed to minimize the state tracking error while
increasing R means a reduction of energy consumption. In this
research, the ratio between Q and R for three cases of arm usages
is set as the same value 103 named one optimization criterion
(Atkeson and Stephens, 2007). Further, terminal weighting Qf =

105 can be used as a tuning parameter to penalize the terminal
states to achieve stable NMPC performance.

The objective is to minimize the cost J
[

x(0), τ (0,Nt−1)

]

subject
to the following control input and state boundary for the model
with three different arm strategies:

(1) NMPC for Model with Active Arms

For ia = 1, 2, 3, which represent ankle, hip, and arm joints
respectively, and ka = 0, ...,Nt − 1, boundary settings of the
control inputs have been selected based on the work of Atkeson
and Stephens (2007) where a constrained-based optimization is
proposed for a multi-balance recovery strategy:

τmin(ia) ≤ τia (ka) ≤ τmax(ia),
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TABLE 2 | Lagrange equations and dynamic equation of motions for the model with three different cases: (1) active arms; (2) passive arms; (3) fixed arms.

Case Lagrange equations Dynamic equation of motion

(1)

d
dt

(

∂L
∂q̇1

)

− ∂L
∂q1

= τankle, 







M11 M12 M13

M21 M22 M23

M31 M32 M33

















q̈1

q̈2

q̈3









+









C1

C2

C3









=









τankle

τhip

τarm









d
dt

(

∂L
∂q̇2

)

− ∂L
∂q2

= τhip,

d
dt

(

∂L
∂q̇3

)

− ∂L
∂q3

= τarm,

L=T-V.

(2)

d
dt

(

∂L
∂q̇1

)

− ∂L
∂q1

= τankle, 







M11 M12 M13

M21 M22 M23

M31 M32 M33

















q̈1

q̈2

q̈3









+









C1

C2

C3









=









τankle

τhip

0









d
dt

(

∂L
∂q̇2

)

− ∂L
∂q2

= τhip,

d
dt

(

∂L
∂q̇3

)

− ∂L
∂q3

= 0,

L=T-V.

(3)

d
dt

(

∂L
∂q̇1

)

− ∂L
∂q1

= τankle,




M11 M12

M21 M22









q̈1

q̈2



 +





C1

C2



 =





τankle

τhip



d
dt

(

∂L
∂q̇2

)

− ∂L
∂q2

= τhip,

L = T − V.

FIGURE 2 | Schematic description of the NMPC at time k. The proposed dynamic model is recruited to predict the future motion state sequence xopt of the model

system and compute optimal control input sequence τopt of balance recovery based on the current state through solving an optimization problem. For instance, let

NMPC starts at k = 0 with a prediction horizon Nt (here Nt = 5) and the initial states x(0).

where τmin(1) = −120 [Nm], τmin(2) = −500 [Nm], τmin(3) =
−200 [Nm], τmax(1) = 120 [Nm], τmax(2) = 500 [Nm], and
τmax(3) = 200 [Nm].

For all ia = 1, ..., 6 and ka = 0, ...,Nt , the states including
angles and angular velocities of ankle, hip, and arm joints are
bounded by

xmin(ia) ≤ xia (ka) ≤ xmax(ia),

where xmin(1) = −0.2 [rad], xmin(2) = −0.35 [rad], xmin(3) =
−2.5 [rad], xmin(4) = −∞ [rad/s], xmin(5) = −∞ [rad/s],
xmin(6) = −∞ [rad/s], xmax(1) = 0.4 [rad], xmax(2) = 1.3 [rad],
xmax(3) = 0.5 [rad], xmax(4) = ∞ [rad/s], and xmax(5) =

∞ [rad/s], xmax(6) = ∞ [rad/s]. It is necessary to point out
that the three first elements of x denote joint angles, and the
three last elements represent angular velocities; this is why the
unit changes from [rad] to [rad/s]. We just put negative infinity
in boundary settings for implementation purposes to keep a
wide range of velocity values. However, based on the obtained
results, the evolution of the velocities remains very reasonable,

i.e., within the interval [−1.2, 1.2] as it can be observed from
Figures 9–11.

(2) NMPC for Model with Passive Arms

For all ip = 1, 2 representing the notation of ankle and hip
joints, respectively and kp = 0, ...,Nt − 1, the control inputs are
bounded by

τmin(ip) ≤ τip (kp) ≤ τmax(ip),

where τmin(1) = −120 [Nm], τmin(2) = −500 [Nm], τmax(1) =
120 [Nm], and τmax(2) = 500 [Nm].

For all ip = 1, ..., 6 representing joint angles and angular
velocities of ankle and hip, arm, and prediction horizon kp =

0, ...,Nt , the states are bounded by the same constraint settings as
the case with active arms.

(3) NMPC for Model with Fixed Arms

For all if = 1, 2 representing ankle and hip joints
respectively and kf = 0, ...,Nt − 1, the control inputs are
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FIGURE 3 | The common simulation settings for the three different arm states.

bounded by the same constraint settings as the case with
passive arm.

For all if = 1, ..., 4 representing joint angles and angular
velocities of ankle and hip, and prediction horizon kf = 0, ...,Nt ,
the system states are bounded by

xmin(if ) ≤ xif (kf ) ≤ xmax(if ),

where xmin(1) = −0.2 [rad], xmin(2) = −0.35 [rad], xmin(3) =
−∞ [rad/s], xmin(4) = −∞ [rad/s], xmax(1) = 0.4 [rad],
xmax(2) = 1.3 [rad], xmax(3) = ∞ [rad/s], and xmax(4) =

∞ [rad/s].
With the system states and the input constraints, an NMPC

is proposed from a neuroscience perspective to reproduce
human-like balanced behavior evoked by the human central
nervous system. The proposed NMPC also has a predictive
aspect that allows predicting the future behavior and computes
an optimal control balance strategy by minimizing systemic
energy consumption of the whole body. Furthermore, the
NMPC technique can handle simultaneously the state and input
constraints, which is important to meet realistic requirements
due to physical limitations of the human body such as joint
ranges and torques saturation. All the previously proposed
control techniques can not take into account constraints
naturally. In this research, we proposed NMPC which can
naturally take into account constraints. Different magnitudes
of disturbing forces are applied to the model to observe the
autonomous switch between the ankle, hip, and arm strategies
and to examine the robustness of the proposed solution.

3. RESULTS OF SIMULATION AND
DISCUSSION COMPARED TO HUMAN
EXPERIMENTS

3.1. Simulation Parameter Setting
In this section, we analyze the model motion intensity using the
total RMS deviation of the joint angles to verify the effectiveness

of the arm strategy. The simulation settings are demonstrated
in Figure 3. We pushed the position of the center of mass of
the upper body with different disturbing forces backward and
forward for 1 [s], which could be different with the previous study
on perturbation setting with a balance board (Chumacero and
Yang, 2019, 2020). The maximum simulation time is set as 4 [s]
that can make the model finish the process of balance recovery.
The disturbing forces were as follows (Atkeson and Stephens,
2007):

(1) Push backward: −20 [N], −40 [N], −60 [N], −70 [N], and
−80 [N].

(2) No force: 0 [N].
(3) Push forward: 20 [N], 40 [N], 60 [N], 70 [N], and 80 [N].

3.2. Simulation Results and Discussion
NMPC controller produces predictive ankle-hip strategy after a
perturbation while arm strategy can be employed only for the
model of active arm setting. For the disturbing forces −80 [N]
and 80[N], only the model with the active arm can realize balance
recovery from the unstable states. The models with passive arm
and fixed arm are unable to obtain a solution for balance control
under the same disturbing force. This indicates that the active
arm rotation strategy widens the range of the disturbing forces;
this result is similar to the conclusions derived in Nakada et al.
(2010) and Kuindersma et al. (2011).

The schematic of the movements of the models with active,
passive, and fixed arms for a disturbing force of 70 [N] is
illustrated in Figure 4. The figure shows that the model with
active arms has a better ability to realize balance recovery than
the other two models. This is because the deviation of the center
of mass of the model with active arm usage in the x-axis direction
(e.g., Figure 5) is less than the other with passive and fixed arm
usages. Figure 6 shows the center of mass for three different
arm states is located within the stable region according to the
evolution of the whole body center of mass (CoM) velocity vs.
its position. Based on the obtained results from this Figure, we
concluded that it is located within the stable region. It is worth

Frontiers in Neurorobotics | www.frontiersin.org 5 May 2021 | Volume 15 | Article 679570

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Shen et al. Arm Strategy for Balance Recovery

FIGURE 4 | Schematic of the balance behavior for the three different arm states (“top to bottom: active arms, passive arms, and fixed arms”), for a disturbing force of

70 [N]. (A,F) Represent the equilibrium states; (B) represents the pushing forward process; (C–E) represents the balance recovery behavior.

FIGURE 5 | Evolution of center of mass of the model in the x-axis direction for the three different arm states (active arms, passive arms, and fixed arms) for a

disturbing force of 70 [N].
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FIGURE 6 | Evolution of the center of mass phase portrait of the model for

three different arm states (active arm, passive arm, fixed arm) for different

disturbing forces: (1) Push backward: −20 [N], −40 [N], −60 [N], and −70 [N].

(2) No force: 0 [N]. (3) Push forward: 20 [N], 40 [N], 60 [N], and 70 [N]. “a,” “p,”

and “f” in the labels “adf,” “pdf,” and “fdf” represent the cases with active

arms, passive arms, fixed arms, respectively, and “df” represents the

disturbing forces.

noting that the size of CoM phase portraits for the model with
active arm usage is smaller than those for the model with passive
or fixed arm usage. This indicates that active arm usage can
maintain the center of mass of the body to remain close to
the origin (equilibrium point). From the stability aspect, active
arm usage shows more advantage in balance recovery tasks by
comparing the deviation of the center of mass.

The total RMS deviation can be calculated by

Total RMS deviation =

√

√

√

√

1

N

N
∑

t=1

(q1(t)2 + q2(t)2) ,

where, N denotes the total samples number, which can be
computed from the recovery time and the sampling period, q1(t)
and q2(t) represent the ankle and hip angles at each sampling
point, respectively.

The evolution of the total RMS deviation of the model for
the three different arm states (active arm, passive arm, and fixed
arm) for different disturbing forces is illustrated in Figure 7.
Here, the total RMS deviation is defined to represent the body
motion intensity. Figure 7 shows that the total RMS deviation of
the balance recovery motion with active arms is less than that
with passive arms. Furthermore, the total RMS deviation of the
balance recovery motion with passive arms is less than that with
fixed arms for the following disturbing forces:−20 [N],−40 [N],
−60 [N], −70 [N], 20 [N], 40 [N], 60 [N], and 70 [N]. This
indicates that armmovements contribute to human body balance
control and reduce the motion intensity of the hip joint. This
conclusion in accordance with the one obtained from a human
experiment (Boström et al., 2018). Besides, it is worth to note that
the proposed model based on NMPC can recover after a wide
range of perturbations; therefore, the robustness of the NMPC
is verified as well. This is one of the advantages of the proposed
controller with active arm usage.

Figure 8 compares the energy consumption of the model for
three different arm states and for different disturbing forces.
The energy consumption in this research is joint mechanical
energy, which can be computed through the total joint actuator
energy consumption of ankle, hip, arms. First, we observe that
as the disturbing force intensifies, the balance recovery motion
consumes more energy for each case. Most importantly, for
the same amount of push, the energy consumption for the
balance recovery of the model with active arm rotation is
the least followed by passive arm rotation. It is the biggest in
the case without arm rotation. This indicates clearly that balance
recovery with arm strategy can reduce energy consumption,
which is human-like energy-efficient. Humans also optimize the
motion behavior for balance recovery to save energy. Thus, the
contribution of arm usage to human balance recovery can also be
acknowledged from the perspective of energy-efficiency.

Furthermore, there are consistent limit cycles of the balance
recovery for the model with active arm usage over the different
disturbing forces, indicating natural temporal regulation on
the coordination of ankle, hip, and arm joints, respectively,
in Figures 9–11. It means that there is temporal pattern to
make compensation against disturbing forces, which can be
viewed as there is control strategy since it forms similar form
of phase portrait. It implies there is consistent ankle-hip-arm
control strategy for active arm usage. However, it is noticeable
that portrait form is largely deformed for the passive and fixed
arm cases.

Similarly, the relationship of the ankle, hip, arm angles
shows aligned spatial pattern over the joints, which represents
synergetic joint coordination, and the maximum deviations
exhibit linear approximations in Figure 12. The joint correlation
of neighboring joints, such as ankle and hip, hip and arm,
under the different disturbing forces are computed for synergy
existence confirmation (Latash and Zatsiorsky, 2016). The mean
joint correlation between ankle and hip is 0.898 and the one
between hip and arm is 0.966. Thus, the balance motion with
active arm rotation is highly coordinated, which means there
is a good synergy performance. The synergy pattern here can
represent the ability of task sharing and balance stabilization.
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FIGURE 7 | Evolution of the total RMS deviation of the model for three different arm states (active arm, passive arm, and fixed arm) for different disturbing forces: (1)

Push backward: −20 [N], −40 [N], −60 [N], −70 [N], and −80 [N]; (2) No force: 0 [N]; (3) Push forward: 20 [N], 40 [N], 60 [N], 70 [N], and 80 [N]. There was no

solution for the cases of passive and fixed arms under the disturbing forces −80 [N] and 80 [N].

FIGURE 8 | Comparison of total energy consumption of the model for three different arm states (active arm, passive arm, fixed arm) for different disturbing forces: (1)

Push backward: −20 [N], −40 [N], −60 [N], −70 [N], and −80 [N]; (2) No force: 0 [N]; (3) Push forward: 20 [N], 40 [N], 60 [N], 70 [N], and 80 [N].

However, the motions of balance recovery for the cases of the
model with passive and fixed arms did not exhibit similar synergy
performance because of the absence of certain patterns. From the
synergy analysis perspective, the balance recovery for the model
with active arm usage is better than that for the other two cases.

Table 3 shows the contribution of active arm usage to
the balance recovery under different ankle capacities. Since
ankle is most common injured body site (Fong et al., 2007),
we want to observe how arm usages improve the ability of
balance maintenance. Here, five cases are considered through
different ankle torque constraints (tc) and disturbing forces (df)
(Negahban et al., 2013):

(1) tc= [−80, 80] [Nm], df= 56 [N],

(2) tc= [−100, 100] [Nm], df= 56 [N],
(3) tc= [−120, 120] [Nm], df= 56 [N],
(4) tc= [−100, 100] [Nm], df= 70 [N],
(5) tc= [−120, 120] [Nm], df= 70 [N].

Comparing the above ankle boundary constraint settings, we can
note that the ankle capacity of case (1) is weaker than that of cases
(2) and (3). For the same disturbing force df = 56 [N] applied
on the center of mass of the upper body, in cases (1), (2), (3), the
ankle capacity of case (1) reaches the maximum limit. Therefore,
this model needs more efforts for balance recovery. Besides,
a longer recovery time and a higher energy consumption are
required for case (1), compared with those for cases (2) and (3).
For a limited ankle capacity, such as in case (1), the active arm
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FIGURE 9 | Evolution of the ankle phase portrait of the model for three different arm states (active arm, passive arm, fixed arm) for different disturbing forces: (1) Push

backward: −20 [N], −40 [N], −60 [N], and −70 [N]; (2) No force: 0 [N]; (3) Push forward: 20 [N], 40 [N], 60 [N], and 70 [N]. “a,” “p,” and “f” in the labels “adf,” “pdf,”

and “fdf” represent the cases with active arms, passive arms, fixed arms, respectively, and “df” represents the disturbing forces.

FIGURE 10 | Evolution of the hip phase portrait of the model for three different arm states (active arm, passive arm, fixed arm) for different disturbing forces: (1) Push

backward: −20 [N], −40 [N], −60 [N], and −70 [N]. (2) No force: 0 [N]. (3) Push forward: 20 [N], 40 [N], 60 [N], and 70 [N]. “a,” “p,” and “f” in the labels “adf,” “pdf,”

and “fdf” represent the cases with active arms, passive arms, fixed arms, respectively, and “df” represents the disturbing forces.
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FIGURE 11 | Evolution of the arm phase portrait of the model for two different arm states (active arm, passive arm) for different disturbing forces: (1) Push backward:

−20 [N], −40 [N], −60 [N], and −70 [N]. (2) No force: 0 [N]. (3) Push forward: 20 [N], 40 [N], 60 [N], and 70 [N]. “a” and “p” in the labels “adf” and “pdf” represent the

cases with active arms and passive arms, respectively, and “df” represents the disturbing forces.

FIGURE 12 | Evolution of the ankle, hip, and arm angles of the model for active arms for different disturbing forces: (1) Push backward: −20 [N], −40 [N], −60 [N],

−70 [N]. (2) No force: 0 [N]. (3) Push forward: 20 [N], 40 [N], 60 [N], 70 [N]. “a” in the label “adf” represents the case with active arms, and “df” represents the

disturbing force. The mean joint correlation between ankle and hip is 0.898 and the one between hip and arm is 0.966.

RMS deviation is seven times those in cases (2) and (3), and
arm energy consumption is approximately 39 times that in cases
(2) and (3). Similarly, for a same disturbing force of 70 [N], the
active arm RMS deviation in case (4) is six times that in cases
(2) and (3), and the arm energy consumption is approximately
24 times that in cases (2) and (3). These observations show that

for a limited ankle capacity, arm rotation makes more effort for
balance recovery. Furthermore, the ankle capacity in cases (2)
and (3) for a disturbing force df = 56 [N] does not reach
the maximum limit, and the movements of balance recovery are
almost the same. For the same ankle capacity in cases (2) and
(4), the disturbing force df = 70 [N] in case (4) makes the ankle
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capacity reaching themaximum limit, and active arms needmore
effort for balance recovery than that in case (2). By comparing
cases (3) and (5), although the ankle capacity does not reach the
maximum limit in both cases, more efforts are required for a
bigger disturbing force.

In the simulation study, various indexes are verified to
evaluate the capability of balance recovery. The obtained data
indicate that balance recovery with active arms is the most
effective strategy, and balance control with arm usage is
better than that without arm usage. Besides, Phase portraits of
joint angles are considered to analyze the control pattern of
balance recovery motion. Furthermore, Ankle torque boundary

TABLE 3 | Contributions of active arm usage to balance recovery under different

ankle capacities.

Case Recovery time [s] Arm RMS deviation AEC [J] TEC [J]

(1) 5.53 0.505 31.681 74.284

(2) 3.2 0.071 0.81 3.11

(3) 3.2 0.071 0.796 3.097

(4) 5.31 0.523 29.914 85.602

(5) 3.32 0.087 1.248 4.824

Five cases are defined as follows: (1) tc = [−80, 80] [Nm], df = 56 [N]; (2) tc = [−100, 100]

[Nm], df = 56 [N]; (3) tc = [−120, 120] [Nm], df = 56 [N]; (4) tc = [−100, 100] [Nm], df =

70 [N]; (5) tc = [−120, 120] [Nm], df = 70 [N]. AEC represents arm energy consumption,

and TEC represents total energy consumption.

constraints are set with different values. The relationship between
ankle capacity and active arm usage is discussed since in our daily
life ankle is easy to be injured, we want to observe how arm usages
contribute to balance in this case. Regarding the comparison
of our work with previous studies dealing mainly with human
balance control without arm strategy, it is worth to point out
that in our study we considered three cases including (i) active,
(ii) passive, and (iii) fixed arms. This last one corresponds to
the case without arm strategy from the literature. Indeed, the
obtained results show clearly that the balance model with active
arm strategy leads to a less energy consumption, a more robust
control, a more synergetic motion, and an improved balance
ability, compared to the case without arm strategy.

3.3. Human Experimental Setting
Now, we apply three different magnitudes of a pushing force,
namely, small push, medium push, and large push, to the backs
of the subjects to observe the contributions of arm rotation
to human quiet standing balance recovery. The magnitudes of
the pushing forces are distinguished by the maximum position
deviation of the marker on the subject’s neck, and ground
reaction force measured by two AMTI force plates. Furthermore,
it is important to point out that even though the same pushing
force is applied to all the subjects, there is no guarantee that
the balance behavior of the subjects would be exactly the same.
Consequently, we decided to quantify the levels of this pushing
force and classify them into three levels (small, medium, and
large). The key point behind this is to distinguish the subjects’

FIGURE 13 | Balance recovery motion of Subject 1 for three different magnitudes of push: (a) Small push, (b) Medium push, and (c) Large push. As the push force

increases, more arm usage can be recruited to improve the balance maintenance ability. And, anti-phase exits between arm and hip joint angles, indicating the active

arm rotations for balance control motion.

Frontiers in Neurorobotics | www.frontiersin.org 11 May 2021 | Volume 15 | Article 679570

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Shen et al. Arm Strategy for Balance Recovery

FIGURE 14 | Evolution of the joint angles and torques of the ankle, hip, and arm for three different magnitudes of push: (1) Small push, (2) Medium push, and (3) Large

push. It is important to note that ankle joint angle and torque don’t change from middle push to large push. It implies necessity of arm usage after ankle usage

saturation.

balance recovery behavior based on these different levels of the
pushing force. The subjects were five healthy men [mean age
(25 ± 5) years, mean height (175 ± 10) cm, mean weight
(70 ± 10) kg] without any known motor or neurological
impairment. The protocols of human experiments were designed
according to the Declaration of Helsinki and approved by
the Tohoku University ethics committee. In fact, the human
experiments have been conducted in two main stages. During
the first one, dealing with a pre-training, the subjects are pushed
with different forces (according to the three levels explained
above, respecting the order : small, then medium, then large
for security purposes) to learn how to maintain their balance.
During the second stage, dealing with the final experimental tests,
the previous different pushing force levels are considered, while
disturbing the subjects in stand-up positions, and their behavior
data are recorded. The exact spot of the push force is the upper
back of the subject. For each level push force, five repetitions
are performed for a single subject. The motion of the subject
is tracked using 42 markers in the Optitrack system with eight
cameras and the ground reaction forces are measured using two
force-plates. Then, we export the tracking data of the motion
and ground reaction forces and convert them to a standard
data format, which can be used in OpenSim (Rajagopal et al.,
2016). Then, we obtain the joint angles and torques for each
subject through model scaling, inverse kinematics, and dynamics
in OpenSim. Here, the inverse dynamics could be solved by using
the top-down method. These results can be used to analyze the
balance recovery motion and the functions of the ankle, hip, and
arm for different magnitudes of disturbing forces.

3.4. Comparison With Human Experimental
Results
Our discussion in this paragraph focuses on the representative
movements on the Subject 1 since the trends discussed for this
subject are consistent across all the subjects. The balance recovery

motion of Subject 1 for three different magnitudes of push: (a)
Small push, (b) Medium push, and (c) Large push is shown
in Figure 13. Here, the active arm usage of subject 1 is in a
good accordance with the one obtained in our simulation shown
in Figure 4 reproduced by the proposed NMPC, where anti-
phase between arm and hip joint angles. Besides, as the push
force increases, more arm usage can be recruited to improve the
balance maintenance ability. Figure 14 shows the evolution of
the joint angles and torques of the ankle, hip, and arm for the
three different magnitudes of push. The ankle joint angles change
slightly, which is similar with the simulation results illustrated in
Figure 9, because of the structural limitation of the ankle joint
compared to other joints. It is important to note that ankle joint
angle and torque don’t change from middle push to large push.
It means ankle usage meets saturation due to its limited capacity.
We have observed this phenomenon also in the simulation study.
The hip joint rotates by a larger degree as the magnitude of
the pushing force increases. This illustrates that hip joints play
a major role in balance recovery. Furthermore, the deviation of
the arm joint angles and torques increases. This is because when
the magnitude of the pushing force increases, subject 1 attempts
to recover balance through more efforts of the arm rotation.
From Figure 14, we note that subject 1 spends a longer time in
recovering balance for the large push. Table 4 presents the mean
of the peak-to-peak values of the joint angles and torques of the
ankle, hip, and arm of five subjects for different magnitudes of
pushing force. Here, the deviation of the arm joint angles and
torques is positively correlated with the magnitude of push force.
For large push, we can notice that ankle joint angle increases
only 1 degree from middle push case. It implies that ankle usage
is already near the saturation due to mechanical constraints,
thus the arm strategy to compensate disturbance is essential for
large push. This process is consistent to the behavior we have
observed in the proposed NMPC controller. Consequently, we
conclude that active arm usage contributes to balance recovery
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TABLE 4 | Mean of the peak-to-peak value of the joint angles (Unit: [degree]) and

torques (Unit: [Nm]) of the ankle, hip, and arm for different pushing forces.

Push magnitude
Ankle Hip Arm

Angle Torque Angle Torque Angle Torque

Small push 2.35 33.70 14.10 24.03 12.45 4.35

Middle push 4.58 37.82 24.53 47.19 19.54 6.95

Large push 5.51 46.60 44.91 61.80 24.86 8.32

in human experiment and the consistent behavior between the
predictive controller study and human experiment. This indicates
arm movements enhance the capability of balance recovery.

4. CONCLUSIONS AND FUTURE WORK

In this study, we built a simplified human model with arms
and proposed an NMPC scheme to reproduce human balance
behavior with arm usages. Three arm states, active arms,
passive arms, and fixed arms, were considered to study the
contributions of the arm movements to balance recovery with
different magnitudes of a disturbing force during quiet standing.
The contribution of arm usage to human balance control was
verified by comparing the total RMS deviation of joint angles,
and balance control with active arms was found to be the
most effective in terms of the energy consumption and the
disturbance effect minimization. Furthermore, the synergetic
motion pattern was observed with kinematics during balance
recovery with active arms while it was confirmed with joint
correlation along with the steady smooth limit cycle pattern, and
the total energy consumption was compared. Finally, the results
of human experiments were compared with simulation to verify

that active arm usage contributes to balance recovery. Our future
work may focus on conducting more human balance recovery
experiments and analyzing the synergy of body motion at the
kinematic, kinetic, and muscle levels. This will help us to gain a
better understanding of the mechanism of quiet standing balance
with arm strategy and to develop an effective balance controller
for rehabilitation.
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