
Theta oscillons in behaving rats

M. S. Zobaer1, N. Lotfi1, C. M. Domenico2, C. Hoffman1, L. Perotti3, D. Ji2, Y. Dabaghian1∗

1Department of Neurology,
The University of Texas Health Science Center at Houston, Houston, TX 77030

2Department of Neuroscience,
Baylor College of Medicine, Houston, TX 77030,

3Department of Physics, Texas Southern University,
3100 Cleburne Ave., Houston, Texas 77004,
∗e-mail: yuri.a.dabaghian@uth.tmc.edu

(Dated: April 23, 2024)

Recently discovered constituents of the brain waves—the oscillons—provide high-
resolution representation of the extracellular field dynamics. Here we study the most robust,
highest-amplitude oscillons that manifest in actively behaving rats and generally correspond
to the traditional θ-waves. We show that the resemblances between θ-oscillons and the
conventional θ-waves apply to the ballpark characteristics—mean frequencies, amplitudes,
and bandwidths. In addition, both hippocampal and cortical oscillons exhibit a number of
intricate, behavior-attuned, transient properties that suggest a new vantage point for un-
derstanding the θ-rhythms’ structure, origins and functions. We demonstrate that oscillons
are frequency-modulated waves, with speed-controlled parameters, embedded into a noise
background. We also use a basic model of neuronal synchronization to contextualize and
to interpret the observed phenomena. In particular, we argue that the synchronicity level in
physiological networks is fairly weak and modulated by the animal’s locomotion.
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I. INTRODUCTION

Synchronized neural activity induces rhythmically oscillating electrical fields that modulate
circuit dynamics at multiple spatiotemporal scales [1–3]. The corresponding local field poten-
tials (LFPs) are easily recorded and widely used for describing varieties of neurophysiological
phenomena [4, 5]. However, our perspective on the LFPs’ structure and properties, as well as our
interpretation of its functions depend inherently on the techniques used in data analyses. Currently,
most studies are based on Fourier paradigm, in which the oscillating LFPs are viewed as a super-
positions of harmonics with constant frequencies [6, 7]. The familiar θ, γ, and other “brain waves”
are combinations of such harmonics, occupying a particular frequency band [2, 3] (Fig. 1A).

Despite their commonality, Fourier decompositions are known to provide a limited detalization
of LFP dynamics, particularly for transient, irregular or noisy data, and thus may obscure the
brain wave design. A recently proposed alternative, the Discrete Padé Transform1 (DPT), allows
replacing the packets of Fourier harmonics with solitary waves that adapt their frequencies to the
fields’ ongoing structure [8–10] (Fig. 1B). As it turns out, there are two kinds of such “flexible”
frequencies: those that change over time in a regular manner, leaving distinct, contiguous traces on
the spectrogram, and those that assume sporadic values from moment to moment. Mathematically,
the “irregular” harmonics represent the noise, ξ(t), whereas the “regular” frequencies define the
signal’s oscillatory part [11, 12] (Fig. 1C, Sec. VI B).

At high temporal resolutions, the “timelines” of regular frequencies produce undulant patterns—
the spectral waves (Fig. 1C). These waves vacillate around their respective lento-changing means,
and span over the frequency domains attributed to the traditional, Fourier-defined rhythms. For
example, the lowest-frequency spectral wave, prominent during active behavior, occupies the
range that roughly corresponds to the traditional θ-domain [13–17]. The following spectral wave
occupies the slow-γ domain [18], and so forth (Fig. 1C). The gap between the mean frequencies
is typically larger than the undulations’ magnitudes, which allows keeping the standard nomen-
clature, e.g., using the notation νθ(t) for the θ-domain spectral wave, νγs(t) for the slow-γ spectral
wave, etc. Each contiguous frequency, νq(t), contributes with a certain amplitude, Aq(t), and a
phase, ϕq(t), giving rise to a compound wave,

ϑq(t) = Aqeiϕq(t), (1)

which we refer to as brain wave oscillon, or just oscillon for short [11, 12] (Fig. 1B, Sec. VI B).
The superposition of the oscillons and the noise, ξ(t), amounts to the original LFP,

ℓ(t) = Aθeiϕθ(t) + Aγse
iϕγs (t) + . . . + ξ(t). (2)

Typically, the main contribution is made by the θ-oscillon, then the next biggest contribution comes
from the slow-γ oscillon, etc. (Fig. 1D).

Importantly, all oscillon parameters are obtained empirically from the recorded data: the am-
plitudes, the shapes of the spectral waves and the noise exhibit robust, tractable characteristics
that reflect physical organization of the synchronized neuronal activity [19–23]. In other words,
the elements of the decomposition (2) can be interpreted not only as structural motifs, but also
as functional units within the LFP waves. This raises many questions: what are the physiologi-
cal properties of the oscillons? Which of their features were previously captured through Fourier
analyses, and how accurately? Do the oscillons reveal any new operational aspects of the brain
waves?

1 Throughout the text, terminological definitions are given in italics.
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FIG. 1. Oscillons and spectral waves constructed for the LFP data recorded in the rat’s cortex. A. Fourier spec-
trogram: the high-power stripe between about 4 and 12 Hz marks the conventional θ-band, the slow-γ domain lays
approximately between 20 and 45 Hz. B. The corresponding full Padé spectrogram, same time resolution, shows the
pattern of “flexible” frequencies, both stable and unstable. The vertical position of each dot marks a specific frequency
value, the horizontal position marks the corresponding time, and the color indicates the instantaneous amplitude (col-
orbar on the right). C. Most frequencies, (typically over 80%, dark section on the pie diagram), are unstable or
“noise-carrying.” Removing them reveals the regular Padé spectrogram, on which the stable frequencies trace out
regular timelines—spectral waves, νq(t). Color change along each spectral wave encodes the corresponding time-
dependent amplitude, Aq(t) (Eq. 1). D. Combining a particular spectral wave, νq(t), with its amplitude, Aq(t), yields
an individual oscillon, as indicated by Equation 1). Shown is a one-second-long segment of the cortical θ-oscillon
(red trace) and the slow-γ oscillon (pink trace). Notice that summing just these two oscillons (first two terms in the
Eq. 2) already approximates the full LFP profile (gray line) quite closely. E. The superposition of all the inputs with
regular frequencies (dark red trace), closely matches the amplitude original signal (gray trace). The difference is due
to the noise component, ξ(t), carried by the unstable frequencies (dotted black line) typically accounts for less than
5−7% of the signal’s net power during active behaviors (dark section on the pie diagram), and about 10−15% during
quiescence. Data sampled in a 6 months old, wake male rat during active behavior.

In the following, we focus specifically on the high-amplitude, low-frequency θ-oscillons,
recorded in the hippocampal CA1 area and in the cortex of male rats, shuttling between two food
wells on a linear track. The experimental specifics are briefly outlined in Section II, (computa-
tional techniques and mathematical notions are summarily reviewed in the Supplement, Sec. VI B,
for more details see [8–12]). In Section III, we demonstrate that although some qualities of the
θ-oscillons parallel those of the traditional (i.e., Fourier-defined) θ-waves, many of their char-
acteristics have not been resolved or even addressed by conventional analyses. In Section IV,
we use a basic model of neuronal synchronization to illustrate and contextualize our empirical
observations. In Section V, we summarize the results and point out a new vantage point on the
information exchange in the hippocampo-cortical network suggested by the newfound architecture
of the θ-rhythmicity.
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II. METHODS

FIG. 2. Linear track explored
by the rat is 3.5 meters long, a
typical run between the food wells
(blue dots) takes about 30 sec. Fast
moves over the straight segments
last 5 − 6 secs, slowdowns occur at
the corners and during feeding.

Experimental procedures. Data was recorded from the CA1
pyramidal cell layer of Long-Evans rats’ hippocampus and from
anterior cingulate cortex [24]. The animals were trained in a fa-
miliar room to run back and forth on a rectangular track for food
reward (Fig. 2). The daily recording procedure consisted of two 30
min running sessions. Two diodes were mounted over the animal’s
head to track its positions, at 33 Hz rate, with a spatial resolution
of about 2 mm. Further details on surgery, tetrode recordings and
other procedures can be found in [24]. The data analyzed here are
not included in [24], but experimental details are identical.

Signal processing. The original LFP data was sampled at S r =

8 kHz rate, and interpolated to S̃ r = 36 kHz rate, to improve the
quality of the reconstructions at low frequencies. The signals were
filtered between 0 and 60 Hz, and downsampled 2 ≤ m ≤ 4 times,
producing m nearly identical, interlaced subseries, which helped to
ensure robustness and consistency of the results. These and other
procedures permitted using high time resolutions (TW ≈ 50−75 ms
time windows), simultaneously with high frequency resolution of the LFP dynamics (Sec. VI B).

III. RESULTS

The animal’s trajectory consisted of intermittent sequence of fast moves along the straight
segments of the track, slowdowns at the turning points and the periods when the animal consumed
his food reward (Fig. 2). The following analyses target specifically the θ-oscillons’ structure during
fast moves.

Shape of the oscillons. Similarly to their Fourier counterparts—the traditional hippocampal
( f h
θ ) and cortical ( f c

θ ) θ-waves—the θ-oscillons, ϑh
θ and ϑc

θ, increase their amplitudes during active
moves (speed s over 2 cm/sec) and diminish (but do not vanish) during slowdowns and quiescence
[14–17]. Due to the removed noise, the amplitudes of the hippocampal and cortical θ-oscillons’
are lower than the amplitudes of the corresponding Fourier-waves, on average, by 5 − 10%. The
average frequency span of the hippocampal θ-oscillons is between 3 and 13.5 Hz (mean over
12 four-second-long wave segments), and the cortical θ-oscillons are typically confined between
4 and 12.5 Hz. Although the individual spectral waves’ fringes can escape these limits or re-
main confined within much narrower strips, their spreads generally conform with the traditional
θ-bandwidths (Fig. 1A,B).

To put these observations into a perspective, note that there exist several consensual θ-frequency
bands, e.g., from 4 to 12 Hz, from 5 to 10 Hz, from 6 to 10 Hz, from 6 to 12 Hz, from 5 to 15 Hz,
etc. [25–37]. The shapes of the corresponding Fourier θ-waves differ by about ∼ 6%, as measured
by the relative amount of local adjustments required to match a pair of waveforms (the Dynamic
Time Warping method, DTW [38–40], see Fig. S1). In other words, since bandwidths are obtained
through empirically established frequency limits, the resulting wave shapes are fuzzily defined. In
contrast, the frequency profiles of the θ-oscillons are determined squarely, over each time interval,
by the shapes of their respective spectral waves, which may, at times, drop below 3 Hz, get as high
as 20 Hz, or narrow into a tight 1 − 2 Hz band that typically stretches along the mean θ-frequency
(Fig. 3A,B).
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Overall, the shapes of θ-oscillons are similar to the shapes of the Fourier-defined θ-waves:
the DTW-difference between them during active moves are small, D(ϑh

θ , f h
θ ) ≈ 6.4 ± 1.2% and

D(ϑc
θ, f c
θ ) ≈ 7.1 ± 1.5% respectively, relative to the waveforms’ length. However, adaptively built

θ-oscillons capture the ongoing details of the LFP waves better and are hence DTW-closer to the
original LFP signal (D( f h

θ , ℓ
h) ≈ (4±0.7)D(ϑh

θ , ℓ
h), D( f c

θ , ℓ
c) ≈ (5±0.9)D(ϑc

θ, ℓ
c), values computed

for 17 waveforms, for an illustration see Fig. 3B and Fig. S2). Between themselves, the shapes of
the hippocampal and the cortical oscillons differ about as much as the traditional, Fourier, θ-waves:
over 1 − 2 secs segments, D(ϑh

θ , ϑ
c
θ) ≈ D( f h

θ , f c
θ ) ≈ 7 ± 0.8%.

Coupling to locomotion. The θ-oscillons’ amplitudes and their mean frequencies are coupled to
speed, as one would expect based on a host of previous studies of θ-rhythmicity [31–34]. This cor-
respondence is nevertheless informative since oscillons are qualitatively different objects. While
the traditional brain waves’ frequency is evaluated by tracking their Fourier-envelope (Fig.S3),
the oscillons’ mean frequency is obtained as their spectral waves’ moving mean. As illustrated on
Figs. 3C, the two outcomes are consistent, but the latter provides a more nuanced description of the
oscillatory trends: both hippocampal and the cortical θ-oscillons’ mean frequencies, νh

θ,0 and νc
θ,0,

vary more intricately than their Fourier counterparts, which shows only limited, sluggish changes.
Correspondingly, the co-variance of the oscillons’ mean frequency with the rat’s speed is much
more salient (Figs. 3D). Similarities between the two descriptions can be made more conspicuous
by scaling the Fourier-frequency up by an order of magnitude (Fig. S4A), which further illus-
trates that the traditional descriptions capture the mean θ-oscillon dynamics at a diminished scale.
Similar mean behavior is exhibited by the slow-γ oscillon also co-varies with speed (Fig. S4B).

Spectral undulations are the oscillons’ distinguishing feature that capture detailed aspects of
the θ-rhythm’s cadence (Fig. 3C). The semi-periodic appearance of the spectral waves suggests
that their ups and downs should be decomposable into a harmonics series,

νθ(t) = νθ,0 + νθ,1 cos(Ωθ,1t + ϕθ,1) + νθ,2 cos(Ωθ,2t + ϕθ,2) + . . . , (3)

where the modulating, embedded frequencies2, Ωθ,i, the corresponding modulation depths, νθ,is,
and the phases, ϕθ,i evolve about as slowly as the mean frequency, νθ,0 (Fig. 3D). By itself, this
assumption is patently generic—given a sufficient number of terms, suitable expansions (3) can
be produced, over appropriate time periods, for almost any data series [41]. Question is, whether
spectral waves’ expansions can be succinct, hold over sufficiently long periods and whether their
terms are interpretive in the context of underlying physiological processes.

To test these possibilities, we interpolated the “raw” frequency patterns over uniformly spaced
time points and obtained contiguous spectral waves over about 5.5 secs—about 1/6 of a typical trip
between the food wells (Fig. 4A). The full wave was then split into 600 ms long, strongly overlap-
ping (by 99.9%) segments, for which we computed power profiles using Welch’s method [45, 46],
see Sec. VI B. Arranging the results along the discrete time axis yields three-dimensional (3D)
Welch’s spectrograms (W-spectrograms), whose lateral sections consist of the familiar instanta-
neous power-frequency profiles, with peaks marking the embedded frequencies, and whose longi-
tudinal sections show the time dynamics of these peaks (Fig. 4B, see also Fig. S8 in Sec. VI B).

The results demonstrate that both hippocampal and cortical spectral waves have complex dy-
namics. First, most peaks are localized not only in frequency but also in time: a typical peak grows
and wanes off in about 200 − 300 ms, i.e., the embedded frequencies and the depth of modulation
are highly transitive, changing faster than the mean frequencies by an order of magnitude [12].

2 The suppression of the “h” and “c” superscripts here and below indicates that a formula or a notation applies to
both the hippocampal and the cortical cases.
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FIG. 3. A. The lowest spectral wave occupies the domain that is generally attributed to the θ-frequency band. The
color of each dot represents the amplitude, as on Fig. 1. The spectral widths range from about 17 to about 2 Hz (gray
boxes). B. The hippocampal θ-oscillon’s spectral wave, made visible through three “frequency slits” that represent
three most commonly used θ-bands, 4-12 Hz, 5-15 Hz, and 6-11 Hz (gray stripes). The frequencies that fit into a
slit are the ones that produce the corresponding Fourier wave, shown as red-shaded traces on the bottom right panel.
Note that the spectral waves are crosscut by all θ-bands. The Fourier waves are close to each other (DTW distances
D( f h

θ1
, f h
θ2

) ≈ 6%, D( f h
θ2
, f h
θ3

) ≈ 5%, D( f h
θ3
, f h
θ1

) ≈ 8%), but further from the θ-oscillon (e.g., D(ϑh
θ , f h
θ2

) ≈ 9%), which,
in turn, is closer to the original LFP (the ℓ(t) in Eq. 2, gray trace, D(ℓh, ϑh

θ) = 4%). C. A longer segment of a
hippocampal-θ spectral wave. The nearly-constant solid black trace in the middle shows the instantaneous Fourier θ-
frequency. The dashed purple line shows the spectral wave’s moving average, which clearly provides a more detailed
description of the θ-rhythm’s trend. The waveform (bottom panel) is regular when the mean is steady (pink box), and
corrugates when the mean is perturbed (blue boxes). D. The moving mean of the hippocampal and cortical θ-oscillons’
spectral waves (blue and red curves respectively) follow the speed profile (dashed gray curve). The latter was scaled
vertically to match, for illustrative purposes, see also Fig. S4. E. The amplitude of the hippocampal θ-oscillon also
co-varies with the speed, which was captured previously via Fourier analyses [31, 34, 35].
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Thus, the representation (3) holds over relatively short periods (typically 1 sec or less, see [11]),
and then requires corrections in order to account for rapidly accumulating changes. In other words,
the θ-oscillons may be viewed as relatively steady oscillatory processes, altering at the behavioral
timescale at around ∼ νθ,0 ≈ 8 Hz, and modulated by series of swift, transient vibrations.

Curiously, certain peaks in the W-spectrograms appear and disappear repeatedly near the same
location along the Ω-axis, i.e., fast moves can repeatedly incite θ-rhythm’s vibrations at the same
embedded frequencies (Fig. 4B, Fig. S5), indicating restorative network dynamics [47]. Other
peaks appear sporadically, possibly reflecting spontaneously generated oscillations, resonances
or brief external contributions (Fig. 4B, [12]). In either case, these events are coupled with the
rat’s ongoing behavior: power flows into higher embedded frequencies (Ωi over 4 − 5 Hz) as
the speed increases, and recedes as the speed drops, i.e., fast moves drive spectral undulations
both in the hippocampus and in the cortex. Markedly, cortical responses tend to delay by about
τ̄c = 200−300 ms, while the mean hippocampal delay is shorter, about τ̄h = 70−120 ms (Fig. 4B).
With these shifts taken into account, spectral waves are structurally closer to one another than the
corresponding oscillons D(νh

θ , ν
c
θ) ≈ (0.8±0.12)D(ϑh

θ , ϑ
c
θ), which may be viewed as a manifestation

of the hippocampo-cortical frequency coupling at the circuit level.
The peak magnitudes associated with the individual embedded spectral frequencies Ωi (the

coefficients of the oscillatory terms in the Equation 2) tend to grow roughly proportionally to
speed,

νθ,i(t) ≈ αi + wi · sκi(t − τi), (4)

where the hippocampal and cortical exponents are close to 1 (κ̄h = 1.2 ± 0.44 vs. κ̄c = 0.9 ± 0.35,
evaluated for 10 peaks each). The coefficients αi, wi and the temporal lags of the peaks’ responses,
τi, vary by about 10 − 25% from one embedded frequency to another, in both brain areas.

The coupling (4) between the embedded frequency magnitudes and speed is foreseeable: linear
modulation of extracellular fields’ base frequency by speed,

νθ = νθ,0 + β · s(t) · cos(ϕ(t)), (5)

was hypothesized by J. O’Keefe and M. Recce 30 years ago, upon discovery of coupling be-
tween θ-phase shift, ϕ(t), and spiking probability [48]. This dependence was thenceforth used
in oscillatory interference models for explaining the hippocampal place cell [48, 49] and the en-
torhinal grid cell [50–52] firing. Several in vitro experiments [53–55] and Fourier-based LFP
analyses [56] provide supporting evidence for these models (see however [57]). Here we find that
θ-oscillons’ dynamics, obtained directly from in vivo electrophysiological data conform with the
previous studies. However, the hypothesized proportionality between the θ-frequency and speed
is approximate—the actual dependence (4) may deviate from strict linearity. Second, the fre-
quency expansion (3) may contain several oscillatory, speed-modulated terms, whereas the model
expansion (5) contains only one (Fig. S6). Third, the modulation parameters are particularized,
i.e., peak- and time-specific, albeit distributed around well-defined means. Thus, the θ-oscillons’
structure fleshes out many details and exhibits the actual, empirical properties of speed-controlled
oscillators driving the spectral wave (Fig. 4B,C,D). Note here that applying W-spectrogram anal-
yses to the instantaneous Fourier frequencies do not capture any of these structures—the detailed
spectral dynamics is averaged out (Fig. S7).

Noise. The qualitative difference between the regular and the irregular frequencies allows de-
lineating the LFP’s noise component. While in most empirical studies “noise” is identified ad hoc,
as a cumulation of irregular fluctuations or unpredictable interferences within the signal [58–62],
here noise is defined conceptually, based on intrinsic properties of Padé approximants to the sig-
nal’s z-transform that are mathematically tied to stochasticity (Sec. VI B, [8–10]). Being that noise
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FIG. 4. Spectral waves and embedded frequencies. A. The spectral patterns produced via shifting-window evalua-
tion of instantaneous frequencies are intermittent (Fig. 3A). To recapture the underlying continuous spectral dynamics,
we interpolated the raw datapoints over a uniform time series, thus recovering the hippocampal (left) and the corti-
cal (right) spectral waves with uninterrupted shapes. B. The contiguous data series allow constructing 3D Welch’s
spectrogram on which each peak along the frequency axis highlights a particular embedded frequency. Altitudinal
shadowing emphasizes higher peaks (colorbar along the vertical axis). Note that most peaks in both hippocampal
(left) and the cortical (right) W-spectrograms are localized not only in frequency but also in time, indicating short-
lived perturbations of spectra. The dynamics of these frequencies is coupled with the speed—higher speeds drive
up the magnitudes of the embedded frequencies. The speed profile is scaled vertically and shifted horizontally to
best match the frequency magnitudes (orange and black trace respectively). While the response of the hippocampal
frequency to speed is nearly immediate (about τ = 70 − 120 ms delay), the cortical response is delayed by about
τ = 300 ± 50 ms. C. Examples of the individual cortical peaks’ magnitudes, sampled at random, over particular
frequencies (heights of the dots on the panels B) and the corresponding speeds (heights of the crosses) exhibit clear
quasi-linear dependencies. The exponents of these dependencies may slightly change from one appearance of a peak
(an instantiation of an embedded frequency) to another. D. The net magnitude of the spectral wave (θ-bandwidth)
co-varies with the speed with the delay of τ = 100 ms, depending on the case, in the hippocampus (left panel) and an
extra τ = 300 ms in the cortex (right panel).

is qualitatively distinct from the oscillatory part, its dynamics provides complementary description
of the network’s state.

As indicated on Fig. 1C, in a typical LFP, only a few percent of the frequencies exhibit regular
behavior, and yet their combined contribution is dominant: the stochastic component, ξ(t), usually
accounts for less than 5% of the signal’s amplitude, i.e., the noise level is generally low [11, 12].
Structurally, the DPT noise component has undulatory appearance and can make positive or nega-
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FIG. 5. Spectral wave magnitude, noise and speed. A. A segment of a hippocampal spectral wave shows magni-
tude increase during activity with speed, which reflects increased level of synchronization (see below). Shaded area
highlights a period of slow motion, during which the noise escalates. The original LFP amplitude is shown by the
gray trace in the background, for reference. The dashed black curve shows the animal’s speed. B. The dynamics of
the regular part of the LFP (red trace) and the noise component (dotted black trace), obtained for a 12-second lap.
Original LFP is shown by gray trace in the background. C. The hippocampal (left panel) and cortical (right panel)
noise levels follow speed, but more loosely than the oscillon’s amplitude.

tive contributions to the net signal, modulated by the rat’s physiological state [11, 12, 66], Fig. 5A,
B. First, the noise amplitude tends to grow with speed (Fig. 5C), which suggests that increase of
stochasticity is associated with the surge of the modulating vibrations (Fig. 4). However, the speed
couples to noise weaker than to the oscillatory θ-amplitude or to the spectral wave (cortical sepa-
ration D(ξc, s) = 12.2±2%, hippocampal D(ξh, s) = 10.6±1.5%, Fig. 4D). Yet, both hippocampal
and cortical noise levels exhibit affinity, D(ξh, ξc) ≈ 14 ± 2%. Most strongly, the noise is coupled
to the amplitude of the oscillon that it envelopes, D(ϑh

θ , ξ
h) = 1.2 ± 0.5%, D(ϑc

θ, ξ
c) = 1.5 ± 0.5%,

i.e., noise grows and subdues with the ups and downs of the physical amplitude of the extracellular
field (Fig. 5B). As the animal moves out of the θ-state, noise amplifies by an order of magnitude
and decouples from the locomotion, indicating an onset of a “non-theta” state [67], in which the
amplitude of θ-oscillon drops by about 50 − 80% (Fig. 5B, see also [68]).

IV. KURAMOTO OSCILLON

What is the genesis of the oscillons? It is commonly believed that the rhythmic LFP oscillations
emerge from spontaneous synchronization of neuronal activity, although the specifics of these pro-
cesses remain unknown [19–23]. A comprehensive analysis of the recorded data or modeling at the
physiological level of detail is prohibitively complex and technically out of reach. Nevertheless,
the essence of synchronization can be illustrated with simple computational models, which helps
clarifying the observed phenomena. Specifically, the celebrated Kuramoto model allows tracing
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the onset of synchronization in a population of oscillating units, using a single parameter that
describes the coupling strength [69, 70]. Under fairly generic assumptions, these oscillators, or
phasors, can qualitatively represent (map to) the recurring activity of individual neurons [73–77],
so that their net population dynamics captures the ebb and flow of the mean extracellular field.

The behavior of each unit is described by a time-dependent phase, φm(t), that changes between
0 and 2π, inducing an oscillatory output, ℓm = am eiφm . The field produced by the population of M
phasors is hence

M∑
m=1

ameiφm(t) = AK(t)eiϕK (t), (6)

where AK(t) is the total amplitude and ϕK(t) the net phase. Each individual phase is coupled to the
mean phase through an equation

φ̇m = 2πνm + λAK sin(ϕK − φm), (7)

where the dot denotes the time derivative and the constant λ controls the coupling. More extended
discussions can be found in [69, 70], but in brief, such system can transition between two phases
of behavior. For small couplings, different phases evolve nearly independently, proportionally to
their proper angular speeds, φm ≈ 2πνmt. If these speeds are sufficiently dispersed, the phases
remain out of sync and the net field remains small and irregular, AK(t) ≈ 0. As the coupling
increases, the phases become more correlated. If the underlying frequencies are distributed close
to a certain ensemble mean, ω̄m = ω, then the synchronized amplitude grows and regularizes with
rising λ, and eventually produce a synchronous beat with the frequency ω.

From perspective of this discussion, this phenomenon is of interest because it may yield a soli-
tary “synthetic” oscillon, that helps illustrating properties of the physiological oscillons. As shown
on Fig. 6A, if the phasors’ proper frequencies are distributed closely (within about ±3 Hz) to the
mean frequency of νθ,0 ≈ 8 Hz, then the net field’s dynamics is characterized by a single spectral
wave that changes its properties according to the synchronization level. For weak couplings (small
λs), synchronization is fragmentary: segments with steady frequency extend over a few oscilla-
tions, outside of which the spectral wave has a large magnitude (note that the oscillon’s amplitude,
AK , remains low) and is carried by many embedded frequencies, as indicated by abundance of
transient peaks on W-spectrograms (Fig. 6A, right panel). As λ grows, the net amplitude, AK ,
increases and the segments of synchronicity lengthen, while the embedded oscillations subdue
(Fig. 6B). As λ grows further, the embedded frequencies reduce in number and loose magnitudes,
notably over the periods of increased synchronicity. As λ gets even higher, the oscillon turns into
a simple harmonic, and its spectral wave degenerates into a line (Fig. 6C). Ultimately, spectral
undulations get suppressed, as synchronization becomes fully dominant.

These observations suggest that the spectral wave’s width (frequency deviation from the mean,
∆θ(t) = νθ(t) − νθ,0(t)), may serve as an indicator of the ongoing synchronization level. From this
perspective, the fact that both hippocampal and cortical θ-spectral waves are generally wide (±4
Hz, see Figs. 3A,C, 4A), implies that the physiological synchronization level is fairly low.

Note that Kuramoto oscillons produced by weakly-coupled ensembles often exhibit brief pe-
riods of regularity, with reduced spectral undulations, usually accompanied by higher amplitudes
(Fig. 6A,B). Similar effects are observed in the empirical, physiological oscillons, where higher-
synchronicity episodes, lasting about 50−70 ms in cortex and 100−200 ms in the hippocampus fa-
vor steady moves. Conversely, intensification of spectral undulations—local desynchronization—
tends to co-occur with slowdowns and speed-ups (Fig. 6D, see also [68]). Thus, the physiological
oscillons’ response to higher speed effectively corresponds to the increase of coupling λ.
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FIG. 6. Kuramoto model. 1000 oscillators (phasors) with base frequencies normally distributed around 8 Hz with
the variance 1 Hz, coupled via equation 7, produce a mean field characterized by a single spectral wave—a solitary
Kuramoto oscillon (gray trace in the background, scaled up on the top panel 10 times for visibility). On all panels,
the maximal amplitude defines the color scale. A. At small couplings, K-oscillon has low amplitude (AK ≲ 0.02Amax)
and often reshapes (the spectral wave then disrupts, blue boxes). The W-spectrogram (right panel) shows that the
embedded frequencies restructure at ∼ 100 ms timescale. B. As the coupling between phasors grows, the synchronized
amplitude builds up and the K-oscillon’s shape regularizes. Note that when the spectral wave flattens out, the oscillon
is nearly sinusoidal (strong synchronization, brown boxes), and the dynamics of the embedded frequencies during
these periods are suppressed (right panel). C. At large couplings, synchronization becomes persistent: the spectral
wave narrows, the embedded frequencies die out and the oscillon reduces to a nearly-sinusoidal harmonic. D. A
hippocampal θ-oscillon regularizes its spectral wave and yields higher amplitude when the rat’s speed is steady (gray
dashed line, shifted by 80 ms); desynchronization occurs when the speed is low or transient. E. The oscillon’s
amplitude, AK (orange curve), the magnitude of its spectral wave (purple curve), and the noise level, ξ (gray curve),
for different coupling strengths. As the system synchronizes (1.7 ⪅ λ ⪅ 3), the amplitude grows, while the spectral
undulations and the noise subdue. At higher couplings noise is suppressed and regular wave dominates.
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Surprisingly, the Kuramoto model, being fully deterministic, also produces a noise component.
At weak couplings, about 10% of the recovered frequencies are stable, while the other 90% ex-
hibit erratic behavior and represent the emerging noise, ξK , which, however, is small and weakens
with growing λ. Importantly, the distinction between noise and regularity is robust: injecting ar-
tificial noise, ξ̂, white or colored, into the Kuramoto field, up to ξ̂ ≈ 10ξK , does not alter the
amplitude of the de-noised, regular Kuramoto oscillon. As shown on Fig. 6E, in the desynchro-
nized state (λ ≲ 2), the noise accounts for about 17% of the field, and then nearly disappears as
the system synchronizes. In other words, high noise level may also be viewed as a signature of
desynchronization, whereas regular oscillations dominate in synchronized states. This behavior is
also in agreement with the physiological dynamics: as shown on Fig. 5, the noise level is lower
during active moves, and heightened during quiescence, indicating that synchronization of the
hippocampo-cortical network increases during the animal’s activity [68].

V. DISCUSSION

The intricate structure of the synchronized extracellular fields can be anatomized using different
decomposition techniques. The constituents brought forth by a particular decomposition provide
a specific semantics for reasoning about the LFP functions. Being that these semantics may differ
substantially, one may inquire which approach better reflects the physical structure of the brain
rhythms. The oscillatory nature of LFPs suggests partitioning the signal into Fourier harmonics—
an approach that dominates the field since the discovery of the brain waves [1–3]. However, its
is also known that the Fourier techniques obscure the structure of noisy and nonstationary data—
precisely the kind of signals that are relevant in biology [71]. In particular, these considerations
apply to the LFPs, since their constituents—the oscillons—have transient structures enveloped by
noise, i.e., are by nature noisy and nonstationary [11, 12].

Since the oscillons are constructed empirically, using a high time-frequency resolution tech-
nique, and exhibit stable, reproducible features that dovetail with theoretical models of synchro-
nization, they likely capture the physical architecture of the extracellular fields, whereas the tradi-
tional, Fourier-defined brain waves provide approximative descriptions. Thus far, oscillons were
observed in rodents’ hippocampal and the cortical LFPs, but similar structure should be expected
in generic brain rhythms. Their systematic analyses should help linking electrophysiological data
to the synchronization mechanisms and reveal the dynamics of the noise component.

Lastly, the oscillons suggest a fresh vantage point for the principles of information transfer in
the hippocampo-cortical network. Traditionally, the coupling of LFP rhythms to neuronal activity
is traced through modulations of the brain waves’ amplitudes and phases [31–37]. In contrast,
frequency-modulated (FM) oscillons imply a complementary format, in which a slow-changing
mean frequency defines the “channel of communication,” over which the information is carried
by the rapid phase and frequency alterations, reflecting fast endogenous dynamics and abrupt
external inputs [12, 72]. In other words, Fourier analyses emphasize amplitude modulation (AM),
while the DPT decomposition highlights the FM principles of information transfer, carried over
several discrete channels [73–77]. In the case of θ-rhythms, the AM-format is manifested in
familiar couplings of speed with the slowly changing mean frequencies, amplitudes, narrowing
and widening of the θ-band, etc., whereas information about rapid activities appears to transmit
across the hippocampo-cortical network via alterations of the embedded θ-frequencies.

Acknowledgments. The work was supported by NIH grants R01NS110806 (MZ and YD),
R01AG074226 (NL and YD), R01DA054977 (CD and DJ) and NSF grant 1422438 (CH and YD).
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VI. APPENDIX

A. Supplementary figures

Fig. S1. Dynamic Time Warping (DTW) method is based on applying series of stretches that maximize alignment
between two profiles at minimal cost, without omitting elements or scrambling their order. DTW is commonly used
to quantify similarity between waveforms, e.g., for recognizing similar speech patterns [78], and is naturally suitable
for comparing spectral waves. A. Two concurrent segments of the hippocampal, νhθ ( blue line), and the cortical, νcθ
(red line), spectral waves. Each segment contains about 300 data points (time-wise this amounts to about 40 ms),
normalized by their respective means and shifted vertically into the 0 ≲ y ≲ 1 range. B. Each point from νhθ is matched
to one or more points of νcθ and vice versa, using MATLAB’s dtw function. The gray lines show pairs of aligned
points. One-to-many connection lines (gray) mark the stretchings. Note that different segments of spectral waves
alternately lag and outpace one another: the algorithm compensates these shifts to match the shapes. C. After the
alignments, the number of points increases by 50% (note the stretched-out x-axis). The point-by-point separation in
the resulting alignment, measured in Euclidean metric and normalized to the original curve lengths serves quantifies
the spectral waves’ shape difference, which in this case amounts to 7%.
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Fig. S2. Comparative waveforms of Fourier θ-wave (4−12 Hz) and θ-oscillon (top panel) and slow-γ wave, Fourier-
filtered between 20 and 40 Hz, compared to slow-γ oscillon (bottom panel). Despite similar oscillation rates, the wave
shapes are different.
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Fig. S3. Hilbert transform. A. Fourier-defined θ-wave (gray waveform in the background) shown with its amplitude
(dotted line on top) and the corresponding instantaneous frequency (black line, placed according to the right scale)
produced by Hilbert transform. Pink waveform in the foreground shows θ-oscillon and its amplitude computed from
the net contribution of stable poles contributing to spectral wave (dotted brown line). B. Fourier-defined slow-γ wave
(20 − 40 Hz), compared to the slow-γ oscillon. Amplitudes and frequencies are as above. The amplitude of the latter
is lower because it does not include the noise component.
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Fig. S4. Speed vs. mean θ-frequency coupling. A. Additional examples demonstrating covariance between the
moving mean of the hippocampal (blue) and the cortical (red) θ-frequency with the rat’s speed (dashed brown curve).
The latter is scaled vertically and shifted as on Fig. 4, to match the frequency ranges. The instantaneous frequency
of the traditional, Fourier-defined θ-waves is shown by solid black curve, as on Fig. 3. A five-fold (top panel) and
ten-fold (bottom panel) vertical stretch of the Fourier-frequency produces the dotted black curve, whose similarity
to the spectral waves’ means explains the general correspondence between our results and conventional evaluations
of speed-frequency couplings. B. Mean frequency profile of a hippocampal θ-oscillon, left-shifted by 300 ms (right
scale), vs. the mean frequency of a hippocampal slow-γ oscillon, dark lilac, right-shifted by 500 ms (left scale), shown
with the rat’s speed profile.
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Fig. S5. Additional examples of hippocampal (left column) and cortical (right column) W-spectrograms, illustrating
the embedded frequency dynamics for the θ-oscillons. Dark red arrows point at the appearances of isolated peaks and
the black arrows point at the “seedbeds” of peaks recurring at the same frequency.

Fig. S6. Solitary spectral wave, used to simulate the oscillatory model (5) with a single modulating frequency,
Ω1/2π ≈ 1.8 Hz, oscillating around the mean ν0 = 8 Hz with the magnitude ν1 ≈ 2 Hz (dashed gray line in the fore-
ground). Dots represent the instantaneous DPT stable frequencies, colored according to their respective amplitudes.
Physiological spectral waves shown on Figs 1 and 3 contain more than one frequency-modulating harmonic.
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Fig. S7. Welch spectrograms of Fourier instantaneous frequencies (solid black line on the Fig. 3B) built for the
hippocampal (left) and cortical (right) spectral-θ-waves, capture major frequency “splashes” at about 1.7 sec and 4.67
sec, but do not resolve rapid modulations of θ-frequency in-between, compare to Fig. S5.
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B. Mathematical supplement

Fourier approach views signals as superpositions of harmonic waves. To evaluate their am-
plitudes, 2N data values, ℓ̄k = {ℓk,1, ℓk,2, . . . , ℓk,2N}, centered around a discrete moment tk, are con-
volved with a set of 2N discrete harmonics, eiπ/N , ei2π/N , ei3π/N , . . . , 1,

Ak,N =

2N−1∑
n=0

ℓk,nz−n
2N , (8)

where z2N = eiπ/N . The longer is the sample set, the more precise is the spectral decomposition (8).
Specifically, if the original signal is a superposition of NP oscillators,

ℓ(t) =
P∑

p=1

apei2π(νpt+φp), (9)

with the amplitudes ap, frequencies νp, and phases 2πφp, sampled at discrete times tk = kσ, then
the Fourier amplitudes computed for a large number of data points are

Ak,l =
∑

k

ℓ(tk)z−k
2N =

∑
p

ap

1 − zlei2π(νpσ+φp) =
∑

p

ap

1 − ei2π(νpσ+φp−l/N) . (10)

The closer a particular frequency νpσ + φp + i0 is to a l/N, the higher is the amplitude Ak,l of the
corresponding harmonic. The segment selected for the analyses is then shifted, ℓ̄k → ℓ̄k+1, yielding
the next value of the amplitude, Ak+1,l, and so forth, over the entire signal span [80].

If the signal also contains noise,

ℓ(t) =
P∑

p=1

apei2π(νpt+φp) + ξ(t),

then the Fourier peaks broaden and their heights reduce [81]. Similar effects appear if the signal
is nonstationary, e.g., if the frequencies νp change with time, since it becomes more difficult to
match both the temporal and frequency details [7, 71, 79]. Indeed, resolving a spectral structure X
that lasts over a period TX, requires using time resolution, ∆T , shorter than TX [6]. On the other
hand, the frequency resolution, ∆ν, should be smaller than the X’s spectral size. The problem is
that improving the temporal resolution (lowering ∆T ) reduces the number of data points caught
into the sliding window, which then lowers the frequency resolution, ∆ν = 1/∆T , which limits the
precision of the method altogether.

For example, the characteristic amplitude of the spectral waves shown on Fig. 1C and Fig. 3A
is about ∆ν ≈ 7 − 12 Hz, which, at the Nyquist frequency S = 4 kHz, requires at least N =
600 discrete harmonics, i.e., N = 600 data points per sliding window, that can be acquired over
∆T = N/S = 150 ms. On the other hand, the characteristic period of the spectral waves is about
Tθ ∼ 50− 100 ms, i.e., in order to resolve the raising and the lowering phases of the spectral wave,
∆T should be less than 50 ms. Thus, the temporal and the frequency resolutions work against each
other and leave certain details of X unresolved.

Discrete Padé Transform (DPT) approach is based on adapting the frequencies ν1, ν2, . . . , νN

according to the signal’s structure, without restricting them to a regular “frequency grid” as in
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(8) [8–10]. First, the discrete variable z2N in (8) and (9) is replaced with a generic, continuous
complex variable z, thus turning the sum (9) into a z-transform of the data series,

S (z) =
∞∑

n=1

snz−n. (11)

The function (11) is then approximated by a ratio of two polynomials,

S N(z) = PN−1(z)/QN(z),

which constitutes the N-th order Padé approximation, S (z) = S N(z) + o(z2N) [82] (hence the name
of the method [11]). As shown in [8, 9], the poles of S N(z), i.e., the roots of QN(z), capture the
spectral structure of the signal ℓ(t), similarly to the Fourier transform (10). Specifically, for the
signal (9) one gets a rational function of degree (NP − 1)/NP,

S (z) =
∑

k

s(tk)zk =
∑

p

apeiφp

1 − zei2πνpσ
,

with the poles
zp = e−i2πνpσ,

and their residues defining the individual frequencies, νp, the amplitudes, ap, and the phases, φp,
of the corresponding oscillators.

If the signal contains a stochastic component ξ(t), then the discretized time series are “noisy,”
sn = rn + ξn, and the generating function S (z) acquires an “irregular” part

Ξ(z) =
∞∑

n=0

ξnz−n.

As it turns out, the poles of the Padé approximant to Ξ(z) concentrate around the unit circle in the
complex plane [63] and pair up with its roots, forming the so-called Froissart doublets [64, 65, 83,
84]. A typical pole-zero distance in the complex plane is smaller than 10−6 − 10−7 in the standard
Euclidean metric, which allows detecting the Froissart doublets numerically. Additionally, these
doublets are highly sensitive to the parameter changes, e.g., to sliding window size, whereas the
unpaired poles of (10) remain stable and isolated. These differences allow delineating the LFP’s
noise component from the oscillations encoded by the stable poles [8, 9].

Data analyses. The mean amplitudes of the LFP time series was normalized to ℓ̄(t) = 2, with
small amount of noise, δξ ≈ 0.01% of the total amplitude, added for numerical stability. The
signal was then filtered into 1 ≤ f ≤ 60 Hz band. The original sampling rate, S = 8 kHz,
was interpolated to 36 kHz to improve the low-frequency spectral wave reconstruction. We then
produced 2 − 3 times undersampled sub-series, which were used for independent estimations of
the regular frequencies. The sliding window width varied between nϖ = 100 to nϖ = 200 (for
each undersampled subseries), which yields Padé approximants of orders N = 50 − 200. At the
interpolated frequency, this corresponds to Tϖ = 8 ms to Tϖ = 50 ms time windows. To ensure
maximal contiguity of the spectral waves, windows were shifted by one data point. These results
remain stable under parameter variations, e.g., changes of the sliding window width [11]. The
unstable frequencies were identified by detecting the Froissart doublets, with the critical pole-zero
distance dF = 10−6 [8–11].
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Welch transform allows estimating power spectra in transient signals [45]. Standard power
spectra are evaluated by performing the discrete Fourier transform of the entire signal and com-
puting the squared magnitude of the result. In Welch’s approach, the signal is first split into a large
number of highly overlapping shorter segments, and then the power spectrum of each segment is
evaluated independently.

Fig. S8. Welch spectrogram of a hippocam-
pal spectral wave. The black line shows power
profile computed for a particular 600 ms long
segment, centered at 2.4 sec. The select pro-
file shows two peaks, which, over time, change
their heights and positions, revealing the dy-
namic frequency landscape.

The power peaks obtained from a particular data seg-
ment thus mark the most prominent frequencies appear-
ing over the corresponding time interval. Arranging
such power profiles next to each other in natural or-
der, one gets three-dimensional W-spectrograms illus-
trated on Fig. S8. By construction, the lateral sec-
tions of W-spectrograms are the instantaneous power—
frequency profiles, whereas the longitudinal sections
show the peaks’ dynamics, that highlight the evolution
of the corresponding embedded frequencies, Ωθ,i.

Spectral waves. Since the poles are computed inde-
pendently at each time step, based on a finite number
of data points, the patterns of reconstructed frequencies
contain gaps and irregularities. To capture the underly-
ing continuous physical processes, we interpolated the
“raw” spectral traces over uniformly spaced time points
and used Welch transform to analyze the embedded fre-
quencies. The mean frequency was evaluated as the spectral waves’ moving mean, over periods
comparable with largest undulation span ∼ 200 ms. All computations were performed in MATLAB.

Coupling between speed and the embedded frequencies (the dependence (4)) was obtained
by evaluating the height of peaks on W-spectrogram at consecutive moments of time and com-
paring them to the ongoing speed values. Computations were made for peaks exceeding 20%
of the mean height of W-spectrograms, for each analyzed data segment. All computations were
performed in MATLAB.

Kuramoto model describes a network of oscillators, coupled via the equation

φ̇k = 2πνk +
λ

mk

N∑
l=1

Ckl sin (φl − φk) ,

where mk is the valency of the oscillator ℓk, and Ckl is the adjacency matrix

Ckl =

{
1 if ℓk is connected to ℓl,

0 otherwise,

and mk is the valency of the node ℓk. In this study, the network had scale-free connectivity. The
mean field produced at the kth node is

AK,keiϕK =

N∑
l=1

Ckleiφl . (12)

Multiplying both sides of (12) by e−iφk and taking the imaginary part, one recovers the equation
(7), which highlights the mean field dynamics.
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Lovering, C. Generalized Dynamic Time Warping: Unleashing the Warping Power Hidden in Point-
Wise Distances. Proceedings of 34th International Conference on Data Engineering (ICDE), pp. 521-
532 (2018).

[41] Corduneanu, C. Almost Periodic Oscillations and Waves, Springer, New York (2009).
[42] Belluscio, M., Mizuseki, K., Schmidt, R., Kempter, R. & Buzsáki, G. Cross-frequency phase-phase
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