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In magnetic resonancemetabolic imaging, signal from the water content is frequently used for
normalization to derive quantitative or semi-quantitative values of metabolites in vivo or ex vivo
tumors and tissues. Ex vivo high-resolution metabolic characterization of tumors with
magnetic resonance spectroscopy (MRS) provides valuable information that can be used
to drive the development of noninvasive MRS biomarkers and to identify metabolic
therapeutic targets. Variability in the water content between tumor and normal tissue can
result in over or underestimation of metabolite concentrations when assuming a constant
water content. Assuming a constant water content can lead to masking of differences
between malignant and normal tissues both in vivo and ex vivo. There is a critical need to
develop biomarkers to detect pancreatic cancer and to develop novel treatments. Our
purpose here was to determine the differences in water content between pancreatic tumors
and normal pancreatic tissue as well as other organs to accurately quantify metabolic
differences when using the water signal for normalization. Our data identify the importance of
factoring the differences in water content between tumors and organs. High-resolution proton
spectra of tumors and pancreatic tissue extracts normalized to the water signal, assuming
similar water content, did not reflect the significantly increased total choline observed in
tumors in vivo without factoring the differences in water content. We identified significant
differences in the collagen 1 content between Panc1 and BxPC3 pancreatic tumors and the
pancreas that can contribute to the differences in water content that were observed.

Keywords: pancreatic cancer, total choline, MRS, collagen, water content
INTRODUCTION

Most pancreatic cancers are histologically classified as pancreatic ductal adenocarcinoma (PDAC),
and have a 5-year survival rate of less than 5% (1). PDAC is an aggressive and lethal disease that
develops relatively symptom-free and is therefore advanced at the time of diagnosis. Its poor
prognosis is due to a combination of late-stage diagnosis and limited response to chemotherapy and
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radiotherapy. The limited response of PDAC to chemotherapy
arises, in part, from the strong desmoplastic stroma that limits
delivery of therapeutic agents (2). The absence of early
symptoms and effective treatments has created a critical need
for identifying new noninvasive biomarkers and therapeutic
targets. Magnetic resonance spectroscopic imaging (MRSI)
and magnetic resonance spectroscopy (MRS) are being
evaluated in the diagnosis of several solid malignancies
including brain, prostate and breast cancer (3). A hallmark of
most solid tumors is the detection of elevated levels of
phosphocholine (PC) and total choline (tCho) (4). tCho, which
is usually seen as a single peak in vivo, consists of three
choline-containing metabolites that can be resolved through
high-resolution 1H MRS into three resonance peaks, namely
PC, glycerophosphocholine (GPC) and free choline (Cho). We
previously observed elevated levels of tCho in several pancreatic
cancer cell lines and tumor xenografts (5). However, initial single
voxel studies performed in humans suggest that the tCho signal
normalized to water may be relatively high in normal pancreas
compared to PDAC (6, 7). Our initial high-resolution ex vivo 1H
MR spectra of tumors and pancreatic tissue normalized to the
water signal, assuming similar water content, also did not reflect
the significantly increased tCho observed in vivo. To assess the
importance of tissue heterogeneity, we performed ex vivo 1H
MRSI of tumor tissues, and normal pancreas. We determined if
differences in water content caused the discrepancy between our
previous in vivo observations (5), and the in vitro results. Here,
we measured the water content in human pancreatic cancer
xenografts, in mouse pancreas, and in mouse lungs, liver, heart,
kidney and muscle.

Pancreatic tumors are known for their desmoplastic stroma.
The extracellular matrix (ECM) plays a critical role in tumor
progression and invasion. Stromal collagen 1 (Col1) is a major
structural component of the ECM in tumors. PDAC associated
desmoplasia can lead to a 3-fold increase in collagen deposition
compared to normal tissue (8) that may also alter water content.
The collagen triple helix is a unique protein motif that requires
water to stabilize its conformation and assembly (9). To assess
differences in Col1 fiber in our pancreatic models, we used
second harmonic generation (SHG) microscopy (10).

Our data demonstrate the importance of determining
differences in water content between tumors and organs. We
identified differences in Col1 fibers between the tumors and
pancreas that may contribute to the differences in water content
between these tissues.
MATERIAL AND METHODS

Cell Lines and Tumor Implantation
Human pancreatic cancer cell lines BxPC3 and Panc1 derived
from primary adenocarcinoma were obtained from ATCC
(American Tissue Culture Collection, Manassas, VA). Cells
were cultured in DMEM (Sigma, St. Louis, MO) with 10% fetal
bovine serum (FBS), 25 mM glucose and 4 mM glutamine, in
standard cell culture incubator conditions at 37°C in a
Frontiers in Oncology | www.frontiersin.org 2
humidified atmosphere containing 5% CO2. Subcutaneous and
orthotopic tumor implantation was performed as previously
described (11). Briefly, viable tumor pieces of ∼1 mm3

harvested from subcutaneous tumors were implanted into the
pancreas of anesthetized male severe combined immunodeficient
(SCID) mice via a left subcostal incision of ∼7 mm. Similar sized
tumor pieces were subcutaneously implanted in a second set of
SCID mice. The tumor pieces used for the implantation were
obtained by inoculating 2 x 106 cells suspended in 0.05 ml of
Hanks balanced salt solution in the flank of SCID male mice. All
surgical procedures and animal handling were performed in
accordance with protocols approved by the Johns Hopkins
University Institutional Animal Care and Use Committee, and
conformed to the Guide for the Care and Use of Laboratory
Animals published by the NIH.

Tissue Water Content
The water content of the tumors, pancreas, lungs, liver, kidney,
heart, spleen and muscle was estimated by comparing the wet
weight to the dry weight. Tissue wet weights were measured
immediately after excision from euthanized mice. The organs
were then freeze-clamped and lyophilized for 72h to obtain the
corresponding tissue dry weights. The fractional water content
was determined as (wet weight-dry weight)/wet weight. We also
calculated the ratio of the wet weight to dry weight for all the
organs (Healthy organs n=4, Panc1 tumors n=2 (orthotopic
n=1, subcutaneous n=1), BxPC3 tumors n=5 (orthotopic n=3,
subcutaneous n=2)).

Ex Vivo Magnetic Resonance
Spectroscopic Imaging
Mice were sacrificed 4 weeks post-implantation. Orthotopic
Panc1 and BxPC3 tumors, subcutaneous Panc1 and BxPC3
tumors, pancreas and thigh muscle were placed in a 50 ml
Falcon tube filled with 0.5% agarose. The pancreatic and
muscle tissues originated from the subcutaneous tumor-
bearing mouse. To be able to visualize all the tissues within
one slice during the acquisition, we first poured about 10–15 ml
of agarose in the tube that was put on ice for the agarose to
solidify. We then carefully placed the organs on top of the first
layer of agarose, and slowly added 10 more ml of agarose that
was allowed to solidify on ice. To scan the embedded tissues, the
tube was placed in a 30 mm diameter volume coil with the tissues
located at the center. Data were acquired on a 9.4T horizontal
Bruker spectrometer (Bruker Biospin Corp., Billerica, MA). First,
we acquired 12 consecutive 1 mm thick T1-weighted images to
optimize the selection of 4 mm and 1 mm thick slices. Before
acquiring the MR spectroscopic images, we acquired T1-
weighted anatomic images of the selected 4 mm and 1 mm
slices. The slice geometry was used for magnetic resonance
spectroscopic imaging (MRSI) acquisition and analysis. We
acquired water-suppressed MRSI, using VAPOR water
suppression and the following parameters: echo time of 135
ms, repetition time of 1,500 ms, field of view of 1.6 cm x 1.6 cm,
phase encode steps of 16, number of scans (NS) 4 for the 4 mm
thick slice, 12 for the 1 mm thick slice, block size 2048, and sweep
January 2021 | Volume 10 | Article 599204
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width of 10,000 Hz. Unsuppressed water used for normalization
was acquired with MRSI from the same slices, with a TE of 20 ms
and a NS of 2. All other parameters were kept similar.
Spectroscopic images of the tCho signal at 3.2 ppm and the
water signal at 4.7 ppm were generated from the MRSI data sets
using an in-house IDL program and analyzed using the freeware
program ImageJ. The images shown in the center row in Figure
2, obtained using the Bruker Paravision display software, are
tCho intensity maps overlaid on anatomic T1 weighted images.
The tCho maps were not quantitative and used heavy
thresholding. The images shown on the right in Figure 2 were
obtained using an IDL software developed to quantify tCho
concentration in each voxel. To improve sensitivity, anodization
windows were implemented in both spectral and spatial
dimensions that resulted in smoothing of reconstructed
metabolite images.

We corrected the concentration values using a correction
factor of 1.18 for Panc1, and 1.19 for BxPC3, obtained from the
ratio of the water content of the tumor to the water content of the
pancreas. Sample sizes were: Pancreas n=5, Muscle n=4, Panc1
tumors n=4 (orthotopic n=2, subcutaneous n=2), BxPC3 tumors
n=5 (orthotopic n=3, subcutaneous n=2).

Magnetic Resonance Spectroscopy of
Dual Phase Extracts
Tumors were excised with half the tumor used for extraction to
acquire high-resolution ex vivo 1H MR spectra and the other half
fixed in formalin for histology and to detect Col1 fibers. Tumor
and normal pancreas extracts were obtained using a dual-phase
extraction method with methanol/chloroform/water (1/1/1)
(12). Normal pancreatic tissue and tumor tissue were freeze-
clamped and ground to powder. Ice-cold methanol was added,
and the tissue extract samples were homogenized, after which
chloroform, followed by ice-cold water were added. Tissue
extract samples were kept at 4°C overnight for phase
separation. Samples were then centrifuged for 30 min at 15,000 g
at 4°C to separate the phases. The water/methanol phase
containing the water-soluble metabolites was treated with
chelex (Sigma, St. Louis, MO) for 10 min on ice to remove
divalent cations. The chelex beads were removed through
filtration. Methanol was then removed by rotary evaporation,
and the remaining water phase was lyophilized and stored at
−20°C. Water-soluble samples were dissolved in 0.6 ml of D2O
(Sigma, St. Louis, MO) containing 3-(trimethylsilyl) propionic-
2,2,3,3,-d4 acid (TSP) (Sigma, St. Louis, MO) as an internal
concentration standard. Fully relaxed 1H MR spectra of the
extracts were acquired on a Bruker Avance 500 spectrometer
operating at 11.7 T (Bruker BioSpin Corp., Billerica, MA) using a
5-mm HX inverse probe, and the following acquisition
parameters: 30° flip angle, 6,000 Hz sweep width, 11 s
repetition time, time-domain data points of 32 K, and 128
transients (12). Spectra were analyzed using Bruker
XWINNMR 3.5 software (Bruker BioSpin Corp., Billerica,
MA). Integrals of the metabolites of interest were determined,
and metabolite peak integration values from 1H spectra were
compared to the internal standard. Values were first normalized
Frontiers in Oncology | www.frontiersin.org 3
to the wet weight of the tissue, then corrected using a factor of
1.82 for Panc1, and 1.85 for BxPC3, obtained from the ratio of
the wet to dry weight of the tumor to the wet to dry weight of the
pancreas (BxPC3 n = 3; Panc1 n = 3; normal pancreas n = 4).

Histology and Second Harmonic
Generation Microscopy
For histology, the formalin fixed tissues were paraffin embedded,
sectioned at a thickness of 5 µm and stained with H&E. Col1 fiber
images were acquired from tumor H&E sections using SHG
microscopy on a multiphoton Olympus Laser Scanning FV1000
MPE microscope (Olympus Corp., Center Valley, PA, USA) with
a 25Xw/1.05XLPLN MP lens. The second harmonic signal was
detected at a wavelength of 430 nm following excitation at 860
nm. SHG is an intrinsic signal that arises from non-
centrosymmetric molecular structures such as Col1 fibers (10).
The SHG analysis was done as previously described (10). Briefly,
we used our home-built software in MATLAB R2017b (The
MathWorks, Natick, MA, USA) to quantify percent fiber volume
and inter-fiber distance. Ten random fields of view (FOVs) were
selected and mean and standard error was calculated for each
group of pancreatic tumors and pancreatic tissue (BxPC3 n = 4;
Panc1 n = 2; normal pancreas n = 2).

Statistical Analysis
Statistical analyses were performed using GraphPad Prism 8
software (GraphPad Software, Inc., San Diego, CA, USA). To
determine the statistical significance of the quantified data
between multiple groups, One-way ANOVA was performed,
followed by multiple comparisons between each group. P
values ≤ 0.05 were considered significant unless otherwise stated.
RESULTS

To assess the water content in tumor, pancreas, liver, lungs,
kidney, heart, muscle, and spleen, we weighed the different
tissues before and after lyophilization. The percent water
content in the different tissues and organs is shown in Figure
1A. We also measured the ratio of wet weight to dry weight for
each organ (Figure 1B). Significantly higher water content and
wet weight to dry weight ratios were measured in Panc1 and
BxPC3 tumors as compared to other organs, including the
pancreas. The ratio of the tumor water content to the pancreas
water content was used as a correction factor for the 1H MRSI
data. In the MRSI data, the tCho concentration is calculated
based on the water content, assuming a constant water
concentration of water. Therefore, the correction factor used
was obtained from the ratio of the water content of the tumor
(Panc1: 83.88%, BxPC3: 84.00%) to the water content of the
pancreas (70.53%) (i.e. 1.18 (Panc1) and 1.19 (BxPC3)).

The tumor to pancreas wet weight to dry weight ratio was
used as a correction factor for the high-resolution extracts. Here,
values measured with 1HMRS were normalized to the wet weight
of the tissue. To correct for differences in water content, we used
the ratio of the wet to dry weight of the tumor (Panc1: 6.20,
January 2021 | Volume 10 | Article 599204
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BxPC3: 6.30) to the wet to dry weight of the pancreas (3.41) (i.e.
1.82 (Panc1) and 1.85 (BxPC3)).

Ex vivo 1H MRSI was performed on orthotopic and
subcutaneous Panc1 and BxPC3 tumors, and the pancreas and
muscle. Representative images are shown in Figure 2. MRSI data
were acquired on a 1 mm thick slice (Figures 2A, C), and on a
4 mm thick slice (Figures 2B, D). Intensity and concentration
maps of tCho concentration maps acquired ex vivo confirmed
high levels of tCho in Panc1 and BxPC3 orthotopic tumors,
followed by subcutaneous tumors. A much lower signal was
detected in the pancreas, with none in the muscle (Figure 2). The
maps also confirmed the heterogeneous tCho distribution within
the tumors.

Quantifications of tCho in the different tissues calculated
from the ex vivo 1H MRSI data are summarized in Figure 3.
Orthotopic tumors showed significantly higher levels of tCho
Frontiers in Oncology | www.frontiersin.org 4
compared to subcutaneous tumors. tCho concentrations were
higher in the tumors as compared to pancreas and muscle. Panc1
orthotopic tumors presented significantly higher levels of tCho as
compared to orthotopic BxPC3 tumors. Taking into account the
differences in water content between the pancreas and tumor, we
corrected the concentration values using a correction factor of
1.18 and 1.19 respectively for Panc1 and BxPC3, obtained from
the ratio of the water content of the tumor to the water content
of the pancreas (Figures 3B, C). Correcting the values strengthened
the significant difference between the tumors and the pancreas.

We then performed dual phase extraction of orthotopic
Panc1, and BxPC3 tumors, as well as adjacent normal
pancreas, and acquired high-resolution 1H MRS on the
extracts to measure tCho (Cho + PC + GPC) concentrations.
The values were initially normalized to the wet tissue weight,
(Figure 4A). We observed a trend to higher tCho in tumor as
compared to the adjacent normal pancreas. After factoring in
differences in water content, the difference between tumors and
pancreas was significant for Panc1 tumors (Figure 4B). We used
a correction factor of 1.82 and 1.85 respectively for Panc1 and
BxPC3, obtained from the ratio of the wet to dry weight of the
tumor to the wet to dry weight of the pancreas. When combining
the 2 tumor types, the difference between tumors and pancreas
became significant after correction (Figure 4C).

Differences in tCho concentration were observed between
each tumor type, with Panc1 showing the highest levels. The
analysis of H&E stained tumor sections revealed differences, as
shown in Figure 5, between Panc1 and BxPC3. Necrotic areas
were observed in both tumor types, which could partly explain
the heterogeneity of tCho signal observed (Figure 2),
highlighting the importance of acquiring 1H MRSI instead of
single voxel MRS. Tumor heterogeneity can also complicate
biopsy sample analysis and extract analysis, if only part of the
tumor is used for analysis. Col1 fiber content was analyzed in the
histologic sections using SHG microscopy. Normal pancreas had
about 1% of Col1 fiber volume. Fibrotic stroma with Col1 fibers
surrounding the cancer cells were observed in both Panc1 and
BxPC3 tumors, with a different organization profile (Figures 5D,
E) between the two tumor types. BxPC3 tumors tended to have
less fibers than Panc1 tumors, with higher distance between the
fibers (Figure 5F). Tile scan analysis was also performed on the
tumor sections, giving identical results as the random 10 FOVs
(data not shown).
DISCUSSION

We have previously shown heterogeneous tCho distribution in
vivo using 1H MRSI in subcutaneously and orthotopically
implanted human pancreatic tumors (5). In the present study,
the heterogeneous distribution was confirmed ex vivo. We also
confirmed the higher tCho content in Panc1 tumors as
compared to BxPC3, as previously described (5). To quantify
1H MRSI, the water signal is typically used as a reference. Our
data identified a significantly lower water content in normal
tissues including the pancreas compared to subcutaneous and
A

B

FIGURE 1 | (A) Percent water content and (B) wet weight over dry weight
ratio in different tissues identifying higher water content in tumors compared
to the pancreas and other organs. Healthy organs n=4, Panc1 tumors n=2
(orthotopic n=1, subcutaneous n=1), BxPC3 tumors n=5 (orthotopic n=3,
subcutaneous n=2). Values represent Mean +/− SD. One-way ANOVA:
P < 0.0001. Dunnett’s multiple comparison test: #p < 0.01, ##p < 0.001,
###p < 0.0001 for comparison to Panc1 tumors; *p < 0.01, **p < 0.001,
***p < 0.0001 for comparison to BxPC3 tumors.
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orthotopic pancreatic tumors, highlighting the importance of
factoring in differences in water content when quantifying
metabolites for comparison across different tissue types.
Similarly, quantification of high resolution 1H MRS is usually
normalized to the tissue wet weight, and the water content
should be taken into account when comparing different tissues
characterized by different water content. Our results also
support the use of 1H MRSI that provides a tCho map rather
than single voxels 1H MRS to address heterogeneities in the
pancreas and in pancreatic tumors.

The differences in water content that we observed between the
tumors and the normal organs are consistent with previous
Frontiers in Oncology | www.frontiersin.org 5
studies. Water content in pancreatic tumors was reported to be
higher than 80%, while the water content of normal pancreas was
found to be 70% in tumor models, that included the KPC model,
as well as allografts and xenografts (13). Tumor models of other
cancers have similar results with the water content higher than
80%, while normal tissues, including brain, heart, kidney and
liver were under 70% (14). In studies with murine tumors, the
water content was 84% in Panc02 pancreatic tumors, 83.5% in
recticular cell sarcoma M5076 tumors, and 79% in RIF-1 tumors
(15). Interestingly, we did not observe any differences between
the water content of subcutaneous and orthotopic tumors. Also,
both tumor types investigated showed similar water content.
A

B

C

D

FIGURE 2 | Representative ex vivo images of muscle, pancreas, orthotopic and subcutaneous Panc1 tumors (A, B), muscle, pancreas, orthotopic and
subcutaneous BxPC3 tumors (C, D). T1-weighted images, tCho intensity map, tCho concentration map of 1 mm thick slices (A, C) and of 4 mm thick slices (B, D)
are shown. M-muscle; O-orthotopic tumor; P-pancreas; S-subcutaneous tumor.
January 2021 | Volume 10 | Article 599204

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Penet et al. Water and Collagen Content in Pancreatic Cancer
A higher level of tCho was previously reported in pancreatic
tumors compared to normal pancreas in a transgenic pancreatic
neuroendocrine tumor mouse model (16). These preclinical
results were confirmed by in vitro 1H MRS of human biopsies.
The studies demonstrated the potential of using tCho detection
by 1H MRS to identify pancreatic tumors in vivo. Similar to our
study, while GPC, PC and Cho were detected in the normal
pancreas, significantly higher levels were measured in the tumor
compared to normal tissue. In this neuroendocrine tumor model,
a 3-fold increase in GPC, PC and Cho was observed in the tumor
compared to the normal tissue. In the same study, analysis of
human biopsies showed higher PC levels compared to GPC
levels, and a higher concentration of tCho in tumor as compared
to normal pancreas (16).
Frontiers in Oncology | www.frontiersin.org 6
In another study, early pancreatic lesion metabolite profiles
were investigated in a Kras (p48-Cre;LSL-KrasG12D) mouse
model and in human biopsies using 1H high resolution magic
angle spinning (HR-MAS) MRS (17). Analysis of human PDAC
samples revealed a reduction of lipids, and an increase of lactate
and taurine in the tumors, but unchanged tCho levels. A limited
number of cases and tumor heterogeneity may have influenced
these biopsy results. Additionally, concentrations were
calculated after normalization to an electronic reference, and
to the sample mass. In the Kras (p48-Cre;LSL-KrasG12D) mouse
model, a decrease of PC was observed (17). The Kras (p48-Cre;
LSL-KrasG12D) model is characterized by the development of
early pre-neoplastic pancreatic intraepithelial neoplasia
(PanIN) lesions, but rarely develops into late PDAC tumors.
A B

C

FIGURE 3 | (A) tCho concentration quantification from the ex vivo 4 mm thick 1H MRSI maps without correction. Pancreas n=5, Muscle n=4, Panc1 tumors n=4
(orthotopic n=2, subcutaneous n=2), BxPC3 tumors n=5 (orthotopic n=3, subcutaneous n=2). (B) tCho concentration quantification from the ex vivo 4 mm thick 1H
MRSI maps after correction. (C) tCho concentration in both subcutaneous and orthotopic tumor types averaged before and after correction (subcutaneous tumors:
n=4; orthotopic tumors and pancreas: n=5). Values represent Mean +/− SD. One-way ANOVA P<0.0001 (A, B) P < 0.004 (C). Dunnett’s multiple comparison test:
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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This may partly explain the differences between these results
and our data.

While we observed the presence of Cho, PC and GPC in
normal pancreas, we also observed differences in water content
between normal pancreas and tumor tissue. Assuming a similar
water content between normal pancreas and tumor tissue can
significantly impact the accuracy of the tCho concentration,
since the water content is significantly different between the
two tissues. Ex vivo 1H MRSI data revealed higher concentration
of tCho in tumor tissues compared to pancreas, especially in the
orthotopically implanted tumors. The tCho maps also revealed
the importance of acquiring 1H MRSI instead of single voxel 1H
MRS because of the heterogeneity of the tCho distribution within
the tumor tissue. The tCho heterogeneity, observed in both
Panc1 and BxPC3 tumors, is due partly to the presence of
necrotic area, but also to the variable density of cancer cells
within the ECM, and in fibrotic area, as seen on the histologic
sections. The use of 1H MRSI that provides a tCho map rather
than signal from a single voxel is important to address metabolic
heterogeneities in pancreatic cancers, and in the pancreas.
Frontiers in Oncology | www.frontiersin.org 7
Investigations comparing spectra obtained from normal and
malignant pancreatic regions will require precise placement of
voxels in viable non-necrotic tumor regions, elimination of
motion-related effects, and accurate quantitation of metabolites.

Due to the heterogeneous nature of the desmoplastic reaction
in PDAC, localized biopsies can lead to a misrepresentation of
the extent of fibrosis in the tumor. The potential of using either
water apparent diffusion coefficient (ADC) measurements or
magnetization transfer (MT) MRI to noninvasively assess
tumor fibrosis has been recently explored (8). While ADC is
based on water molecule diffusion, MT MRI is based on the
exchange of magnetization between subpopulations of free water
protons and water protons bound to tissue macromolecules. MT
contrast can be sensitive to tissue collagen concentration and
MTR values were shown to be higher in BxPC3 tumors,
consistent with their higher fibrosis levels (8). ADC values
were identified as significant prognostic factors in pancreatic
cancer patients (18).

SHG microscopy analysis of Panc1 and BxPC3 orthotopic
tumors revealed differences in Col1 fiber patterns, and increased
A B C

D E F

FIGURE 4 | tCho concentrations in mM derived from the water phase of Panc1, and BxPC3 orthotopic tumor extracts with high-resolution 1H MRS (tCho=Cho+PC
+GPC) compared to normal adjacent pancreas before (A) and after (B) water content correction, (n=3). (C) tCho concentrations in mM averaged for the orthotopic
tumors before and after correction as compared to normal pancreas (n=12). Representative 1H MR spectra of orthotopic Panc1 tumor (D), orthotopic BxPC3 tumor
(E) and normal pancreas (F) (x-axis, chemical shift in ppm). Values represent Mean +/- SD. One-way ANOVA P = 0.06 (A) P < 0.004 (B) P < 0.04 (C) Dunnett’s
multiple comparison test: *p < 0.05, ***p < 0.005.
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fiber content as compared to normal pancreas. Differences in
Col1 fiber pattern have been previously described in
subcutaneous Panc1, BxPC3 and Capan-1 tumors (8), with a
higher level of fibrosis and associated collagen deposition, as
Frontiers in Oncology | www.frontiersin.org 8
measured with Trichrome Masson, in BxPC3 tumors compared
to Panc1 and Capan-1 tumors. This study performed in
subcutaneous models did not include normal pancreas. In our
studies the most significant difference was between collagen
FIGURE 5 | H&E-stained sections of normal pancreas (A), orthotopic BxPC3 tumor (B), orthotopic Panc1 (C). (N-necrotic area, V-viable tissue). Second harmonic
generation (SHG) images overlaid with H&E-stained sections of orthotopic BxPC3 tumor (D), orthotopic Panc1 tumor (E) in three different fields of view. Quantification
of fiber volume (F) and inter fiber distance (G) in normal pancreas, orthotopic BxPC3 tumor, and orthotopic Panc1 tumor. Values represent Mean +/- SD.
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content in tumors compared to the normal pancreas. Differences
in ECM and collagen content and organization can contribute to
differences in the water content of tissues. Water binds to matrix
proteins, including collagen (19) and plays a critical role in
stabilizing collagen structure. The mechanical properties of
collagen change with hydration. The concentration of collagen
fibers in pancreatic tumors correlates with the total tissue
pressure (20). Tumors are characterized by biomechanical
alterations that include accumulation of solid stress, ECM
stiffening and increased interstitial fluid pressure due to leaky
blood vessels, dysfunctional lymphatics and a dense interstitial
ECM (21). The dense ECM characterizing PDAC includes high
concentration of interstitial hyaluronan (HA) (13). HA is a high-
molecular weight polysaccharide that forms networks with
proteoglycans in the ECM. It attracts water causing tissue
swelling (22). Collagen encapsulates HA allowing the collagen
microfibrillar network to restrain the intrinsic swelling pressure
of HA (22). HA can bind up to 15 molecules of water per
disaccharide unit, due to its high negative charge that contributes
to its ability to complex large amount of water (13). Our results
support further investigation of the role of the ECM and Col1
fibers in influencing the water content of pancreatic cancers.

Taken together our data identified significant differences in
water content between pancreatic cancer tissue and normal tissue
including the pancreas, as well as the differences in Col1 fiber
content between these tissues. Our data highlight the importance
of including the difference in water content when quantifying
metabolic differences between normal and malignant tissue. The
significant increase of tCho in pancreatic cancer compared to
normal pancreatic tissue is consistent with previous studies that
have identified an increase of tCho in pancreatic cancer
supporting its investigation in the detection of pancreatic cancer.
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