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Abstract

Microparticles (MPs) are released constitutively and from activated cells. MPs play signifi-
cant roles in vascular homeostasis, injury, and as biomarkers. The unique glycocalyx on the
membrane of cells has frequently been exploited to identify specific cell types, however the
glycocalyx of the MPs has yet to be defined. Thus, we sought to determine whether MPs,
released both constitutively and during injury, from vascular cells have a glycocalyx match-
ing those of the parental cell type to provide information on MP origin. For these studies we
used rat pulmonary microvascular and artery endothelium, pulmonary smooth muscle, and
aortic endothelial cells. MPs were collected from healthy or cigarette smoke injured cells
and analyzed with a panel of lectins for specific glycocalyx linkages. Intriguingly, we deter-
mined that the MPs released either constitutively or stimulated by CSE injury did not
express the same glycocalyx of the parent cells. Further, the glycocalyx was not unique to
any of the specific cell types studied. These data suggest that MPs from both normal and
healthy vascular cells do not share the parental cell glycocalyx makeup.

Introduction

Microparticles (MPs) are submicron circulating intact vesicles that are constitutively released
from a variety of cell types including endothelial cells, platelets, cancer cells, mesenchymal
stem cells, and epithelial cells [1-6]. This release is increased in activated or injured cells [7-
12]. The biological role of MPs is currently under intense investigation [13-18]. MPs modulate
coagulation, vasoconstriction, angiogenesis, tumor metastasis, and infection [5, 12, 19-21].
Released MPs carry identifying proteins, phospholipids, and other cellular components that
are indicative of the parent cell from which they are derived, making them excellent candidates
for biomarkers. Frequently, identification of MPs is based on clusters of differentiation markers
(i.e. CD31 for endothelial MPs) indicative of the parent cells, and expression of phosphatidyl-
serine (PS) on their membrane [22]. While changes in the types of microparticles found in the
circulation during vascular diseases such as atherosclerosis or pulmonary arterial hypertension
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have been reported, these studies again were dependent on clusters of differentiation or phos-
phatidylserine exposure [10, 23-27]. Clusters of differentiation frequently are indicative of
multiple cell types, and recent work has shown that detection by PS may miss large populations
of MPs that do not present PS on their outer membrane [9, 28]. Therefore, new markers of par-
ent cell origin would be highly useful in identification of circulating MPs.

The unique carbohydrate configuration on the surface membrane of cells has frequently
been exploited to identify specific vascular cell types [29-33]. Utilizing lectins, proteins known
to stereospecifically target and bind sugar moieties, the glycocalyx makeup of the pulmonary
artery and pulmonary microvasulature has been identified and are unique with respect to each
other [34]. The glycocalyx of the aortic endothelium has been examined previously with the
Wisteria floribunda lectin, which binds N-acetyl-D-galactosamine, however to our knowledge
aortic endothelial binding to our panel of lectins has not been performed [35]. Further, Sambu-
cus nigra I, has previously been used to examine pericytes, but not directly pulmonary artery
smooth muscle cells, and thus to our knowledge, the glycocalyx has not been defined [31, 36].
Therefore, our goal was to determine whether cells from different regions and different vascu-
lar beds comprised unique glycocalyx signatures. With this information, we then sought to
determine whether MPs released constitutively from vascular cells would mirror the unique
glycocalyx properties of their parental cell type.

The glycocalyx plays a functional role in maintenance of the vascular barrier [37-39]. Injuri-
ous stimuli, such as stretch or application of neuraminidase, to the vasculature disrupt the gly-
cocalyx and induce leak [37]. Cigarette smoke extract (CSE) induces disruption of the
pulmonary endothelial cell barrier [40-42]. Thus, we also sought to determine whether CSE, as
an injurious stimulus, altered the glycocalyx of the endothelium or pulmonary vascular smooth
muscle and further whether any observed alterations were transferred to the resultant MPs.

Materials and Methods

Cell Culture

Rat pulmonary microvascular endothelial cells (MVEC), rat pulmonary artery endothelial cells
(PAEC), and rat aortic endothelial cells (AOEC) were obtained from the Cell Culture Core,
Center for Lung Biology at the University of South Alabama (http://www.southalabama.edu/
clb/tcc/TCC.html). The isolation and characterization of these cells was performed as previ-
ously described by the core facility [34]. Rat pulmonary artery smooth muscle cells (PASMC)
were obtained through a generous gift from Dr. Kurt Stenmark, University of Colorado Health
Sciences Center [43]. Cells were used between passages 5-15. Endothelial cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) (10017cv, Mediatech; Manassas, VA) with 10%
heat-inactivated fetal bovine serum (S11050H, Atlanta Biologicals; Lawrenceville, GA) and 1%
penicillin/streptomycin solution (15140, Invitrogen; Carlsbad, CA). Smooth muscle cells were
cultured in DMEM/Ham’s F-12 50/50 mixed media (10092cv, Mediatech; Manassas, VA) with
10% FBS and 0.5% gentamicin solution (1676045, MP Biomedicals; Solon, OH).

Micropatrticle Collection

All cells were seeded at an initial density of 100,000/dish and grown to confluence in sterile 100
mm culture plates. Growth media was removed, and 5 mL serum-free media (SFM) was added
to all plates. For cell studies with cigarette smoke extract (CSE), cells were exposed to 3% of
CSE (cigarette smoke preparation described below) added directly to SFM media and incu-
bated for 1 hour at 37°C to induce MP release. Controls were SEM only, also incubated for 1
hour at 37°C. After treatment, media was collected from the cells and centrifuged at 1000x g
for 10 minutes to remove dead cells and cellular debris. The media from two plates of cells
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were then pooled for MP collection. The media was transferred to labeled tubes appropriate for
ultracentrifugation and 2% neutral buffered formalin (53901, Thermo Scientific; Rockford, IL)
was added as a fixative. The tubes were rocked at room temperature for at least 15 minutes in
the fixative solution before further processing. Tubes were balanced to within +0.02 g and
ultracentrifuged (Avanti J-30i, Rotor JA-30.50 Ti, Beckman Coulter; Fullerton, CA) at 100,000
x g for 45 minutes at 4°C. Media was removed and discarded, leaving the pellet of MPs intact.
MP pellets were re-suspended in buffer solution as required for further analysis.

TEM of microparticles

A subset of microparticles were collected from pulmonary microvascular endothelial cells as
described above and pipetted in culture media onto Nunc polycarbonate membranes (Electron
Microscopy Sciences. Hatfield, PA) and allowed to settle onto membrane for 8 hours. Medium
was then gently removed and membrane submerged in gluteraldehyde in cacodylate buffer for
fixation. The specimens were then rinsed in cacodylate buffer, postfixed for 1 hour with 1% aque-
ous osmium tetroxide, dehydrated with graded alcohol series, and embedded in PolyBed 812
epoxy resin (Polysciences, Warrington, PA). Thick (1 um) sections were cut with glass knives
and stained with 1% toluidine blue and examined via light microscopy for “structure orienta-
tion.” Thin (80 nm) sections cut from the same block with diamond knives and examined and
photographed with a Philips CM 100 transmission electron microscope (FEIL Hillsboro, OR).

Cell Collection

Once microparticle-rich media was removed from cells, 1 mL trypsin was added to each plate
and plates were incubated at 37°C for 5 minutes. Then, 1 mL cell culture media containing FBS
was added to neutralize the trypsin. Cells were removed from the plate, added to sterile 2mL
microcentrifuge tubes and centrifuged at 1000 x g for 10 minutes. The supernatant was
removed and the cells were resuspended in 1.5 mL PBS containing 2% neutral buffered forma-
lin. The cells were rotated for at least 15 minutes in the fixative solution before further process-
ing. The cells were again centrifuged at 1000 x g for 10 minutes, the supernatant was removed,
and the cells were re-suspended in 1 mL buffer solution as required for further analysis.

Cigarette Smoke Extract Preparation

The apparatus was assembled using tubing and a 250mL sidearm vacuum flask in a ventilated
hood. The smoke from 20 research cigarettes (3R4F, University of Kentucky Tobacco and
Health Research Institute; Lexington, KY), with filter removed, was bubbled through 200 mL
sterile PBS. Each cigarette was burned for five minutes under constant negative pressure. The
resulting pH of the CSE solution was adjusted to 7.4 using sodium bicarbonate (S5761, Sigma;
St. Louis, MO) and passed through a 0.22 pm filter (SCGPTO5RE, Millipore; Billerica, MA) to
remove large particles. In order to determine the consistency of CSE preparation, absorbance
of the extract was taken at 230nm. The absorbance measured between 3.18 and 3.28 was con-
sidered 100% concentration and diluted accordingly for cell treatment. Aliquots of the extract
were added to microcentrifuge tubes to be stored at -20°C until needed. When adding CSE to
cell culture plates, an aliquot was thawed at room temperature and added to pre-warmed cell
culture media. The FLICA Caspase 3/7 assay kit (ImmunoChemistry Techonologies, Bloom-
ington, MN) was used to determine caspase activity in CSE treated cells (S2 Fig). Staurosporine
was used as a positive control (1uM for1 hour, Calbiochem). The assay was performed using
the manufacturer’s instructions.
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Addition of Lectins to MPs and Cells

Previously collected MPs were resuspended in 500 pL sterile, 0.1 pm-filtered PBS. Cells were
resuspended in 1 mL sterile PBS. The lectin of interest was added directly to the suspended
EMPs and cells in a darkened room. Lectin dilution used for MPs was 1:100 and for cells was
1:200. The FITC-labeled lectins studied include: Sambucus nigra (SNA1), Maackia amurensis
(MAA), Griffonia simplicifolia I (GS1), and Helix pomatia (HP). Then, the tubes were wrapped
in foil and gently rocked for 20 minutes. To rinse MPs of extraneous lectin, 10 mL of filtered
PBS was added to the tubes and they were centrifuged at 100,000xG for 45 minutes. The MP
pellets were then resuspended in 1 mL PBS and transferred to labeled, sterile FACS tubes (BD
Falcon Polystyrene 5mL, BD Biosciences; Bedford, MA) to be analyzed by flow cytometry.
Cells were washed by adding 800 uL sterile filtered PBS to tubes containing cells and lectin
solution. Cells were spun at 1000 x g for 10 minutes, supernatant removed, then washed once
more. After the final wash buffer was removed, cells were re-suspended in 1 mL sterile PBS and
transferred to labeled FACS tubes for further analysis by flow cytometry.

Flow Cytometry

Microparticles and parent cells were analyzed by flow cytometry (BD FACSCanto II, BD FACS-
Diva Software). For microparticle analysis, logarithmic amplification of forward light scatter
(FSC-Area), sideward light scatter (SSC-A), and fluorescent light scatter (FITC-A) were used to
identify populations. Threshold triggers were based on both FSC-A and SSC-A to minimize
instrument noise and were set at the lowest possible setting for the instrument (200). Before each
experiment, the flow cytometer was calibrated with 1 um Fluoresbrite plain microsphere calibra-
tion beads in PBS (21636, Polysciences Incoporated; Warrington, PA). Forward-scatter voltage
was adjusted so the 1 um peak stayed within a constant FSC-A range. Analysis is limited to parti-
cles 1 pm and under. Particle counts were obtained for each sample and normalized with the
addition of a known amount of CountBright fluorescent counting beads (7 pm diameter, Molec-
ular Probes; Eugene, OR) per sample volume. The counting beads appear in the upper right
region of a standard plot and are gated. We collected 2000 bead events per sample to assure a sta-
tistically significant determination of sample volume. The total number of MPs that were fluoro-
phore-positive was calculated based on the unstained control. This positivity indicates covalent
bonding of the lectin to the glycocalyx of the MPs, which in turn indicates that the specific carbo-
hydrate linkage is present. The ratio of lectin positivity to EMP counts was determined for CSE-
treated, an untreated control, and an unstained control. Cytometric analysis was performed
using forward scatter vs. side scatter plots and histograms (S1 Fig).

Statistical analysis

Statistical significance was determined by ordinary One-Way ANOVA with Tukey’s multiple
comparison test. The confidence interval for all samples was 95%. All data reported are at least
n = 3 independent experiments and error bars represent SEM.

Results

Microparticle imaging

In order to confirm that our protocol for MP isolation resulted in retrieval of intact submicron
vesicles we performed transmission electron microscopy. As a representative cell type to illus-
trate our MP collection protocol we used MVECs. MVECs were grown to confluence and cell

culture media was collected and centrifuged as described in methods. Fixation and TEM were
performed as described previously [44]. Using this method we clearly show that our
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Fig 1. TEM of Microparticles. MVECs were seeded and grown to confluence on 100mm dishes. At
confluence media was collected and centrifuged for MP collection and placement on filters as described in
methods. TEM images of MPs were taken. These images illustrate that our collection protocol isolates MPs of
the appropriate size.

doi:10.1371/journal.pone.0135533.g001

preparation isolates MPs of the appropriate size range and as intact vesicles. While the intrave-
sicular structures of MPs remain unknown, it is evident that the vesicles contain membrane
and likely cytoskeletal features (Fig 1).

The glycocalyx profile of vascular cells

In an effort to characterize the glycoprofile of the vascular cells in this study we used a panel of
4 lectins: Griffonia simplicifolia (GS1) I, Helix pomatia (HP), Sambucus nigra (SNA1), and
Maackia amurensis (MAA). Each of these has binding specificity for terminal chain carbohy-
drates on the surface of the cells (Table 1). Since there is significant heterogeneity in both
expression of surface molecules and the physiologic function of endothelium of pulmonary
and systemic vasculature, we examined cells from both. The vascular cells we examined were
pulmonary microvascular endothelial cells (MVECs), pulmonary artery endothelial cells
(PAECs), aortic endothelial cells (AOECs), and pulmonary artery smooth muscle cells
(PASMC:s) as a non-endothelial vascular cell type.

While the microvasculature of the pulmonary circulation in culture and in isolated lung
examinations is GS1 positive and our results are the same, we also used HP, SNA1, and MAA
on our cells [34, 45]. We found that less than 20% of the cells stained positive for any other
member of the lectin panel (Fig 2A). Alternatively, the PAECs stained 100% positive for SNA
and nearly 80% positive for MAA, while staining less than 20% positive for GS1 or HP
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Table 1. Lectin panel used for all studies.

Lectin Full Name Specificity Order Information
MAA Maackia amurensis lectin a-2,3 sialic acid F-7801-2 —EY Labs'
SNA | Sambucus nigra (Elderberry) lectin a-2,6 sialic acid F-6802-1"

GSH Griffonia simplicifolia | a-D-galactosyl moieties F-2401-2

HP Helix pomatia lectin a-D-sialic acid F-3601-1"

T EY Laboratories; San Mateo, CA.

doi:10.1371/journal.pone.0135533.t001
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Fig 2. Vascular cells from the macrocirculation have specific SNA lectin binding. All cell types were grown to confluence, media changed to serum free
media for 1 hour, trypsinized, and stained for our lectin panel in Table 1 as described in methods. (A) MVECs show preferential binding for Griffonia
simplicifolia (GS1) lectin as previously reported (95.43 + 1.9%). (B) PASMCs have significantly more binding to Sambucus nigra (SNA1) and Maackia
amurensis (MAA) than GS or Helix pomatia (HP) (100 and 79.43 £ 1.2% vs. 15.95 + 3.0 and 15.58 + 4.8%, respectively; P<0.05). (C) AOECs preferentially
bind GS1 and SNA1 compared to HP and MAA (88.7 £ 5.7 and 100% vs. 23.48 + 4.4 and 36.9 + 1.8%, respectively. *P<0.05). (D) PASMC bind GS1 and
SNAT1 preferentially (97.9 + 1.5 and 100% vs. 16.6 + 2 and 18.93 + 3.0%, respectively. P<0.05).

doi:10.1371/journal.pone.0135533.g002
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(Fig 2B). These data would suggest that the MVEC and PAEC express unique and identifiable
glycocalyx linkages.

We were unable to find previous reports of specific AOEC lectin profiling. We found that
AOQEC stained 100% positive with SNA1 and greater than 80% stained positive for GS1, indi-
cating significant expression of o-D-galactosyl moieties and o.-2,6 sialic acid. However, only
20% of cells were HP positive and 30% were MAA positive (Fig 2C). Therefore, it seems that
AQEC have glycocalyx similarities to both the pulmonary microvascular and macrovascular
cell types. Interestingly the PASMC stained nearly identical to the AOEC. The PASMCs were
100% positive for SNA and nearly 100% for GS1 (Fig 2D).

Glycocalyx of constitutively produced MPs from vascular cells

In order to determine whether the glycocalyx of MPs would be representative of their parent
cells, we collected MPs from cells in growth media. We analyzed MPs via flow cytometry with
the same panel of lectins as the parent cells. Our first analysis was of MPs from MVECs. We
found that while the MPs were more than 50% positive for GS1 and SNA1, they were also posi-
tive for HP and MAA at 47% and 36%, respectively (Fig 3A). None of the positive lectin staini-
nig on MVEC-MPs was statistically unique, however it is intriguing that the glycocalyx differs
from the parent cells.

Next we analyzed MPs from the PAECs. While most were all above 40% positive, only
SNALI stained 67% positive (Fig 3B). This was not however statistically significant among the
lectins analyzed suggesting that no one lectin might be used to identify PAEC specific MPs.
Further, when compared to MPs from MVEC:s there is no statistical significance. Lastly, similar
to the MVEC-MPs, the staining does not match that of the parental cell.

Our analysis of MPs from AOECs revealed that they were strongly positive with GS1 and
SNALI, significantly more so than HP and MAA (Fig 3C). Of the cell types analyzed this micro-
particle profile most closely resembles that of the parent cells, with AOECs being 88% and
100% positive for GS and SNA1, respectively. However, while within the AOEC-MP popula-
tion statistical significance was achieved, compared to MPs from either MVECs or PAECs
there was not significance.

MPs from PASMCs were analyzed as well and found to be significantly positive for SNA1,
they were also positive for GS1 (Fig 3D). For both HP and MAA staining the MPs from
PASMCs were less than 30% positive (Fig 3D). While this appears to correlate with the lectin
membrane staining of the PASMC parent cells, and the SNA1 staining of PASMC-MPs is sta-
tistically significant compared to MPs from either MVECs or PAEC, the SNA1 staining does
not discriminate PASMC-MPs from AOEC-MPs.

Since our protocol for the lectin characterization of all cell types indicates the use of trypsin
to remove cells from the culture dish, and trypsin may alter the glycocalyx, we also treated MPs
from AOECs, MVECs, and PASMCs with trypsin. We analyzed the MPs with MAA and found
that there was no change in MAA sensitivity either before of after trypsin treatment (Fig 4A).
We also used manual disruption of the AOECs and compared MAA sensitivity to trypsin treat-
ment. There was no change in MAA staining (Fig 4B).

Inhibition of lectin binding

To determine lectin specificity we used MPs isolated from unstimulated MVECs. We chose D
(+)galactose as the inhibitory sugar based on recommendations from the manufacturer and
our protocol is based on previous work in the lectin field [46, 47]. Pre-saturated lectins were
then used to stain MPs isolated from MVECs. We found that D(+)galactose treatment did sig-
nificantly inhibit HP, SNA, MAA, and GS1 binding suggesting specificity (Fig 5).
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Fig 3. MPs released constitutively from vascular cells do not recapitulate the glycocalyx of the parent cells. All cell types were grown to confluence,
media changed to serum free media for 1 hour. Media was then centrifuged as described to collect MPs. MPs were then stained with the lectin panel in
Table 1. The MPs released from MVECs, PAECs, and AOECs (A, B, and C) do not show any significant positivity for any of the lectins studied (all ranging
from 40-60% positive. P = not significant). The PASMC-MPs were significantly positive for SNA over MVEC-MPs and PAEC-MPs, but not AOEC-MPs

(78.53+4.5vs. 57.66 £ 6.6 and 67.1 + 9.06, respectively. P<0.05).
doi:10.1371/journal.pone.0135533.9003

Glycocalxy of injured vascular cells

Cigarette smoke extract induces endothelial dysfunction and increased permeability in pulmo-
nary endothelial monolayers [42, 48, 49]. Thus, cigarette smoke is considered an injury stimu-
lus for the vasculature. Further, exposure to cigarette smoke increase circulating endothelial
MPs in human studies [50]. In our studies, as a representative cell type we chose the MVECs
and examined caspase-3 activity as a marker of apoptosis in the presence of cigarette smoke
extract. Treatment of MVECs with cigarette smoke extract stimulated increased caspase-3
activity compared to untreated cells (S2 Fig). We then used cigarette smoke treatment of our
cultured vascular cells to determine whether this type of injury altered the glycocalyx of the
parent cells.

Using a concentration of 3% cigarette smoke extract (CSE) monolayers were treated for one
hour. With the MVECs we found that there were no significant changes in staining when com-
pared to untreated cells. GS1 staining remained above 95% positive and all others at or below
30% positive (Figs 2A and 6A; n = 3). We next examined the PAECs treated in the same
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Fig 4. Lectin staining not affected by trypsin treatment. MPs were collected from serum-free media of
confluent cells as described in methods. Prior to formalin fixation MPs were re-suspended in trypsin for 5
minutes. A) Microparticles isolated from media of AOECs, MVECs, and PASMCs were untreated or treated
with trypsin and stained with MAA. In Figs 2 and 4 MAA labels approximately 30% of the MPs and this was
not altered by trypsin treatment. B) AOECs were manually dissociated using a cell scraper or exposed to
trypsin followed by staining with MAA. There is no significant difference in staining between the two
dissociation methods.

doi:10.1371/journal.pone.0135533.g004

manner. Interestingly, PAECs responded to CSE treatment with a significant increase in both
GS1 and HP staining, 50% and 65% respectively (Figs 2B and 6B; n = 3). However, there was
no change in the SNA1 and MAA positivity between untreated and CSE treated PAECs. The
AOQEC:s treated with CSE were significantly more positive for HP and MAA compared to con-
trol, however GS1 and SNA1 stayed the same (Figs 2C and 6C; n = 3). Lastly, the PASMC had
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presaturated with the sugar D(+)galactose. MPs isolated from MVECs were then stained with lectins or Dgal
saturated lectins. Dgal significantly inhibited all lectin binding to the MPs. (HP 37 £ 5vs. 13+ 4; SNA68 + 2
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n = 3-5 per group P< 0.001).

doi:10.1371/journal.pone.0135533.9005

no significant changes in their lectin profile when compared to untreated cells (Figs 2D and
6D;n = 3).

Glycocalxy of MPs from injured vascular cells

While cigarette smoke is known to induce vascular injury and induce the release of MPs, cur-
rently nothing is known about the effects of injury on the MP glycocalyx. We used our lectin
panel to identify whether cellular injury altered the glycocalyx of the MPs released in the pres-
ence of CSE.

MPs from MVECs were collected and analyzed following cell treatment with 3% CSE.
Using our lectin panel we did not find any differences in the glycocalyx between MVEC-MPs
from control or CSE treated cells. However, the SNA1 staining of CSE MPs was significantly
higher than the MAA staining (Figs 3A and 7A; n = 3-8 per group). We next examined MPs
from PAECS and there were no significant differences among the different lectins, nor was
there any significant difference when compared to MPs from untreated PAECs (Figs 3B and
7B; n = 3-5 per group). MPs from CSE treated AOECs were similar to control in that SNA
staining was significantly higher than MAA, however in MPs from untreated cells there was
also significant differences between SNA1 and HP (Figs 3C and 7C; n = 3-9 per group). There-
fore, the MPs from AOECs did change slightly with CSE treatment of the parent cells. Lastly,
MPs from PASMCs treated with CSE had a similar pattern to MPs from untreated cells. SNA1
staining remained above 75% and was significantly higher than both HP and MAA (Figs 3D
and 7D; n = 3-5 per group). Although GS1 staining increased in the MPs from injured
PASMCG, this difference was not significant from control.

PLOS ONE | DOI:10.1371/journal.pone.0135533 August 14,2015 10/16
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Fig 6. Glycocalyx of cigarette smoke extract injured vascular cells. All cell types were grown to confluence, media changed to serum free media for 1
hour in the presence of 3% CSE, trypsinized, and stained for our lectin panel in Table 1 as described in methods. (A) MVECs treated with 3% CSE have no
significant changes in their glycocalyx profile compared to healthy cells. (B) Injury of PAECs with 3% CSE induces increased lectin binding of GS1 and HP
(15.95 £3.0 vs. 49.67 £8.92 for GS and 15.58 + 4.8 vs. 64.47 + 8.2 for HP), but there was no significant change to SNA or MAA. (C) AOECs treated with 3%
CSE had no change in GS1 or SNA1 binding, however both HP and MAA increased significantly (23.48 + 4.4 vs. 45.20 + 4.1 for HP and 36.9+ 1.8 vs.
72.83 £ 14.09 for MAA. P<0.05). (D) There were no significant differences in lectin binding in CSE treated PASMCs.

doi:10.1371/journal.pone.0135533.g006

Discussion

Current methods of vascular cell MP detection are focused on expression of clusters of differ-
entiation markers to identify the parent cell. However, these CD molecules are frequently
expressed on multiple cell types and provide no information on the vascular segment from
which the MPs may be derived. While MPs are gaining recognition as indicators of vascular
injury, information on the specific segment of injury would be beneficial for targeting thera-
pies. Therefore, we sought to determine whether the use of lectins might better discriminate
vascular segment derivation of MPs.

The panel of lectins chosen was based on previous data that the GS1 and HP, in particular
may have the ability to discriminate between micro- and macrocirculation, respectively [34].
We expanded this profile to include SNA and MAA. The cells used were representative of the
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Fig 7. Glycocalyx of MPs from cigarette smoke extract injured vascular cells. All cell types were grown to confluence, media changed to serum free
media for 1 hour in the presence of 3% CSE. Media was then centrifuged as described to collect MPs. MPs were then stained with the lectin panel in Table 1.
The lectin staining of MPs isolated from MVECs, PAECs, AOECs, and PASMCs (A, B, C, and D) treated with 3% CSE were not significantly different from
MPs isolated from the control cells. Thus, CSE injury to the parent cell does not seem to significantly alter the glycocalyx of the released MPs.

doi:10.1371/journal.pone.0135533.g007

pulmonary and systemic circulations and incorporated both large and small vessels. In our ini-
tial analysis of the cell types alone we found that our MVEC data correlated with previous
reports of nearly 100% positive for GS1, and significantly less HP, SNA1 or MAA. However,
our PAEC data differ from previous reports of significant staining for HP [34]. While the rea-
sons for this discrepancy are unknown, we found it intriguing that the vascular cells from the
macrocirulation, PAECs, AOECs, and PASMCs were all nearly 100% positive for SNAL. We
also recognize that collection of cells with trypsin may alter the glycocalyx, however we chose
this method for two reasons. First, these data compare to previous reports of lectin analysis of
pulmonary endothelium, and further, to compare our MPs we required isolated cells rather
than intact monolayers. Our data also clearly show no alterations with trypsin treatment. To
our knowledge this type of direct comparison has not been performed and these data provides
unique insight and a novel marker for the microvasculature. While the AOECs and PASMCs
were also highly positive for GS1, our data support the concept that cells only positive for GSI,
but not SNA, are most likely microvascular in origin and cells strongly SNA1 positive are resi-
dents of the macrovasculature.
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Our goal was to determine whether lectin analysis would identify MPs from specific vascu-
lar beds. The only significant staining we could identify that was similar to the parent cell was
SNA 1for PASMC-MPs and AOEC-MPs, however while they reached significance the staining
was not 100% as that of the parent cells. We found that the MPs from the MVECs and PAECs
were not significantly positive for any specific lectin. It is intriguing that the MPs released have
a unique glycocalyx from the parent cell. MPs are reportedly derived directly from the parent
cell membrane, however this lack of consistency in the glycocalyx may suggest differently. On
the one hand, these data would support the concept of an immature glycocalyx derived from
an intracellular source. Previous work has suggested that intracellular vesicles have a glycocalyx
and possibly that this glycocalyx is unique from that of the plasma membrane [51, 52]. Alterna-
tively, there is some evidence in the literature for flipping of extracellular membrane (i.e. PS
exposure) that may provide an explanation for our observations. While on the strength of the
data presented we cannot conclude derivation from an intracellular source or extracellular pre-
sentation of the membrane, it is interesting to speculate.

Damage to the glycocalyx is implicated in vascular permeability and cigarette smoke causes
endothelial dysfunction, endothelial permeability, and apoptosis [42, 48, 49]. However, the
effects of cigarette smoke on vascular cell glycocalyx have not previously been determined. We
found that cigarette smoke had no effects on the glycocalyx of the PASMCs or the MVECs,
however there were alterations in the PAEC and AOEC glycocalyxes. HP staining of both of
the macrovascular endothelial cell type increased in response to CSE treatment. HP binding is
an indicator of a poor prognosis in a number of cancers, suggesting that expression of terminal
alpha N-acetylgalactosamine residues may be indicative of cellular damage or transformation,
and may indicate a susceptibility to cigarette smoke injury of the macrocirculation.

We also observed no significant changes in the lectin profile of MPs from the CSE treated
cells. Overall, while we found that MPs are easily analyzed by lectin staining, we did not find
enough significant differences in the MP profiles to determine their vascular segment deriva-
tion. However, a more detailed lectin binding study, or costly mass spectrometry, may further
reveal the subtle nuances that would resolve the exact cellular origins of the microparticles.
Nonetheless, this descriptive study has revealed that MPs released into the extracellular milieu
do not express the same glycocalyx as their cell of origin, however these data may provide use-
ful information for further characterization of the circulating microparticle population. This
characterization is vital to the potential use of MPs as biomarkers in health and disease.

Supporting Information

S1 Fig. Gating strategy and representative dot plot. A) 1 pm Fluoresbrite plain microsphere
calibration beads in PBS were used to set MP inclusion gate (Events <1 pm). B) Unstained
sample. Unlabeled microparticles (MPs) were used to set a gate based on FITC channel fluores-
cence (Events <1 um FITC +). Note counting bead population in P2. C) SNA stained MPs.
Percentage of the MP population that stained with the lectin is indicated by percent positive.
(TIF)

S2 Fig. CSE induces caspase activity. MVECs treated with either 1% CSE, 3% CSE or stauros-
porine (1 uM) for 1 hour in serum free media were analyzed for caspase-3 activity using the
FLICA caspase activity kit. 1% CSE, 3% CSE, and staurosporine all significantly induced cas-
pase-3 activity (Control = 16.6 + 4.2, Staurosporine = 37.33 + 1.1, 1% CSE = 34.4 + 2.2, and 3%
CSE =473 +0.92;n=3and p< 0.05).

(TIFF)
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