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Abstract: Alcoholic hepatitis is a major health care burden in the United States due to significant
morbidity and mortality. Early identification of patients with alcoholic hepatitis at greatest risk
of death is extremely important for proper treatments and interventions to be instituted. In this
study, we used gradient boosting, random forest, support vector machine and logistic regression
analysis of laboratory parameters, fecal bacterial microbiota, fecal mycobiota, fecal virome, serum
metabolome and serum lipidome to predict mortality in patients with alcoholic hepatitis. Gradient
boosting achieved the highest AUC of 0.87 for both 30-day mortality prediction using the bacteria and
metabolic pathways dataset and 90-day mortality prediction using the fungi dataset, which showed
better performance than the currently used model for end-stage liver disease (MELD) score.

Keywords: machine learning; mycobiome; virome; microbiota; metabolomics

1. Introduction

Alcohol use disorder is a major healthcare burden. Common consequences of heavy
alcohol consumption include a wide spectrum of liver diseases, such as alcohol-associated
steatosis, fibrosis and cirrhosis [1]. Alcoholic hepatitis represents the most severe mani-
festation of alcohol-related liver disease, with an annual incidence rate of 34 per million
in women and 46 per million in men [2]. As a life-threatening disease, alcoholic hepatitis
is associated with a mortality rate of 15%, 24%, and 56% for 28-day, 84-day and 5-year
mortality, respectively [2]. Severe alcoholic hepatitis is associated with a very high 90-day
mortality of up to 75% [3]. Therefore, it is crucial to accurately determine the prognosis of
patients presenting with acute alcoholic hepatitis. Early identification of alcoholic hepatitis
patients at greatest risk of death is extremely important for the stratification of patients
towards proper treatments, such as corticosteroids, liver transplantation or clinical trials.

Alcohol-associated liver disease is transmissible via fecal microbiota transfer in mice [4],
and a small clinical trial showed survival benefits in patients with severe alcoholic hepatitis
receiving daily fecal microbiota transplantation for 7 days from a healthy donor [5]. Thus,
the intestinal microbiota is very important for development and disease outcome in patients
with alcoholic hepatitis. The bacterial microbiota, fungal mycobiota and virome are in-
volved in pathogenesis of alcoholic hepatitis [6–9]. Alcoholic hepatitis is also accompanied
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by a profound dysfunction of the intestinal barrier leading to bacterial translocation to the
liver and worse disease outcome [10]. Common serum biomarkers used to evaluate gut
barrier dysfunction include anti-Saccharomyces cerevisiae antibodies (ASCA), zonulin and
lipopolysaccharide binding protein (LBP). ASCA are systemic antibodies against fungal
antigens [11]. Serum zonulin is a surrogate marker for intestinal permeability [12,13]. LBP
is synthesized in response to translocated LPS and serves as an additional biomarker for
gut barrier dysfunction [14].

As a subset of artificial intelligence, machine learning is an umbrella term for a
variety of important computational tools for early diagnosis and prognosis, which includes
different classification models, such as gradient boosting, random forest, and support
vector machine. Machine learning generates predictive models effectively through the
detection of hidden patterns within big datasets. Given that a lot of variables could affect
the clinical outcome, it is often difficult for a physician to predict a given outcome to
ascertain. Machine learning algorithms could better incorporate various risk factors to
identify nuanced interactions between outcomes and variables, which allows them to find
new patterns between risk factors. Predicting clinical outcomes using a profiling dataset
with a large number of variables has drawn great interest over the past years. For instance,
clinical data and microbiota based multi-omics have been used to predict outcome or
severity of diseases such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic
steatohepatitis (NASH) [15,16].

In the present study, we demonstrate the use of machine learning tools to predict
30-day and 90-day mortality in patients with alcoholic hepatitis using clinical data. In
particular, we compare four popular models: gradient boosting, random forest, support
vector machine, and logistic regression models. Our second aim is to identify key features
associated with high mortality from multi-omics with a particular focus on datasets derived
from a global characterization of the gut microbiota.

2. Results
2.1. Mortality Prediction with Clinical Data in Patients with Alcoholic Hepatitis

A total of 210 patients with alcoholic hepatitis were included in this study (Table 1).
Of these, 31 (14.8%) patients died within 30 days. Among 179 patients alive at day 30,
23 patients (12.8%) died within 90 days, 104 patients were alive at 90 days, while the
remaining 52 patients were lost to follow-up (Figure 1A,B). The model of end-stage liver
disease (MELD) score is currently used in clinical practice to predict mortality in alcoholic
hepatitis patients. In our dataset, the area under the receiver operating characteristic curve
(AUC) was 0.78 and 0.82 for the logistic regression model when predicting 30-day and
90-day mortality, respectively, using MELD score (Figure 1C).

To assist physicians to make clinical decisions more precisely, we developed four
models using 11 routine clinical laboratory variables to predict mortality in patients with
alcoholic hepatitis (Table 2). From now on, we refer to these 11 clinical laboratory variables
as Clinical data. These 11 variables were selected based on the availability of clinical data
collected and the missing-value rate. Only clinical parameters with a missing-value rate
less than 20% were selected. When predicting 30-day mortality, the AUC achieved 0.74–0.81
using four different models: gradient boosting, logistic regression, random forest or support
vector machine (Figure 1D). The AUC for 90-day mortality prediction achieved 0.79–0.80
using these models (Figure 1E). Among these four models, gradient boosting attained
the highest AUC for 30-day mortality prediction, and the other three models attained
the highest AUC for 90-day mortality prediction. In particular, the prediction of 30-day
mortality in patients with alcoholic hepatitis from the random forest and gradient boosting
was slightly better than the currently used MELD score in clinical practice (Table 3).
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Table 1. Characteristics of patients with alcoholic hepatitis.

Clinical Parameters Alcoholic Hepatitis (n = 210)

Sex (% male), n (%), n = 208 138 (66.3%)
Age (years), n = 198 49.3 (26.4–74.8)

BMI (kg/m2), n = 165 28.2 (16.2–48.3)

Laboratory parameter

Creatinine (mg/dL), n = 195 1.1 (0.3–8.1)
Bilirubin (mg/dL), n = 194 16.0 (2.5–51.8)

AST (IU/L), n = 195 165.2 (34.0–1858.0)
ALT (IU/L), n = 194 57.5 (14.0–404.0)

Albumin (g/dL), n = 188 2.6 (1.1–4.2)
INR, n = 194 1.9 (0.8–7.6)

GGT (IU/L), n = 114 602.6 (33.0–3650.0)
Platelet count (109/L), n = 191 136.5 (12.2–447.0)

Alkaline phosphatase (U/L), n = 192 207.6 (21.2–1153.0)
Prothrombin time, s, n = 168 29.3 (9.0–141.0)

Sodium (mEq/L), n = 194 133.0 (106.0–148.0)
FIB-4, n = 189 11.5 (0.7–116.0)

FIB-4 > 3.25 (F3-F4), n (%) 171 (90.5%)

Treatment at admission

Steroids, n (%), n = 193 83 (43.0%)
Antibiotics, n (%), n = 193 53 (27.5%)

Proton pump inhibitors, n (%), n = 98 13 (13.3%)
Infections, n (%), n = 158 41 (25.9%)

Clinical scores and outcome

MELD, median (range), n = 192 26.8 (10.1–48.6)
MELD > 21, n (%) 158 (82.3%)

30-day mortality (n = 210) 31 (14.8%)
90-day mortality (n = 158) 54 (34.2%)

Histology

Liver biopsy available, n (%), n = 197 120 (60.9%)
Stage of fibrosis, n (%), n = 118 0 3 (2.5%)

1 3 (2.5%)
2 15 (12.7%)
3 18 (15.3%)
4 79 (66.9%)

Note: Values presented are median with range in parentheses for continuous variables or number and percentage
in parentheses for categorical variables. Percentages were calculated based on the actual number of patients in
each group, when data were available. The number of subjects for which data were available is indicated in the
first column. MELD, model for end-stage liver disease; BMI, body mass index; AST, aspartate aminotransferase;
ALT, alanine aminotransferase; INR, international normalized ratio; GGT, gamma-glutamyl transferase; FIB-4,
fibrosis-4 index. Fibrosis stage, 0 no fibrosis, 1 portal fibrosis, 2 expansive periportal fibrosis, 3 bridging fibrosis,
4 cirrhosis.

Table 2. Variables with the top 11 average feature importance in each dataset.

Clinical Data Clinical Data + Bacteria + MetaCyc Pathways Clinical Data + Fungi

30-day

age international normalized ratio creatinine

creatinine creatinine international normalized ratio

bilirubin sodium bilirubin

albumin PWY-6125: superpathway of guanosine nucleotides de novo
biosynthesis II sodium

international normalized
ratio DTDPRHAMSYN-PWY: dTDP-L-rhamnose biosynthesis I Aspergillus

alanine transaminase PWY-7229: superpathway of adenosine nucleotides de novo
biosynthesis I alkaline phosphatase
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Table 2. Variables with the top 11 average feature importance in each dataset.

Clinical Data Clinical Data + Bacteria + MetaCyc Pathways Clinical Data + Fungi

30-day

alkaline phosphatase PWY-7222: guanosine deoxyribonucleotides de novo biosynthesis II age

platelet count PWY-7228: superpathway of guanosine nucleotides de novo
biosynthesis I aspartate transaminase

white blood cell count PANTO-PWY: phosphopantothenate biosynthesis I platelets

aspartate transaminase PWY-6126: superpathway of adenosine nucleotides de novo
biosynthesis II alanine transaminase

sodium PWY-7220: adenosine deoxyribonucleotides de novo biosynthesis II white blood cell count

90-day

age international normalized ratio creatinine

creatinine creatinine bilirubin

bilirubin bilirubin sodium

albumin sodium international normalized ratio

international normalized
ratio

PWY-7229: superpathway of adenosine nucleotides de novo
biosynthesis I age

alanine transaminase DTDPRHAMSYN-PWY: dTDP-L-rhamnose biosynthesis I albumin

alkaline phosphatase GLUCOSE1PMETAB-PWY: glucose and glucose-1 phosphate
degradation alkaline phosphatase

platelet count PWY-5989: stearate biosynthesis II bacteria and plants aspartate transaminase

white blood cell count Clostridium nexile platelets

aspartate transaminase PWY0-1297: superpathway of purine deoxyribonucleosides
degradation white blood cell count

sodium PWY-6125: superpathway of guanosine nucleotides de novo
biosynthesis II alanine transaminase

Clinical Data + Virus Clinical Data + ELISA Clinical Data + Metabolites
+ Lipids

30-day

creatinine creatinine creatinine

international normalized
ratio international normalized ratio L-Hydroxyarginine

bilirubin bilirubin bilirubin

sodium Zonulin Urea

Epsilon15 virus albumin Pseudo uridine

aspartate transaminase sodium Maltose

P22 virus Lipopolysaccharide binding protein Erythritol

Lambda virus Anti-Saccharomyces cerevisiae antibodies Metabolite creatinine

alkaline phosphatase age S-adenosyl homocysteine

alanine transaminase platelets L-Carnitine

age alanine transaminase Adenine

90-day

creatinine creatinine creatinine

international normalized
ratio international normalized ratio international normalized ratio

bilirubin bilirubin L-Homocitrulline

sodium age Lyxitol

age Anti-Saccharomyces cerevisiae antibodies Pseudo uridine

albumin sodium L-Hydroxyarginine

alanine transaminase white blood cell count Adipoyl-L-carnitine

alkaline phosphatase Zonulin Asymmetric dimethylarginine

Epsilon15 virus albumin sodium

platelets Lipopolysaccharide binding protein Acyl carnitines

white blood cell count alkaline phosphatase Kynurenic acid
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Figure 1. Mortality prediction with clinical parameters in patients with alcoholic hepatitis. (A) A 
total of 210 patients were included in this study. 31 died within 30-day and 179 patients were alive, 
23 patients died within 90 days. A total of 104 patients survived at 90 days. The remaining 52 pa-
tients were lost to follow-up. Blue: alive. Red: deceased. Grey: unknown status. (B) Survival proba-
bility within 90 days. Confidence intervals are shown in light blue. +: Patients lost to follow-up were 
censored at the time they were last seen alive. (C) Prediction of 30-day (red line, AUC = 0.78) and 
90-day mortality using MELD score (purple line, AUC = 0.82). (D) Four models for 30-day mortality 
prediction in patients with alcoholic hepatitis using clinical data. Day-30 deceased group n = 31, 
alive group n = 179. (E) Four models for 90-day mortality prediction in patients with alcoholic hep-
atitis using clinical data. Day-90 deceased group n = 54, alive group n = 104. GB: gradient boosting, 
LR: logistic regression, RF: random forest, SVM: support vector machine. 

Figure 1. Mortality prediction with clinical parameters in patients with alcoholic hepatitis. (A) A
total of 210 patients were included in this study. 31 died within 30-day and 179 patients were alive,
23 patients died within 90 days. A total of 104 patients survived at 90 days. The remaining 52 patients
were lost to follow-up. Blue: alive. Red: deceased. Grey: unknown status. (B) Survival probability
within 90 days. Confidence intervals are shown in light blue. +: Patients lost to follow-up were
censored at the time they were last seen alive. (C) Prediction of 30-day (red line, AUC = 0.78) and
90-day mortality using MELD score (purple line, AUC = 0.82). (D) Four models for 30-day mortality
prediction in patients with alcoholic hepatitis using clinical data. Day-30 deceased group n = 31, alive
group n = 179. (E) Four models for 90-day mortality prediction in patients with alcoholic hepatitis
using clinical data. Day-90 deceased group n = 54, alive group n = 104. GB: gradient boosting, LR:
logistic regression, RF: random forest, SVM: support vector machine.
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Table 3. Summary of AUC scores for each dataset.

Model Clinical Data
Clinical Data +

Bacteria +
Metacyc Pathways

Clinical Data
+ Fungi

Clinical Data
+ Virus

Clinical Data
+ Metabolites

+ Lipids

Clinical Data
+ ELISA

30-day
Mortality

LR(MELD) 0.78 0.79 0.72 0.72 0.77 0.77
LR 0.74 0.59 0.56 0.87 0.65 0.72

SVM 0.76 0.68 0.86 0.80 0.74 0.74
RF 0.79 0.83 0.45 0.74 0.73 0.76
GB 0.81 0.87 0.35 0.69 0.71 0.69

90-day
Mortality

LR(MELD) 0.82 0.63 0.25 0.67 0.83 0.79
LR 0.80 0.67 0.55 0.62 0.67 0.64

SVM 0.80 0.69 0.73 0.63 0.69 0.64
RF 0.80 0.54 0.68 0.53 0.78 0.71
GB 0.79 0.47 0.87 0.58 0.71 0.71

Note: LR: logistic regression, SVM: support vector machine, RF: random forest, GB: gradient boosting, LR (MELD):
logistic regression model using MELD score only based on the same subset of patients as each dataset. Clinical
data day-30 deceased group n = 31, alive group n = 179. Day-90 deceased group n = 54, alive group n = 104.
Clinical data, bacteria and MetaCyc pathways day 30: deceased group n = 8; alive group n = 65. Day 90: deceased
group n = 13; alive group n = 40. Clinical data and fungi day 30: deceased group n = 5; alive group n = 49. Day 90:
deceased group n = 9; alive group n = 30. Clinical data and virus day 30: deceased group n = 8; alive group n = 68.
Day 90: deceased group n = 14; alive group n = 42. Clinical data, metabolites and lipids day 30: deceased group
n = 19; alive group n = 99. Day 90: deceased group n = 33; alive group n = 57. Clinical data and serum biomarkers
day 30: decreased group n = 20; alive group n = 118. Day 90: deceased group n = 36; alive group n = 68. Bold:
ROC score higher than LR (MELD) model in each dataset. Italic: highest AUC for 30-day or 90-day mortality.

2.2. Selected Variables from Multi-Omics Datasets

To further improve the performance of mortality prediction for patients with alcoholic
hepatitis, we collected multi-omics data, including fecal bacterial microbiome, fecal fungal
mycobiome, fecal virome, serum metabolome and lipidome (Figure 2). Due to limited
sample availability, multi-omics data were collected from only a subset of the patient cohort,
and multiple imputation was applied to the multi-omics data to preserve all samples having
missing values. After multiple imputation, we used random forest to select variables with
the top 11 average feature importance in each multi-omics data, so the number of variables
included in the models using the multi-omics data and using the clinical data was the same.
The 11 selected variables are listed in Table 2. When implementing the random forest, we
forced the component variables used to calculate the MELD score (creatinine, bilirubin,
international normalized ratio, and sodium) to be selected for splitting at each node in the
trees. Then, using these 11 selected features for each multi-omics dataset, we built gradient
boosting, logistic regression, random forest or support vector machine models to predict
short-term mortality. In order to compare the performance of each model, we calculated
the AUC score for the logistic regression model using MELD score only based on the same
subset of patients for each multi-omics dataset.
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2.3. Fecal Bacteria and MetaCyc Pathways

Bacteria and Metacyc pathways were available for 73 patients at 30 days and for
53 patients at 90 days. For these patients, AUCs were 0.79 and 0.63 when predicting
30-day and 90-day mortality using the logistic regression model with MELD score only,
respectively (Figure 3A). Among the four models, bacteria, metabolic (MetaCyc) pathways
and clinical data achieved the highest AUC of 0.87 for 30-day mortality using the gradient
boosting model, and 0.69 for 90-day mortality using the support vector machine model
(Figure 3B,C), both of which were higher than AUC based on MELD score only (Table 3).

Metabolites 2022, 12, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 3. 30- and 90-day mortality prediction using fecal bacteria, MetaCyc pathways and clinical 
data in patients with alcoholic hepatitis. (A) 30- and 90-day mortality prediction using MELD score. 
(B) 30-day mortality prediction using fecal bacteria, Metacyc pathways and clinical data. Deceased 
group n = 8; alive group n = 65. (C) 90-day mortality prediction using fecal bacteria, Metacyc path-
ways and clinical data. Deceased group n = 13; alive group n = 40. GB: gradient boosting, LR: logistic 
regression, RF: random forest, SVM: support vector machine. 

2.4. Fecal Fungal Datasets 
Fecal fungi were available for 54 patients at 30-day and 39 patients at 90-day. For 

these patients, AUC was 0.72 and 0.25 for the logistic regression model when predicting 
30-day and 90-day mortality using MELD score only, respectively (Figure 4A). Applying 
the support vector machine model to fecal fungi and clinical data, the highest AUC of 0.86 
was achieved for 30-day mortality. Meanwhile, the highest AUC of 0.87 was achieved for 
90-day mortality by the gradient boosting model (Figure 4B,C). All four models based on 
fecal fungi and clinical laboratory data performed better when predicting 90-day mortal-
ity than the logistic regression model based on MELD score (Table 3). 

Figure 3. 30- and 90-day mortality prediction using fecal bacteria, MetaCyc pathways and clinical
data in patients with alcoholic hepatitis. (A) 30- and 90-day mortality prediction using MELD score.
(B) 30-day mortality prediction using fecal bacteria, Metacyc pathways and clinical data. Deceased
group n = 8; alive group n = 65. (C) 90-day mortality prediction using fecal bacteria, Metacyc
pathways and clinical data. Deceased group n = 13; alive group n = 40. GB: gradient boosting, LR:
logistic regression, RF: random forest, SVM: support vector machine.

2.4. Fecal Fungal Datasets

Fecal fungi were available for 54 patients at 30-day and 39 patients at 90-day. For
these patients, AUC was 0.72 and 0.25 for the logistic regression model when predicting
30-day and 90-day mortality using MELD score only, respectively (Figure 4A). Applying
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the support vector machine model to fecal fungi and clinical data, the highest AUC of 0.86
was achieved for 30-day mortality. Meanwhile, the highest AUC of 0.87 was achieved for
90-day mortality by the gradient boosting model (Figure 4B,C). All four models based on
fecal fungi and clinical laboratory data performed better when predicting 90-day mortality
than the logistic regression model based on MELD score (Table 3).
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Figure 4. 30- and 90-day mortality prediction using fecal fungi and clinical data in patients with
alcoholic hepatitis. (A) 30- and 90-day mortality prediction using MELD score. (B) 30-day mortality
prediction using fecal fungi and clinical data. Deceased group n = 5; alive group n = 49. (C) 90-day
mortality prediction using fecal fungi and clinical data. Deceased group n = 9; alive group n = 30. GB:
gradient boosting, LR: logistic regression, RF: random forest, SVM: support vector machine.

2.5. Fecal Viral Datasets

Fecal virome analysis was available for 76 patients at 30-day and 56 patients at 90-day.
For these patients, AUC was 0.72 and 0.67 for the logistic regression model when predicting
30-day and 90-day mortality using MELD score only, respectively (Figure 5A). Among
the four models, viral and clinical laboratory data achieved the highest AUC of 0.87 for
30-day mortality using the logistic regression model, and achieved the highest AUC of 0.63
for 90-day mortality using the support vector machine model (Figure 5B,C). The logistic
regression, support vector machine, and random forest models based on the viral and
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clinical laboratory data performed better when predicting 30-day mortality than the logistic
regression model based on MELD score (Table 3).
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alcoholic hepatitis. (A) 30- and 90-day mortality prediction using MELD score. (B) 30-day mortality
prediction using fecal viruses and clinical data. Deceased group n = 8; alive group n = 68. (C) 90-day
mortality prediction using fecal viruses and clinical data. Deceased group n = 14; alive group n = 42.
GB: gradient boosting, LR: logistic regression, RF: random forest, SVM: support vector machine.

2.6. Serum Metabolites and Lipids

Serum metabolites and lipids were available for 118 patients at 30 days and 90 patients
at 90 days. For these patients, AUC was 0.77 and 0.83 for the logistic regression model
when predicting 30-day and 90-day mortality using the MELD score only, respectively
(Figure 6A). Among the four models, metabolites and lipids achieved the highest AUC
of 0.74 for 30-day mortality using the support vector machine model, and achieved the
highest AUC of 0.78 for 90-day mortality using the random forest model (Figure 6B,C).
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Figure 6. 30- and 90-day mortality prediction using serum metabolites, serum lipids and clinical
data in patients with alcoholic hepatitis. (A) 30- and 90-day mortality prediction using MELD score.
(B) 30-day mortality prediction using serum metabolites, serum lipids and clinical data. Deceased
group n = 19; alive group n = 99. (C) 90-day mortality prediction using serum metabolites, serum
lipids and clinical data. Deceased group n = 33; alive group n = 57. GB: gradient boosting, LR: logistic
regression, RF: random forest, SVM: support vector machine.

2.7. ASCA, Zonulin and LBP

In addition to multi-omics datasets, we also evaluated routine laboratory parameters
together with serum biomarkers of gut barrier dysfunction, ASCA, zonulin and LBP. These
data were available for 138 patients at 30 days and 114 patients at 90 days. For these patients,
AUC was 0.77 and 0.79 for the logistic regression model when predicting 30-day and 90-day
mortality using the MELD score only, respectively (Figure 7A). Among the four models,
the highest AUC was 0.76 for 30-day mortality using the random forest model, and 0.71 for
90-day mortality using the random forest and gradient boosting models (Figure 7B,C).
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Figure 7. 30- and 90-day mortality prediction using serum biomarkers and clinical data in patients
with alcoholic hepatitis. (A) 30- and 90-day mortality prediction using MELD score. (B) 30-day
mortality prediction using serum biomarkers and clinical data. Decreased group n = 20; alive group n
= 118. (C) 90-day mortality prediction using serum biomarkers and clinical data. Decreased group
n = 36; alive group n = 68. GB: gradient boosting, LR: logistic regression, RF: random forest, SVM:
support vector machine.

A summary of AUC scores for each dataset is shown in Table 3. Multi-omics or
serum biomarkers combined with routine clinical laboratory parameters improved the
performance for the prediction of 30- and 90-day mortality in patients with alcoholic
hepatitis, with the highest AUC achieved being 0.87 (gradient boosting using bacteria,
Metacyc pathways and clinical data, as well as logistic regression using viral and clinical
data) and 0.87 (gradient boosting model using fungi and clinical data), respectively.

3. Discussion

The identification of patients with alcoholic hepatitis at greatest risk of death is neces-
sary for treatment stratification towards early liver transplantation, prednisolone therapy,
clinical trial or supportive care. Invasive testing with liver biopsy can lead to increased
morbidity, and is currently recommended to confirm the diagnosis of alcoholic hepatitis
only in the presence of potential confounding factors or if treatment with immunosuppres-
sive therapy is considered [17]. Therefore, non-invasive scoring systems are important,
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and various prognostic clinical models have been developed and applied to patients to
assess the severity of alcoholic hepatitis. The AUCs for the discriminant function (DF) were
significantly lower than for MELD, the age, serum bilirubin, international normalized ratio
and serum creatinine (ABIC) score, and Glasgow alcoholic hepatitis score (GAHS) for both
28- and 90-day outcomes: 90-day values were 0.670, 0.704, 0.726 and 0.713, respectively [18].

The implementation of machine learning models has rapidly increased in the biomedi-
cal field including liver diseases in recent years [15,16,19,20]. To predict cirrhosis in patients
with non-alcoholic fatty liver disease (NAFLD), AUC achieved 0.91 when using random
forest machine learning algorithm to integrate shotgun metagenomic and untargeted
metabolomic profiles [21]. However, a promising model for mortality prediction has not
been applied to patients with alcoholic hepatitis. In the present study, we developed four
models to predict short-term mortality, and some of them showed better performance
than the currently used MELD score. Especially, the gradient boosting analysis of bacteria
and metabolic pathways datasets achieved the highest AUC of 0.87 for 30-day mortality
prediction. Among the selected bacteria and metabolic pathways used for the 30-day mor-
tality prediction, 6 pathways were related to purine nucleoside biosynthesis. Nucleotide
biosynthesis has been reported to be critical for the growth of bacteria in human blood [22].
The causal relationship between microbial nucleoside biosynthesis and mortality requires
further investigation.

In addition to multi-omics study design and comparison of four models, the multi-
center study design is another strength of this study, which recruited patients from diverse
geographical origins. One limitation of this study was the relatively small sample size,
given the complexity of the machine learning pipelines used. Despite using a test and
validation cohort in our study, external validation with a larger number of patients is
required to confirm our prediction model. Another limitation is that omics are not yet
readily usable in routine clinical practice unless these methods become less expensive and
more standardized.

In summary, this is the first comprehensive study to predict short-term mortality using
different machine learning algorithms with multi-omics data covering not only serum
metabolites, serum lipids and fecal bacteria, but also fecal fungi and viruses, which were
not well studied in alcoholic hepatitis. This model is helpful for physicians to identify
patients with greatest risk and make better clinical decisions for patients with alcoholic
hepatitis.

4. Materials and Methods
4.1. Patients

A total of 210 patients diagnosed with alcoholic hepatitis were recruited from
10 institutions in the United States, Canada and Europe. The clinical picture was con-
sistent with alcoholic hepatitis in all patients. The patient cohort has been described
previously [6,8,23]. The inclusion criteria for alcoholic hepatitis were: 1. active alcohol
use (>50 g/day for men and >40 g/day for women) in the last 3 months; 2. aspartate
aminotransferase (AST) >alanine aminotransferase (ALT) and total bilirubin >3 mg/dL in
the past 3 months; 3. liver biopsy and/or clinical picture consistent with alcoholic hepatitis.
The exclusion criteria were: 1. autoimmune liver disease (ANA > 1/320); 2. chronic viral
hepatitis; 3. hepatocellular carcinoma; 4. complete portal vein thrombosis; 5. extrahepatic
terminal disease; 6. pregnancy; 7. lack of signed informed consent. Liver biopsies were per-
formed only if indicated as part of routine clinical care for the purpose of alcoholic hepatitis
diagnosis. For patients who underwent liver biopsy, the liver histology was in line with the
diagnosis of alcoholic hepatitis. The protocol was approved by the Ethics Committee of
each participating center. Written informed consent was obtained from each subject. The
MELD score was calculated for all alcoholic hepatitis patients whose required variables
were available. Eleven clinical parameters were evaluated in the random forest model
to predict the 30-day and 90-day mortality, including age, creatinine, bilirubin, albumin,
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international normalized ratio, alanine transaminase, alkaline phosphatase, platelet count,
white blood cell count, aspartate transaminase, and sodium.

4.2. Shotgun Metagenomics

DNA was extracted from stool samples collected from 73 patients. DNA extraction and
library preparation were performed as described previously [24]. Shot-gun metagenomics
sequencing was performed on an Illumina HiSeq 4000, generating 150bp paired-end reads.
KneadData version 0.7.2 was used for quality control. Metagenomic Phylogenetic Analysis
2 (MetaPhlAn2) version 2.7.7 was used for the profiling of the composition of the microbial
community [25]. The HMP Unified Metabolic Analysis Network 2 (HUMAnN2) version
0.11.1 was used for the profiling of microbial pathways [26]. The MetaCyc database was
used for microbial pathway analysis [27]. Each of the HUMAnN2 abundance outputs was
normalized into relative abundance (the counts for each sample sum to 100).

4.3. Mycobiome Analysis

Fecal mycobiomes were evaluated using internal transcribed spacer (ITS) sequencing
targeting fungal ITS1 region from 54 patients. Fungal ITS sequencing was performed
using Illumina MiSeq V2 kit, 300 cycles using primers. Primers, PCR conditions and data
processing were described in our previous study [8].

4.4. Viral Metagenomics

Virus-like particles were isolated from fecal samples collected from 76 patients using
differential filtration techniques followed by metagenomic sequencing. Viromes were pre-
pared using the NetoVIR protocol, with minor modifications [28]. Briefly, resuspended fecal
samples were filtered using a 0.8 µm (PES) filter (Sartorius). The remaining supernatant
was subjected to lysis followed by viral DNA and RNA extraction. Library preparation was
performed as described previously [9]. Clumpify and Kneaddata were used for the quality
control of raw sequence reads. The PathSeq pipeline was used for the read alignment and
taxonomy assignment [29].

4.5. Untargeted Metabolomics and Lipidomics

Serum metabolome and lipidome from 132 patients were analyzed by multi-platforms,
including gas chromatography-time of flight mass spectrometry (GC-TOF MS), hydrophilic
interaction liquid chromatography (HILIC) with quadrupole orbital ion trap high field mass
spectrometry (Q-Exactive HF MS), and CSH-Q-Exactive HF MS. Sample extraction, data
acquisition and data processing were performed as described in our previous study [30].
Briefly, ChromaTOF version 4.50 was used for baseline subtraction, deconvolution and peak
detection for GC-MS raw data. Binbase version 5.0.3 was used for metabolite annotation
and reporting [31]. For LC-MS raw data, MS-DIAL was used for peak picking, alignment,
deconvolution and identification [32]. The level of confidence in the identification was level
3 [33]. MS-FLO was used for the identification of ion adducts, duplicate peaks and isotopic
features [34]. For both the HILIC and lipidomics datasets, retention time-m/z libraries and
MS/MS spectra databases were used for compound identification, which were uploaded
to MassBank of North America.

4.6. Enzyme Linked Immunosorbent Assay (ELISA)

Anti-saccharomyces cerevisiae antibody (ASCA)-IgG, zonulin and lipopolysaccha-
ride binding protein (LBP) levels were measured in the serum samples collected from
132 patients using different ELISA kits, as described previously [8].

4.7. Machine Learning Models

The predictive power with eleven clinical parameters, multi-omics datasets, and three
markers for intestinal permeability was evaluated for the short-term mortality prediction
in patients with alcoholic hepatitis. Logistic regression (LR) [35], support vector machine



Metabolites 2022, 12, 41 14 of 16

(SVM) [36], random forest (RF) [37], and gradient boosting (GB) [38] were built using
functions from scikit-learn in Python. Before any data preprocessing, we divided the
datasets into 5 folds using stratified 5-fold cross-validation (CV). Multivariate imputation
by chained equations (MICE) was used to impute the missing values in each feature [39].
To avoid data leakage from the training set to the test set, MICE was only applied on the
training set inside each CV iteration, and the test set was imputed by the fitted model
of MICE on the training set. In order to deal with the class imbalance and promote
the performance of the models, after imputation, the synthetic minority oversampling
technique (SMOTE) was used to oversample the minor class in the training set only to
obtain balanced data [40]. When the multi-omics datasets were used for the short-term
mortality prediction, random forest from the ranger Package in R was additionally applied
to the training set before performing SMOTE to select 11 variables based on the average
feature importance over 5 CV iterations mentioned above [41]. The component variables
used to calculate the MELD score were always selected for splitting at each node in trees
when building a ranger random forest. For the main models (LR, SVM, RF, or GB), the
default setting was used when building LR and SVM, and the number of trees and the
maximum tree depth were chosen for tuning when building RF and GB. In order to choose
the best set of hyperparameters in RF and GB, grid search with stratified 4-fold CV (inner
CV) was performed in each CV iteration using the original training set (the one before
doing MICE). In RF, the number of trees chosen was from 100, 200, 300, 400, and the
maximum tree depth chosen was from 5, 10, 15, 20. In GB, the number of trees was chosen
from 100, 200, 300, 400, and the maximum tree depth chosen was from 1, 2, 3, 4. In each
inner CV iteration, MICE, feature selection, and SMOTE were performed again on the
training subset to avoid data leakage from the training subset to the validation set, and the
imputation model from this second MICE was used to impute the validation set. A set of
hyperparameters with the highest F1 score evaluated on the validation set was chosen (40),
then we fit the main model with this best set of hyperparameters using the training set (the
one after doing the SMOTE in Supplementary Figure S1A) and assessed the model on the
test set for each outer CV iteration. The final model performance was the average of model
performance for each outer CV iteration. ROC was used to evaluate performances for the
short-term mortality prediction in patients with alcoholic hepatitis. A more comprehensive
description on the details of the procedures is shown in Supplementary Figure S1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12010041/s1, Figure S1: A flow chart for machine learning methodology; Table S1:
Metabolomics dataset; Table S2: Lipidomics dataset.
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