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Multiple sclerosis (MS) is the most prevalent inflammatory dis-
ease of the brain and spinal cord in Europe and North Amer-
ica. More than one million are affected worldwide, including 
400,000 in the US. Symptoms often commence in young adult-
hood and include motor paralysis, visual disturbances and 
blindness, bowel and bladder incontinence, sensory loss, and 
incoordination and ataxia. Neurological deficits depend on the 
location of inflammation in the central nervous system. More-
over, the disease has the propensity to relapse and remit. Until 
the past 20 years, there was only one approved treatment for 
MS, the use of adrenocorticotropic hormone (ACTH) or ste-
roids (Frohman et al., 2006). In the past 20 years, eight drugs 
have been approved for MS, with natalizumab (also known as 
Tysabri) regarded as the most potent (Rudick et al., 2012).

In MS, there is strong evidence supporting the idea that an 
immune response targets molecules in the central nervous sys-
tem, including some of the proteins and lipids of the myelin 
sheath. We now know from genomic, transcriptomic, proteomic, 
and even lipidomic studies that there is a major adaptive im-
mune response involving T cells and B cells targeting various 
molecules in the white matter and in the gray matter of the brain 
(Han et al., 2008; International Multiple Sclerosis Genetics 
Consortium, 2011; Lucchinetti et al., 2011; Ho et al., 2012; 
Srivastava et al., 2012). This inflammatory immune response, 
which may be “autoimmune,” involves various key proinflam-
matory cytokines, including interferon-, IL-6, and IL-17, and 
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related cytokines (Lock et al., 2002; International Multiple 
Sclerosis Genetics Consortium, 2011). Experiments in the early 
1990’s were aimed at elucidating how the key cellular compo-
nents of the adaptive immune system, the T cells and B cells, 
breached the blood–brain barrier and migrated into the central 
nervous system.

At that time, while investigating the molecules involved 
in lymphocyte homing to the inflamed brain we found that 4 
integrin was critical for the adhesion of lymphocytes to the in-
flamed endothelium in brain (Yednock et al., 1992). Within 
12 years, rather fast for drug development, a humanized anti-
body to 4 integrin, natalizumab, was approved for the treat-
ment of relapsing remitting MS. The successful translation of 
cell biology was based on an adaptation in an experimental sys-
tem that was widely used to study the molecular interactions 
between lymphocytes and venules in lymphoid tissue. I focus 
here on the pivotal experiment, published in 1992, that enabled 
identification of 4 integrin as the key adhesion molecule in 
homing to the brain and to many other organs, including the 
intestines and pancreas (Yednock et al., 1992; Yang et al., 1993, 
1994; Steinman, 2005).

The historical context
Gowans and Knight demonstrated in 1964 that lymphocytes, 
though not other leukocytes, enter lymph nodes through 
specialized blood vessels called high endothelial venules 
(Gowans and Knight, 1964). This experiment focused atten-
tion on the molecular interactions between the endothelium 
and lymphocytes (Rosen, 2006). A key experimental system 
for analyzing these interactions, the frozen-section binding  
assay, was developed in the mid-1970s by Stamper and 
Woodruff (1976). In this assay, tissue sections are prepared 
from suitably frozen histological sections. Lymphocytes are 
layered onto these sections and adhere to their ligands on the 
exposed tissue. The assay proved useful in the mapping of 
molecules involved in the adherence of lymphocytes within 
lymphoid follicles. It was applied in this case to the study of 
interactions between lymphocytes and endothelium in remote 
lymph nodes in the intestines called Peyer’s Patches. Experi-
ments by Butcher, Gallatin, and Weissman used the Stamper 
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of lymphocytes to the inflamed endothelium in this animal 
model. The T cells infiltrate the central nervous system in  
4–12 h, where they initiate inflammation and subsequent  
paralysis within 4 d. We showed that either human monocytes, 
or rat or mouse lymphocytes, but not human blood neutro-
phils, could bind to the inflamed venular endothelium in 
brains with EAE (Fig. 1). We then asked whether various 
monoclonal antibodies to adhesion receptors might interfere 
with the binding of human monocytes, or rat or mouse lym-
phocytes. Our “war chest” included various monoclonal anti-
bodies to 3, 4, 5, and 6 integrin; to 1 and 2 integrin; 
to LFA-1 (CD18 and CD11a) and Mac-1 (CD18 and CD11b); 
to l-selectin; to CD2, CD4, and CD45; to OX44; and to Thy 1.1 
(Yednock et al., 1992).

Remarkably, lymphocyte attachment to the lumen of 
inflamed vessels was almost entirely blocked by antibodies 
to 1 integrin. The integrin molecule’s  chain binds to 1 of 
6 unique  chains. Antibodies specific for the  chains were 
applied to the frozen section assay; an antibody to 4 inte-
grin inhibited lymphocyte binding to the frozen brain sec-
tions. Thus, binding was inhibited with antibodies to 4 or to 
1 integrin. Surprisingly, other integrins and l-selectin had 
no effect on binding to inflamed brain endothelium (Yednock 
et al., 1992).

Next, we asked whether an antibody to 4 integrin would 
inhibit the progression of paralysis and inflammation in EAE. 
We administered the 4 integrin antibody 2 d after injection 
of the highly pathogenic clones, which can home to the brain 
within 4–12 h. Remarkably, treatment with this antibody pre-
vented paralysis in 75% of animals. Even in those animals 
with paralysis, the signs were weaker and appeared later than 
those who received a control antibody. Thus, importantly, we 
could have a clinical impact long after some cells had reached 
the brain. We found that the 4 integrin antibody blocked the  
appearance of inflammatory cells in the brain (Yednock et al., 
1992). We stated audaciously in the final sentence of the paper 
“that therapy based on inhibiting 4 1 integrin may prove ef-
fective in treating inflammatory diseases of the central nervous 
system” (Yednock et al., 1992).

Woodruff assay to study the binding of a B cell lymphoma 
to high endothelial venules (Gallatin et al., 1983). This lym-
phoma was used to produce MEL-14, an antibody that was 
shown by Yednock and Rosen to bind to a carbohydrate  
receptor on high endothelial venules (Yednock et al., 1987), 
which was cloned in 1989 (Lasky et al., 1989) and termed  
l-selectin (Lasky et al., 1989; Rosen, 2006). These experi-
ments and techniques set the stage for the critical experiment 
that led to the development of natalizumab.

The team assembled for this experiment included Ted 
Yednock, a scientist at Athena Neuroscience, a biotechnol-
ogy company in South San Francisco, who was familiar with 
the Stamper Woodruff assay and participated in the identifi-
cation of l-selectin (Yednock et al., 1987; Lasky et al., 1989). 
The Stanford team included Nati Karin, a member of my 
group who was skilled in producing T cell lines and clones 
that homed to the central nervous system (Zamvil et al., 
1985; Lohse et al., 1989; Zamvil and Steinman, 1990). We 
had studied radiolabeled T cell clones to assess their homing 
properties to brain and spinal cord (Steinman et al., 1983), 
and we were interested in studying the properties of these 
clones, especially which molecules they used in homing from 
the periphery through inflamed brain venules into the central 
nervous system (Steinman et al., 1983; Zamvil et al., 1985; 
Zamvil and Steinman, 1990). An attractive idea that was in 
vogue at the time was that specific molecules might guide 
lymphocytes to recognize regions of inflammation in a spe-
cific organ. The concept was likened to the delivery of mail 
to a specific postal address and came to be known as the “zip 
code hypothesis.” The critical experiment might therefore be 
considered as a search for the “zip code” for immunological 
homing to the brain (Steinman, 2005).

The two major components of the experiment involved 
the use of T cell clones in the animal model known as experi-
mental autoimmune encephalomyelitis (EAE), which induces 
brain inflammation, and the use of the Stamper Woodruff  
assay. In rats, injection of a single T cell clone, made from a 
CD4+ T cell reactive to myelin basic protein, caused EAE and  
paralysis. In the critical experiment, we examined the binding 

Figure 1.  Natalizumab blocks lymphocyte homing in MS. (A) 4 integrin binds to vascular cell adhesion molecule 1 (VCAM1) and to osteopontin (not 
depicted) on inflamed brain endothelium. This interaction gives lymphocytes access to the central nervous system (CNS). The presence of immune cells in 
the brain is a prominent feature of MS. (B) Natalizumab, a humanized antibody to 4 integrin, blocks binding of lymphocytes to VCAM and osteopontin 
on inflamed brain endothelium, thereby preventing lymphocyte entry into the CNS.
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model all the way to an important insight on human mono-
cytes (Yednock et al., 1992).

Test of a direct question with a potentially  

answerable outcome. Probably most importantly, we asked 
which molecules were involved in lymphocyte homing to in-
flamed brain. We did have luck with a small set of reagents 
available at the time, and got the surprisingly clear answer of 
4 integrin.

Broader biological implications of  
the findings
Subsequently, we learned that that 4 integrin is critical in 
homing to other organs, and that the biology of lymphocyte 
homing to inflamed brain and to other organs has many biologi-
cal features that are shared with other migratory processes 
across blood vessels, including the extravasation of tumor me-
tastases to distant organs.

The identification of 4 integrin as the critical molecule in 
lymphocyte adhesion to the blood–brain barrier in brain inflam-
mation exemplified its wider biological role in other contexts: 
4 integrin is critical for homing to the intestines, to the  cells 
in the islets of Langerhans in the pancreas (Yang et al., 1993, 
1994; Steinman, 2005). These findings were taken forward and 
led to approval for MS; natalizumab was also approved for 
Crohn’s Disease (Steinman, 2005; Rudick et al., 2012). We now 
know that the interactions between integrins and small integrin 
binding proteins (SIBLING proteins) are critical in a variety of 
processes ranging from tumor metastasis to the triggering of 
relapses in MS and inflammatory bowel disease (Steinman, 
2005; Bellahcène et al., 2008).

The physiology of lymphocyte homing to inflamed organs 
in MS and Crohn’s disease is connected to another story in-
volving a family of small integrin-binding proteins. In 2007, 
we showed that osteopontin was critical for inducing relapses 
in EAE, that osteopontin promotes proliferation and survival of 
autoreactive T cells, and that this SIBLING protein binds to 4 
integrin (Fig. 1; Hur et al., 2007). Earlier work had described 
elevated levels of osteopontin around the time of relapse in MS 
(Vogt et al., 2004; Comabella et al., 2005; Hur et al., 2007; 
Steinman, 2009; Börnsen et al., 2011; Wen et al., 2012). Osteo
pontin promotes proliferation and survival of tumor cells, which 
then can circulate and bind to integrins on endothelium and thus 
enter tissues as metastases (Bellahcène et al., 2008). The par-
allels between how autoimmune monocytes home to inflamed 
brain and how tumor cells metastasize to specific anatomical 
locations are rather striking (Bellahcène et al., 2008).

Concluding remarks
In many ways, this work on lymphocyte homing used state- 
of-the-art cell biology, and the translation of the work from 1992 
to 2004 led to a new drug. This epitomizes what is desired in 
so-called “bench-to-bedside” translation. The tale is filled with 
high points as well as a devastating low point, when clinicians 
first learned that the approach could lead to fatalities with PML 
(Steinman, 2005; Rudick et al., 2012). For now, it appears that 
“All’s well that ends well,” thanks to the biomarker test to largely 
mitigate risk (Gorelik et al., 2010; Bloomgren et al., 2012). 

Translation from experimental cell biology 
to pivotal clinical trials
In 2004, a humanized antibody to 4 integrin was approved by 
the Food and Drug Administration (FDA) for treatment of re-
lapsing remitting MS after succeeding in phase 1, 2, and 3 clini-
cal trials (Steinman, 2005; Rudick et al., 2012). On the basis of 
year 1 results from two phase 3 trials, the FDA conducted an 
accelerated review and approved natalizumab for the treatment 
of relapsing forms of MS in November 2004, 12 years after 
discovery of the target molecule and 7 years after the start of 
clinical testing. Approval based on accelerated review indicated 
that the FDA felt that natalizumab offered significant advan-
tages over existing drugs in an area of high unmet medical need 
(Rudick et al., 2012).

Natalizumab, though powerful in reducing relapses and 
halting progression of disease, produced a major vulnerability: 
after blockade of this integrin for two years, more than 1 in 500 
individuals developed a devastating opportunistic infection of 
the brain, progressive multifocal leukoencephalopathy (PML; 
U.S. Food and Drug Administration, 2005; Gorelik et al., 2010; 
U.S. Food and Drug Administration, 2012; Bloomgren et al., 
2012). The drug was withdrawn from the commercial market  
in 2005, and was then reinstated by regulatory authorities  
with strict monitoring (Steinman, 2005; U.S. Food and Drug 
Administration, 2005; Gorelik et al., 2010; Bloomgren et al., 
2012; U.S. Food and Drug Administration, 2012; Rudick et al., 
2012). Over the past seven years, a biomarker, antibodies to 
John Cunningham (JC) Virus, the causative agent of PML, has 
emerged that enables clinicians to know who is at risk, and who 
is essentially risk-free. More than 90,000 patients have now 
taken natalizumab (Rudick et al., 2012).

The keys to the success of natalizumab
In my opinion, there were four important lessons to be 
learned from the pivotal experiment that led to the develop-
ment of natalizumab:

“Off the shelf” technologies and reagents. We 
used techniques that were already tried and well tested, “off the 
shelf” if you will, in our experiments in the early 1990s. These 
included the Stamper Woodruff assay, this time applied to the 
inflamed brain, rather than being used to study homing to lymph 
nodes. The repertoire of techniques applied here also included 
the use of T cell clones that trigger EAE.

A collaborative team with highly complementary 

skill sets. T. Yednock was an authority on the Stamper 
Woodruff assay and was a key player in the biochemical char-
acterization and subsequent cloning of l-selectin (Yednock 
et al., 1987; Lasky et al., 1989). Karin and I were experts on the 
use of T cell clones that cause EAE (Steinman et al., 1983; Zamvil 
et al., 1985; Lohse et al., 1989; Zamvil and Steinman, 1990). 
We used the T cell clones both to induce brain inflammation 
and then to test the therapeutic efficacy of anti–4 integrin anti-
bodies after we saw that they were critical in the homing pro-
cess (Yednock et al., 1992).

Connection of animal models to human cell  

biology. We used a human cell line in the very first experi-
ment, which connected the work from a study in an animal 
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