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A B S T R A C T   

One of the significant challenges to designing an emulsion transportation system is predicting 
frictional pressure losses with confidence. The state-of-the-art method for enhancing reliability in 
prediction is to employ artificial intelligence (AI) based on various machine learning (ML) tools. 
Six traditional and tree-based ML algorithms were analyzed for the prediction in the current 
study. A rigorous feature importance study using RFECV method and relevant statistical analysis 
was conducted to identify the parameters that significantly contributed to the prediction. Among 
16 input variables, the fluid velocity, mass flow rate, and pipe diameter were evaluated as the top 
predictors to estimate the frictional pressure losses. The significance of the contributing param-
eters was further validated by estimation error trend analyses. A comprehensive assessment of the 
regression models demonstrated an ensemble of the top three regressors to excel over all other ML 
and theoretical models. The ensemble regressor showcased exceptional performance, as evi-
denced by its high R2 value of 99.7 % and an AUC-ROC score of 98 %. These results were sta-
tistically significant, as there was a noticeable difference (within a 95 % confidence interval) 
compared to the estimations of the three base models. In terms of estimation error, the ensemble 
model outperformed the top base regressor by demonstrating improvements of 6.6 %, 11.1 %, and 
12.75 % for the RMSE, MAE, and CV_MSE evaluation metrics, respectively. The precise and robust 
estimations achieved by the best regression model in this study further highlight the effectiveness 
of AI in the field of pipeline engineering.   

1. Introduction 

1.1. Background 

Emulsion refers to a specific two-phase mixture that involves continuous and dispersed phases of immiscible liquids, such as oil and 
water. If oil or water constitutes the continuous phase, the mixture is categorized as oil-in-water (O/W) (Fig. 1A) or water-in-oil (W/O) 
emulsion (Fig. 1B). The dispersed phase is usually comprised of spherical bubbles. The size distribution of the bubbles may vary over an 
extensive range. The stability of emulsions is ensured with surfactants, which have an affinity to the immiscible phases and can reduce 
surface tension. Even though emulsions are significant fluids in various industries including food, cosmetics, pharmaceuticals, 
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agrochemicals, and the petroleum industry, the large-scale pipeline transportation of emulsions is most important in the petroleum 
industry [1–7]. One of the key parameters while designing or operating a pipeline is the frictional pressure losses or pressure gradient. 
Process engineers need a clear understanding of the piecewise and comprehensive friction losses in the pipeline network to ensure the 
uninterrupted transportation of fluids. The knowledge of pressure drops helps them select the respective sizes of the pumps, motors, 
and pipes as well as the construction materials. The methodology of estimating friction losses for single-phase flow is well established; 
however, the development of a similar method for emulsion transportation is still at a nascent stage. 

1.2. Theory-based traditional models 

The frictional pressure losses (ΔP/L) were modeled with Fanning friction factor (f) as follows (Eq. (1)) provided that the emulsion 
can be considered a Newtonian fluid [4,7]: 

ΔP
L

= f
2ρV2

D
(1)  

where (ρ) is the emulsion density [kg/m3], (V) is the average velocity [m/s], and (D) is the pipe diameter [m]. The following cor-
relations were suggested for (f): 

f = 16Re− 1 (la min ar flow) (2)  

f = 0.079Re− 0.25 (turbulent flow, smooth pipe) (3)  

f − 0.5 = 4 log10
(
Ref 0.5) − 4 (turbulent flow, smooth pipe) (4)  

f − 0.5 = − 4 log10

[
ε/D
3.7

+
1.255
Ref 0.5

]

(turbulent flow, rough pipe) (5)  

Re=
DVρ

μ (6)  

In the above-mentioned equations (Eqs. (2)–(6)), (ε) is the equivalent sand-grain roughness of a rough pipe-wall [m], (ε/ D) is the 
relative roughness of a pipe [− ], Re is the Reynolds number [− ], and (μ) is the emulsion’s dynamic viscosity [Pa.s]. The values of (μ)
can be correlated to the flow conditions as shown below [5,8–11]: 

(μ / μc)

(
M − P + 32(μ/μc)

M − P + 32

)(N− 1.25)( M + P − 32
M + P − 32(μ/μc)

)(N+1.25)

= exp
(

2.5φ
1 − φ/φm

)

(7)  

M =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

(64/Ca2) + 1225(μd/μc)
2
+ 1232

μd/μc

Ca

]√

(8)  

P=
8

Ca
− 3(μd / μc) (9)  

N =
(22/Ca) + 43.75(μd/μc)

M
(10)  

Fig. 1. Schematic presentation of types of emulsions: (A) O/W; (B) W/O.  
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Ca=
8Vc/D

σ/R
(11)  

In Eqs. 7–11, (μc) is the continuous phase viscosity [Pa.s], (μd) is the dispersed phase viscosity [Pa.s], (Ca) is the Capillary number [− ], 
(Vc)is the average velocity of the continuous phase [m/s], (σ) is the interfacial tension [N/m], (R) is the average droplet radius of the 
dispersed phase [m], (φ) is the dispersed phase volume fraction [− ], and (φm) is the maximum packing volume fraction of undeformed 
droplets of dispersed phase [− ]. The value of (φm) varies with the type of packing arrangement of droplets. It is 0.52 for simple cubic 
packing of uniform spheres, 0.64 for random close packing, and 0.74 for hexagonal close packing of uniform hard spheres. A modified 
version of this model was also suggested in case the emulsion behaves as a shear-thinning non-Newtonian fluid that follows a power- 
law model [7]: 

τ=Kγ̇n (12)  

Re(Metzner − Reed)=
DnV (2− n)ρ

K
[

1+3n
4n

]n

8(n− 1)

(13)  

f =
16

Re(Menzner − Reed)
(la min ar flow) (14)  

f − 0.5 = 4n0.75 log10
(
Re(Metzner − Reed)f (1− 0.5n)) − 0.4n− 1.2 (turbulent flow) (15)  

In Eqs. 12–15, (τ) is shear stress [Pa], (γ̇) is shear rate [s− 1], (K) is consistency index [Pa.sn], and (n) is the flow index [− ]. On the other 
hand, Hoshyargar and Ashrafizadeh [2] investigated the rheological properties of crude oil-in-water emulsions and the factors 
affecting the rheology of the O/W emulsions stabilized by surfactants were also investigated. They found the crude oil to be a New-
tonian fluid with a viscosity of 0.3–11 Pa s; however, the rheological behavior of the O/W emulsions could be explained with the 
complex Herschel− Bulkley model: 

τ=Kγ̇n + τy (16)  

In Eq. (16), (τy) the yield stress [Pa]. Considering the emulsions as non-Newtonian Herschel− Bulkley fluids, they modeled the friction 
losses with the following set of correlations: 

ΔP
L

= f
2ρemulsionV2

D
(17)  

ρemulsion = ρoilφ + ρwater(1 − φ) (18)  

f =
16

ψRegen
(la min ar flow) (19)  

f − 0.5 =
4

n0.75log10

(
Regenf

(2− n)
n

)
−

0.4
n1.2 (turbulent flow) (20)  

Regen =
ρemulsionV(2− n)Dn

K
(

0.75 + 0.25
n

)n

8(n− 1)

(21)  

ψ =(1 + 3n)n
(1 − ξ0)

(n+1)
×

[
(1 − ξ0)

2

(1 + 3n)
+

2ξ0(1 − ξ0)

(1 + 2n)
+

ξ2
0

(1 + n)

]n

(22)  

ξ0 =ψ
[

Regen

2He
×

(
1 + 3n

n

)n] n
n− 2

(23)  

He=
D2ρemulsionτ

2
n− 1
y

K2/n (24)  

In Eqs. 17–24, (Regen) is a generalized Reynolds number [− ] and (He) is the Hedstrome number [− ]. 
Inkson et al. [3] investigated the application of computational fluid dynamics (CFD) in predicting the pressure losses for the 

pipeline transportation of emulsions. They treated an emulsion as a suspension that does not reach the maximum packing of particles 
but undergoes a phase inversion at a critical dispersed volume fraction. For the computational modeling, they combined the suspension 
stress model proposed by Morris and Boulay [12] with the Eulerian multiphase model. The emulsion viscosity was defined with Eqs. 25 
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and 26 in terms of two components, relative viscosity (ηr) and normal relative viscosity (ηn): 

ηr = 1+ 2.5φ
(

1 −
φ

φm

)− 1

+ 0.1
(

φ
φm

)2(

1 −
φ

φm

)− 2

(25)  

ηn = 0.75
(

φ
φm

)2(

1 −
φ

φm

)− 2

(26) 

The overall solution was controlled with Semi-Implicit Method for Pressure Linked Equations or SIMPLE algorithm, which is a 
numerical procedure of solving Navier–Stokes equations. The constitutive relations were solved to simulate the data obtained using 
low flow rates on the commercial CFD platform of STAR-CCM+. A similar platform was used by Plasencia et al. [6] for simulating the 
pipeline transportation of emulsions under laminar and turbulent flow conditions. Unlike Inkson et al. [3], they used a modified 
version of the model suggested by Krieger and Dougherty [13] to estimate emulsion viscosity. The constitutive discrete equations were 
solved based on the finite volume method and Phase-Coupled SIMPLE algorithm. The emulsion turbulence was simulated with the 
Elliptic Blend k − ε model, which resolves transport equations for the reduced wall-normal stress component and the elliptic blending 
factor in addition to the turbulent kinetic energy per unit mass of the velocity fluctuations (k) and the turbulent dissipation rate (ε). The 
uncertainties related to predictions of pressure gradients were estimated about two times the standard deviation of the measurements; 
the uncertainties increased with the flow rates in the laminar flow zone and appeared to be much higher in the transition or turbulent 
region. 

1.3. Modeling with artificial intelligence 

The ranges of applicability of the previously proposed empirical or computational models limit their applications. In addition to the 
complexity of applying the models, they are also known to involve a significant degree of uncertainty. One of the solutions for the 
reliable prediction of pressure losses is employing artificial intelligence (AI)-based machine learning (ML). Compared to traditional 
models, this kind of soft computational approach exhibits superior performance as they are formulated with highly accurate hypothesis 
functions. Further, the ML models are able to learn the linear and/or non-linear interactions among the features and the outcomes in 
the data. The hyperparameters of the algorithms are tuned so that these parameters can best explain the relationships of the feature 
attributes to the outcome variables in the form of a hypothesis function. On the other hand, the traditional models are not necessarily 
developed to exploit the inherent association between the feature attributes and the corresponding outcomes from the perspective of 
data science. Rather, the traditional models are usually developed based on the physical observations of a specific set of experiments. 
Even though these models have scientific value, they fail to accurately estimate the pressure gradient outcomes on new sets of 
experimental data. 

In the realm of multiphase flow, AI-based tools have been widely utilized for prediction and classification purposes [14–18]. 
However, when it comes to predicting pressure losses specifically for stable emulsion transportation using ML, there is a striking 
absence of substantial attempts or studies in the existing literature. The application of ML techniques to accurately forecast friction 
losses in the context of emulsion transportation via pipelines has been largely overlooked or neglected by researchers. Only a few 
studies obliquely addressed the issue. The most relevant studies are discussed as follows. 

Aljubran et al. [19] investigated the application of machine learning algorithms such as artificial neural network (ANN), logistic 
regression (LR), and extremely randomized trees (ERT) on a data set of 6878 points to predict a set of water-based drilling fluids’ 
properties: density, yield stress, plastic viscosity, gel strength, filtration fluid loss, and pH. They found ERT to be capable of accurately 
predicting the measurements on the holdout test set with a coefficient of determination (R2) of 91.07 ± 6.35 %. Wahid et al. [20] 
developed and evaluated ML algorithms for accurately predicting pressure gradients (PGs) in various oil-water flow patterns (FPs) in 
horizontal wellbores. Nine FPs including emulsion were considered, and 1100 experimental data points were used to train the models. 
The evaluated algorithms included Support Vector Machine (SVM), Gaussian Process (GP), Random Forest (RF), ANN, k-Nearest 
Neighbor (kNN), and their fusions. Seven predictor variables were identified as important for accurate predictions, including oil and 
water velocities, flow pattern, input diameter, oil and water densities, and oil viscosity. The GP had the highest prediction accuracy, 
outperforming other algorithms except for the model fusions. Cross-validation analysis demonstrated the superior performance of GP 
compared to ANN. The study highlighted the potential of ML models for designing energy-efficient transportation systems in the 
petroleum industry for liquid-liquid flow in wellbores. The performance of ML algorithms in classifying nine oil-water FPs in horizontal 
pipes using liquid and pipe geometric properties was also investigated [21]. The ML algorithms tested include SVM, Ensemble 
Learning, RF, Multilayer Perceptron Neural Network (MLPNN), kNN, and weighted Majority Voting (wMV). Experimental data points 
for the nine FPs were extracted from the literature, and the dataset was balanced using the synthetic minority over-sampling technique. 
The ML models were evaluated using various metrics such as accuracy, sensitivity, specificity, precision, F1-score, and Matthews 
Correlation Coefficient. The results showed that the wMV achieved an accuracy of 93.03 % in classifying the oil-water FPs, with seven 
out of nine FPs having accuracies above 93 %. Statistical analysis indicated that the accuracy of FPs using wMV was significantly 
higher than using the ML models individually. Recently, a hybrid ML scheme to simultaneously predict FP and PG for oil-water 
two-phase flow was proposed [22]. They used the GP [20] for predicting PGs and the wMV [21] for predicting the FPs. The re-
searchers used a dataset of 1637 experimental data points for oil-water two-phase flows in horizontal and inclined pipes. They 
employed the modified Binary Grey Wolf Optimization Particle Swarm Optimization (BGWOPSO) algorithm to identify important 
features in the dataset. The performance of the ML models was evaluated based on the metrics used in Refs. [20,21]. Cross-validation 
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was performed using a repeated train-test split strategy. The overall FP classification accuracy exceeded 91 %, with 90.61 % sensitivity 
and 98.53 % specificity using a wMV approach. Using GP regression, the evaluation metrics for PG prediction yielded a MAPE of 10.65 
%, a root mean square error of 86.26 Pa/m, and an adjusted R2 of 0.96. 

Thus, predicting friction losses in emulsion pipelines using ML tools is an underexplored area. While AI has been widely used in 
multiphase flow, there is a lack of models that have been specifically designed for predicting pressure losses in stable emulsion flow. 
This research gap highlights the need for further exploration of ML-based approaches to improve prediction accuracy and optimize 
emulsion transport systems. The main contributions of the current study include exploring and tailoring ML techniques for predicting 
pressure gradients in emulsion pipelines. This study serves as a starting point for further research and offers insights that can enhance 
the efficiency of emulsion transport systems in various industries. The main research contributions of the current study are highlighted 
below.  

1. Several state-of-the-art ML regression models were optimized and evaluated for estimating the pressure gradients for emulsion 
flows in different pipelines.  

2. Recursive Feature Elimination (RFE) algorithm was employed to identify the most relevant set of features.  
3. Different evaluation metrics and other analytical tools were used for the comparative analysis of the performances of the regression 

models in predicting the frictional pressure losses.  
4. The top-performing ML algorithm’s pressure loss estimations were compared with those of the relevant theoretical model.  
5. A comprehensive ML-based modeling methodology was developed for the pressure losses during the pipeline transportation of 

emulsions. 

2. Methods and materials 

2.1. Dataset 

A database consisting of 7029 measurements of pressure gradients was used for the current study. The data were collected from 
Ref. [7]. Both O/W and W/O emulsions were pumped through five different pipes while measuring the friction losses. The viscosity, 
pressure drop, and flow rate were measured using calibrated devices. The emulsions were prepared with three different oils and water 
in a mixing tank that was equipped with three baffles, a heating/cooling coil, and a temperature controller. The types of emulsions 
were identified as W/O and O/W with an in-line conductance cell, which was used to measure the electrical conductance of the 
emulsions continuously. The effects of three polymeric additives and a surfactant on the pressure losses were also investigated. The 
additives promoted emulsion stability. All experiments were performed at 25 ◦C. Table 1 presents the dataset with its statistical details. 
A standard deviation of zero (0) or the similarity of maximum, average, and minimum indicates the constant value of an input 

Table 1 
Statistical presentation of the current database.  

Type Parameter (Unit) Maximum Average Minimum Standard Deviation 

Input (Controlled Variable) Pipe diameter (m) 0.0265 0.01798 0.0089 0.01 
Oil Fraction (− ) 0.95 0.67 0.2 0.18 
Water Fraction (− ) 0.8 0.33 0.05 0.19 
Oil Density (kg/m3) 816 769 753 25 
Oil Viscosity (Pa.s) 0.00600 0.00350 0.00250 0.00147 
Oil Surface Tension (N/m) 0.0405 0.0345 0.0113 0.0114 
Polymer Fraction (− ) 0.010 0.007 0.001 0.004 
Polymer Molecular Weight (− ) 7000000 5091192 700000 2591302 
Surfactant Fraction (− ) 0.020 0.015 0.001 0.007 
Mass Flow Rate (kg/s) 5712.00 8.36 0.01 188.53 
Velocity (m/s) 12.31 2.94 0.05 1.95 
Water Density (kg/m3) 997 997 997 0 
Water Surface Tension (N/m) 0.0720 0.0720 0.0720 0 
Water Viscosity (Pa.s) 0.00089 0.00089 0.00089 0 
Surfactant Viscosity (Pa.s) 0.23 0.23 0.23 0 
Hydrophile-Lipophile Balance (− ) 2.1 2.1 2.1 0 

Output (Measured Variable) Pressure Gradient (Pa/m) 60698 10320 3 12850  

Table 2 
Distribution of data points based on emulsion types.  

Types of Emulsions Number of Data Points 

W/O 3517 
W/O + Polymer 386 
W/O + Surfactant 1675 
O/W + Surfactant 1451  
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parameter. Table 2 shows the distribution of the data points based on the types of emulsions used for the flow experiments. 

2.2. Computational framework 

As a computational framework, we used a Google Colab Python interface for dataset processing, analyses, ML model training, 
evaluation, and validation. Different libraries and functions that are available in Python 3 were used for conducting statistical analyses 
and producing visualization plots. 

Fig. 2. RFECV reported CV scores while using selected number of features during feature selection.  

Fig. 3. RFE selected 12 (twelve) important features and their corresponding importance scores.  
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2.3. Data preprocessing 

2.3.1. Noise removal 
In order to remove any existing noise in the dataset, the data columns were checked for invalid values. All the ‘NaN’ (i.e. Not a 

Number) values in the data columns were replaced by the mean value of that corresponding column. Also, the possible outliers in the 
dataset were identified using the LocalOutliersFactor algorithm available in the Python package. The number of total data points was 
reduced to 7002 after the noise removal steps. 

2.3.2. Feature normalization 
Feature normalization is an important pre-processing step of applying ML algorithms. A z-score standardization technique was 

applied to normalize all feature values. The objective was to achieve a uniform numerical range for different types of features with 
various ranges. Each feature column was transformed to a normalized range with mean as zero (0) and standard deviation as one (1), 
using x′ = (x − μ)/σ, where, (x′) is the transformed normalized value, (x) is the original value, (μ) is the mean over the column features, 
and (σ) is the standard deviation over the column features. A positive standardized z-score indicates the value is above the average, 
whereas a negative score indicates the corresponding value is below the average. 

2.3.3. Feature importance analysis 
It is critical to identify the features having the most predictive power or contributing most to predicting the output before applying 

any ML algorithms. In general, these important features substantially take part in forecasting the outcome through the hypothesis 
function. The remaining less relevant features can be eliminated in the subsequent stages such as model training and testing due to 
their lower impacts on the outcome. It usually helps in simplifying the model and accelerating the processes of training and prediction. 
For the current study, the most relevant features in the context of predicting pressure gradients were selected using the recursive 
feature elimination by cross-validation (RFECV) method. The RFECV algorithm identifies the most important features by eliminating 
the lesser relevant or unnecessary features in steps along with cross-validation (CV). It chooses the optimal subset of features to retain 
based on the CV score of the external estimator model. In the present work, the random forest regressor was used as an external 
estimator in a 5-fold CV framework in the RFECV algorithm. Fig. 2 shows the CV scores for the features used to train the model. The 
optimal number of features was found as 12 among a set of 17 features, which is manifested in the graph. The CV score hit the highest 
value and became constant once the number of selected features reached 12. The ascending order ranking of the 12 most important 
features is depicted in Fig. 3. These relevant features were used in the model hyperparameter optimization and training stage. 

2.3.4. Feature correlation and interactions 
We analyzed the relationships between the important features and the outcome using Pearson’s correlation coefficient method. The 

heatmap analysis of the correlation matrix is shown in Figure A1. The matrix depicts the correlation between the important variables 
and the outcome (the last column). In terms of the relationship with the outcome, velocity shows the strongest correlation while the 
pipe diameter stands out as the second highest correlated variable. 

Regression-plot, as an exploratory data analytics tool, generally helps to understand the interactions between features and the 
outcome. We randomly selected 1000 samples to perform the regression plot analysis to understand the non-linear relationships 
between the top five (5) features. A polynomial function order of two (2) was used to model the relationships between the attributes 
and the outcome. In Figure A2, the upper and lower diagonals depict the relationships between each pair of attribute columns in the 
context of the ‘Pressure Loss’ outcome. On the other hand, the univariate distribution for each attribute is shown as a histogram in the 
main-diagonal subplots. This regression-plot analysis indicates that the relationship between the features and the outcome needs to be 
modeled as either a higher-order polynomial or other complex non-linear function involving the relevant features. 

2.4. ML algorithms 

In the current research, six supervised regression models were selected to estimate the real-valued pressure gradients using the 
twelve most relevant features. The models are Random Forest Regressor (RFR), Extreme Gradient Boosting Regressor (XgBR), Cat 
Boost Regressor (CBR), Mulit-layer Perceptron Regressor (MLPR), K-Nearest Neighbor Regressor (KNNR), and Decision Tree Regressor 
(DTR). These constitute a set of recent state-of-the-art ML algorithms that are known to efficiently handle non-linear regression 
learning problems. An ‘Ensemble Model’ that combines the estimates of the best three models was also used for the current study. This 
kind of ensemble modeling is developed based on the actual concept of ensemble learning which focuses on making more accurate 
predictions using an average model, instead of a single model. A brief description of each ML algorithm is provided as follows. 

2.4.1. RFR 
The RFR is a regression algorithm that is developed based on the random forest ensemble technique. It works as a meta-estimator, 

which combines multiple randomly drawn decision trees from the data and provides the output of a new estimation as the average. As 
an ensemble regressor, the RFR produces a stronger model by combining multiple decision tree models. It uses a bootstrapping 
technique that randomly samples subsets of a dataset over a number of iterations using the required number of features to build each 
decision tree estimator [23]. 
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2.4.2. CBR 
CBR is a decision tree-based gradient-boosting model for supervised regression problems. It is based on the main idea of boosting 

which is to sequentially fit multiple weak models, which are slightly better estimators than random choices. While fitting, the models 
continually learn from the mistakes of former models, and the process is continued until any arbitrary differentiable loss function, i.e., 
the difference between the estimation and actual values is no longer minimized. The minimization of the loss function is performed 
using a gradient descent optimization algorithm that gives the technique the name of ‘gradient boosting’ [24]. 

2.4.3. XgBR 
The XgBR is an efficient implementation of a gradient-boosting algorithm for regression-based predictive modeling. As mentioned 

previously, boosting refers to a technique in which several decision trees are added one at a time to an ensemble ML model and fit to 
rectify the estimation errors made by prior models. The XgBR is designed to be both computationally efficient and highly effective in 
terms of faster execution and prediction performance [25]. 

2.4.4. MLPR 
MLPR implements a multi-layer perceptron algorithm that is trained using backpropagation in a neural network architecture 

consisting of several non-linear hidden layers, input, and output layers. The MLPR model is able to learn a non-linear function 
approximation for any regression problem from the training observations [26]. 

2.4.5. KNNR 
The KNNR is a non-parametric regression method that can be used for regression modeling. In general, the KNNR algorithm uses the 

concept of ‘feature proximity’ to estimate the continuous values of any new observation. In this technique, any new observation is 
assigned a value depending on how closely it resembles the observations in a neighborhood in the training set. The K-value in the 
KNNR model indicates the number of neighbors that needs to take into consideration. The proximity between continuous variables is 
calculated using distance methods like Euclidean and Manhattan distance [27]. 

2.4.6. DTR 
The DTR is the simplest regression technique that builds the regression model in the form of a tree structure. It splits the dataset into 

smaller subsets while developing an incremental associated decision tree. Finally, a single tree is produced with the decision and leaf 
nodes. The decision nodes represent the values of the feature attributes used to build the model, whereas the leaf nodes represent an 
estimation of the continuous target values. The root node represents the best feature predictor as well as the topmost decision node in a 
tree [27]. 

2.4.7. Average regression model 
The average regression (AvgR) model that was used for the current study combines the prediction of the top three regression models 

and produces an ensemble output. Specifically, it runs three best regression models, calculates the average of the three real-valued 
estimates, and reports that as the final outcome. The ensemble model calculates the output using the following formula. 

AvgR(Estimated Pressure Loss)=
1
n
∑n

i=1
ŷi (27)  

In Eq. (27), (ŷi) is the estimation of i-th regression model and n is the number of the regression model. The average ensemble model is 
scalable to any value of n. For the current study, n = 3. The conceptual diagram of our ensemble regressor model is depicted in Fig. 4. 

Fig. 4. The concept of the ensemble (average) regression model: X indicates the input vector consisting of (m) experimental parameters, whereas 
Model 1, Model 2, and Model 3 represent the top three regression models selected for producing the ensemble model; the combination module 
averages the individual model estimations, (ŷ1 ), (ŷ2 ) , and (ŷ3 ) in order to produce the final estimation as (ŷ). 
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2.5. ML model training 

The training process was initiated after selecting the set of suitable ML algorithms for the current regression problem. The model 
training involved multiple steps including splitting the datasets into training and hold-out testing, tuning the hyperparameters of the 
ML model on the training dataset using a suitable technique, fitting the model using the optimal hyperparameters on the training data, 
and, finally, evaluating the models on hold-out test data using appropriate evaluation metrics. The dataset was split into 80 % of 
training and 20 % of independent test data. The fit of the ML models included tuning the hyperparameters of the ML algorithms on the 
training data in a k-fold CV framework. The objective was to find the optimal values of the hyperparameters resulting in the lowest 
estimation error for the current regression problem. During the k-fold cross-validation, the training data points were divided into k- 
folds, and the ML model was trained, i.e., its hyperparameters were tuned on (k-1) folds while validating the model with the remaining 
fold. The process was iterated k-times until each fold was used as a validation set for model evaluation. In the current study, a cross- 
validated grid search method was used to tune the hyperparameters of the regression models on the training dataset. The grid search 
method uses various combinations of the specified hyperparameters with corresponding values and measures the mean squared error 
(MSE) of the model for each combination on the validation dataset. The amalgamation of hyperparameters for which the best per-
formances (i.e., lowest average MSE) had been obtained was reported as the optimal hyperparameters for a particular ML model. The 
5-fold cross-validated grid search-based hyperparameter tuning is demonstrated as an algorithmic pseudocode in Fig. 5. Finally, the 
ML model was trained using the optimal hyperparameters on all the training data. The complete process of ML model training and 
evaluation is depicted in Fig. 6. 

2.6. Evaluation metrics 

A set of evaluation metrics was selected for assessing the ML models and identifying the best-performing model for the current 
regression problem [20–22]. The metrics are described in the following paragraphs. 

2.6.1. Coefficient of determination 
Coefficient of determination (R2) is a regression performance score, which represents the amount of variance in the response 

variables that can be explained by the feature parameters. The value of R2 score usually varies between 0 and 1; R2 = 1.0 if the model 
can predict with 100 % accuracy. Any negative value of R2 indicates an arbitrarily worse model. The mathematical formula for R2 score 
is defined as follows, 

R2(y, ŷ)= 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (28)  

y=
1
n
∑n

i=1
yi (29)  

In Eqs. 28 and 29 (ŷi) is the estimation, (yi) is actual value, (y) is the mean actual value, and (n) is the total number of data points. 

2.6.2. Mean absolute error 
The mean absolute error (MAE) measures the average of the absolute differences between the actual and estimated values. This 

score expresses the magnitude of error between the estimation (model output) of an observation and the experimentally measured 
value of that observation. The MAE score is defined using Eq. (30): 

Fig. 5. Algorithmic pseudocode explaining hyperparameter tuning using 5-fold CV.  
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MAE(y, ŷ)=
∑n

i=1|ŷi − yi|

n
(30)  

2.6.3. Median absolute error 
The median absolute error (MDAE) score is a regression performance measure that is able to calculate the variability of the true and 

estimated values of a sample dataset. This evaluation metric is useful as it is robust to outliers. The error is calculated by taking the 
median of all absolute differences between the actual and estimated values. The MDAE score is calculated using Eq. (31): 

MDAE(y, ŷ)=Median(|y1 − ŷi|,…, |yn − ŷn|) (31)  

2.6.3.1. Mean squared error. The mean squared error (MSE) is a regression score to measure the average of the squared differences 

Fig. 6. A flowchart elucidating the complete ML model training and evaluation process.  
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between the actual and estimated values. MSE is also considered the expected value of the squared error loss. This metric is strictly a 
positive value that decreases as the estimation error approaches zero. The correlation to calculate the MSE score is presented below 
with Eq. (32): 

MSE(y, ŷ)=
1
n

∑n

i=1
(ŷi − yi)

2 (32)  

2.6.4. Root mean squared error 
The root mean squared error (RMSE) represents the square root of the mean squared deviations between the model estimations and 

true values of the observations. It is a popular measure to evaluate regression models which aggregates the magnitude of the estimation 
errors for a set of data points into a single measure of estimation power. RMSD is a non-negative value and a value of zero indicates a 
perfect fit of the model to the data points. The lower the RMSD, the better the model’s performance is. The RMSE is calculated with Eq. 
(33): 

RMSE(y, ŷ)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ŷi − yi)

2

√

(33)  

2.6.5. Coefficient of variation of mean squared error 
The coefficient of variation of MSE (CV-MSE) score is a measure that calculates the ratio of the mean squared error and the mean of 

the dependent variables (yi) in a set of observations. It is a relative measure of the model’s variability that calculates the size of the 
mean square deviation of its estimations in relation to the mean actual values. The lower the value of CV-MSE, the lesser the variability 
is. The following Eq. (34) is used to calculate the CV-MSE score: 

CV − MSE(y, ŷ)=
1
n

∑n
i=1(ŷi − yi)

2

∑n
i=1(yi)

/
n

(34)  

2.6.6. Explained variance score 
The explained variance score is a measure that captures the model’s ability to explain the variance of the dataset. The score 

represents the fraction of the variation being explained by the model. Usually, a high explained variance score indicates the model’s 
superior estimation power. If the estimation error of a model is unbiased, the explained variance and R2 scores will be identical. The 
explained variance is defined as follows (Eq. (35)): 

explainedvariance(y, ŷ)= 1 −
Var(y − ŷ)

Var(y)
(35)  

2.6.7. Max error 
The max error score is simply the maximum of the absolute deviation between actual and estimated values. This score shows the 

highest estimation error made by each of the regressor models. The max error is defined using the following Eq. (36): 

Max Error(y, ŷ)=max (|ŷi − yi|) (36)  

2.6.8. Regression AUC-ROC score 
The AUC-ROC score represents the area under the receiver operating characteristic curve from prediction scores. In the regression 

scenario, it is calculated based on the fundamental concept of finding the probability that a classifier will rank a randomly chosen 
larger-valued instance higher than a randomly chosen lower-valued one. It is equal to the probability that the regression model 

Table 3 
The optimized hyperparameter values and the corresponding ranges for an optimal parameter grid search.  

Model Hyperparameters Range Optimal Parameter Value 

CBR depth (10, 18) 16 
learning_rate (0.01, 0.1) 0.1 
iterations (30, 50, 100) 100 

RFR n_estimators (30, 50, 100, 150) 150 
min_samples_split (0.6, 2, 3) 2 
max_features (‘sqrt’, ‘log2’, 0.6,1.0) log2 

XgBR learning_rate (0.05, 0.20) 0.20 
n_estimators (500, 1500, 2000) 2000 

KNNR n_neighbors (3, 10, 1) 6 
weights (‘uniform’, ‘distance’) ‘distance’ 

MLPR max_iter (1000, 2000) 1000 
hidden_layer_sizes ((150,100,50),(200,150,100)) (200,150,100) 
alpha (0.05, 0.001) 0.05 

DTR criterion (’squared_error’, ’friedman_mse’, ’absolute_error’, ’poisson’) ’squared_error’ 
max_depth (5, 20) 17  
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actually ranks o1 higher than o2 when considering any two observations, o1 and o2, such that o1 > o2 in terms of continuous real 
values. 

3. Results and discussion 

3.1. Hyperparameter tuning 

The hyperparameter optimization of the ML algorithms was performed using the grid search method via a 5-fold CV framework. We 
chose a set of important parameters for each algorithm to optimize on the training data, which is a common practice (see, for example, 
[18,21]). A range or a list of values was specified for each parameter during the grid search with MSE as the evaluation metric. The 
values of parameters for which the lowest MSE value was obtained for each regression model were reported as the optimal parameter 
values. The names of the parameters along with the range and the optimized value of each parameter of the six regression models are 
shown in Table 3. The GridSearchCV method in the ‘sklearn’ package was used for hyperparameter optimization for the current study. 
For the tree-based models, the most common hyperparameter to tune is the ‘n_estimators’ (‘iterations’ in the case of RFR), which 
indicates the number of trees in the forest of the model. Interestingly, the XgBR model requires a larger number of trees for constructing 

Table 4 
The performance assessment of six regressors, the average regressor, and the theoretical model on independent test data using different evaluation 
metrics (the best performance of the AvgR is shown in bold while the worst performance of the theoretical model is displayed in italics).  

Model R2 AUC-ROC Score MAE MDAE MSE RMSE CV_MSE Explained 
Variance Score 

Max Error 

AvgR 0.997 0.983 377 170.93 479260 692.29 46.33 0.997 5465 

RFR 0.996 0.983 417 180.75 644242 802.65 62.29 0.996 6843 
CBR 0.997 0.980 424 224.34 549249 741.11 53.10 0.997 6943 
XgBR 0.996 0.975 473 265.82 602523 776.22 58.25 0.996 6572 
MLPR 0.995 0.976 496 244.09 867594 931.45 83.87 0.995 8822 
KNNR 0.995 0.979 462 208.22 752476 867.45 72.74 0.995 7859 
DTR 0.992 0.972 577 249.38 1270870 1127.33 122.85 0.992 11371 
Theoretical model 0.916 0.939 1995 811.30 13516294 3676.45 1306.61 0.922 23125  

Fig. 7. Presentation of the prediction error trends with respect to the number of features used for training in the case of the AvgR regression model.  
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an optimal forest of the model compared to CBR and RFR, which was evident in the longer training time in the case of XgBR modeling. 
The optimal ‘depth’ for both CBR and DTR models was found as comparable. The best error criterion for the DTR model was ‘squared 
error’. The optimal value for ‘alpha’ or the regularization parameter in MLPR resulted as 0.05 for 1000 training iterations, which 
indicates a penalty needed to be imposed on the coefficient size to avoid model overfitting. For the KNNR (k-nearest neighbors re-
gressor) model, the ’weight’ parameter plays a crucial role in determining the influence of neighboring samples on the current sample’s 
prediction. In this study, the optimal value for the ’weight’ parameter was found to be ’distance’. This setting implies that neighbors 
with smaller distances to the current sample will have a larger weight associated with them, while neighbors with larger distances will 
have a relatively smaller weight. 

3.2. Model performance on test data 

The performance of the regression models (AvgR, CBR, RFR, XgBR, MLPR, KNNR, and DTR) along with that of the theoretical 
model on the independent test data is presented in Table 4. Even though RF, CBR, and XgBR demonstrated highly accurate perfor-
mance, the best results were obtained by using the average regressor. Indeed, a paired t-test revealed that the comparative differences 
between the performance of the AvgR model and that of the top three models (RF, CBR, and XgBR) were statistically significant as p <
0.005 with a 95 % confidence interval. In fact, the AvgR was distinctively the top-performing model in terms of all regression metrics. 
Among the six base ML models considered in the study, the tree-based models (RFR, CBR, and XgBR) demonstrated superior per-
formance compared to traditional models like MLPR and KNNR across all evaluation metrics. However, it is worth noting that KNNR 
exhibited lower error trends than MLPR in terms of all error metrics, including MAE, RMSE, CV_MSE, and Max Error, indicating its 
relatively better performance in terms of prediction accuracy. The DTR model, characterized by its simple decision tree logic, exhibited 
the lowest performance among all the ML models. This outcome is understandable due to the limited complexity of the decision tree 
model compared to other ML algorithms. In contrast, the theoretical model performed significantly worse in comparison to the ML 
models. This disparity in performance was expected, primarily because the theoretical model relies on heuristic equations to estimate 
the output, which may not fully capture the complexities of the dataset. Interestingly, even the relatively underperforming DTR model 
produced more reliable predictions than the theoretical model for the current dataset. This highlights the potential of ML models, even 
those with lower performance, to provide more accurate predictions compared to traditional theoretical models in this context. 

Fig. 8. Comparative performances of six regression models against the average model in predicting pressure losses on test data.  
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3.3. Prediction error trend analysis with an increasing number of features 

We analyzed the estimation error trends of the best model, AvgR on the independent test data using several evaluation metrics 
including MDAE, MAE, and CV_MSE. For this set of experiments, prediction errors were estimated by increasing the number of features 
for training. The degree of errors continued reducing up to twelve (12) features. Using more features did not decrease the prediction 
error any further. In Fig. 7, the error curves are drawn against the number of features exploited during training. The error trend is 
particularly visible for the CV_MSE metric in the figure. The outcome of this experiment corroborates that one of the best-performing 
ML models shows no further improvements in estimating the pressure losses for an increasing number of features beyond 12. In 
addition, it validates the feature importance experiments that also demonstrated the optimal number of features as 12. 

3.4. Comparison of models’ performances 

A detailed performance analysis was carried out for all models using various visualization plots including scatter diagrams, pre-
diction error plots, and boxplots. The scatter plot in Fig. 8 shows the estimations from seven regression models for the test data, in 
which the X-axis represents the measured values of pressure losses and the Y-axis stands for its estimated values. In the case of perfect 
modeling, all the data points lie exactly on the ideal regression line, which is the diagonal. On the other hand, the imperfect model’s 
estimations show a higher deviation from the diagonal line. As can be seen in Fig. 8, the AvgR estimations (red points) lie very close to 
the perfect regression line indicating a close agreement between measured and estimated values with the R2 value of 0.997, while 
other ML models exhibit comparatively higher deviations from the ideal regression line. 

As mentioned previously, a few models were developed earlier on the theoretical framework to estimate the pressure losses 
associated with the pipeline transportation of emulsions. The author of the current dataset also developed a theoretical model based on 
similar models available in the literature [7]. The model was validated with the experimental measurements. Our best regression 
model responses on the independent test data were compared with the corresponding predictions of the theoretical model. Fig. 9 
illustrates the scatter distribution plot of the models’ responses. As shown in the figure, the theoretical model predictions (blue dots) 
show significantly higher deviations compared to the AvgR (red dots). In terms of the R2-score, the theoretical estimations achieved 
only 91 %, whereas ML estimations reached as high as 99.7 %. Note that the theoretical model consists of equations that exploit a 
heuristic combination of the experimental parameters based on physics. Unlike ML, there was no attempt of learning the parametric 
weights from the training data. 

Fig. 9. Scatter plot illustrating a comparison of the estimations obtained with the theoretical model and the average regressor for the independent 
test data. 
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3.5. Estimation error analysis for ML and theoretical models 

The absolute prediction error plots of the regressors and the theoretical model are illustrated in Fig. 10. This kind of visualization 
plot is useful in realizing the error trends over individual data points. As shown in the figure, the absolute error trends for the best three 
regressors are lower than other models. In the case of the AvgR model, the error peaks are smoothed when averaging over the three 
responses. Consequently, the corresponding error distribution contains comparatively smaller error peaks. On the other hand, the 
theoretical model’s estimation error plot consists of more and higher error peaks when compared to any ML model. The maximum 
error was more than 20,000 units for the theoretical model, whereas the highest error observed for any of the ML models was less than 
9000 units. 

Further analysis of the various error distributions of the ML models for independent test data was carried out over 100 iterations 
with randomly generated (i.e. shuffled) training and test sets in each iteration. This experiment was conducted to assess the consistency 
of the predictive performances of the ML regression models. Specifically, the MSE, CV_RMSE, and MDAE error value ranges in the 
iterations were explained by placing those into boxplots for each of the seven models. The middle horizontal line in a boxplot indicates 
the median value of the estimation errors for each method. The distance from the top edge to the bottom edge of the box refers to the 
interquartile range (IQR). The values shown as circles outside the whiskers represent the outliers for a specific method. In the case of 
CV_RMSE boxplots (Fig. 11), the median quartile lines are found almost exactly in the middle of the IQR for the top-performing models 
(RFR, CBR, XgBR, and AvgR). This trend indicates that errors are equally distributed in the upper and lower quartile areas. The 
CV_RMSE error ranges of these four models did not exceed 100 units for 100 % of test data points. On the other hand, the top three 
models show a higher range of errors in the case of the MAE boxplot analysis (Figure A3). Whereas approximately 80 % of errors lie 
below 450 units of error of the top three models, the average regressor has the MAE ranges below 400 units for all cases. Specifically, 
more than 50 % of MAE errors fall below 350 units for the best-performing AvgR model. For these two types of errors, the lower and 

Fig. 10. The estimation errors in the predicted pressure losses on independent test data by using ML and theoretical models.  
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upper whiskers stretch over a smaller range of scores that includes the errors outside the median quartile range. The MDAE analysis 
using boxplots shows a wider range of error distribution for all four models of interest (Figure A4). The lower and upper whisker ranges 
are wider, which indicates that more errors fall outside the median quartile line. Even with these error trends, the AvgR model shows 
the best performance compared to other regression models. All four quartiles of the AvgR model boxplot fall below 200 units of MDAE. 
The current boxplot analysis clearly demonstrates the superiority of the AvgR model while showing the following two trends.  

1. Compared to the other regression models, the AvgR model shows either no or a few outliers for all evaluation metrics;  
2. The IQR for the AvgR boxplots is either the smallest among all models or comparable to those of the top three models. 

These results indicate the robustness of the AvgR model as it invariably produces the least amount of estimation errors. 

3.6. Applications and future research 

The best-performing ML model, AvgR is directly applicable in its current form to predict the pressure losses for the pipeline 
transportation of emulsions at a given set of process conditions. Values of twelve design or operational parameters are required as input 
from the user. These input parameters are treated as predictors to provide the output of the pressure gradient. An overview of how to 
implement the ML model is shown in Fig. 12 with a block diagram. This kind of user-friendly automated system is developed with the 
implementation of a decision support system (DSS). A DSS expedites the process of comparing a set of engineering scenarios, 
significantly reducing the time to make decisions based on the predictions. It is especially important when the relationship between 
input(s) and output is non-linear and complex. A DSS also helps to address the following human limitations: (a) manual data analysis 
and interpretation usually introduce bias into predictions; (b) ML modeling can be complex as it requires programming skills and deep 

Fig. 11. Boxplot analysis for CV_RMSE prediction error of different ML algorithms on independent test data using 100 iterations.  
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AI knowledge. It can provide an estimation of the pressure gradient for pipeline transportation of emulsions to any end-user, such as a 
general pipeline engineer or management personnel who does not necessarily have in-depth knowledge in the fields of emulsion 
mechanics, computer programming, artificial intelligence, or data science. Thereby, a DSS can contribute directly by improving the 
efficiency of engineering design, optimization, and project management processes related to emulsion pipelines. Accurate estimation 
of the pressure gradient is important in determining the flow rate and overall efficiency of such systems. Using the DSS to predict 
pressure gradients under various flow conditions, such as laminar/turbulent flow and emulsion composition, engineers can select 
optimal pipe diameters, pressure losses, and pump sizes to improve efficiency, reduce energy consumption, and minimize costs for 
long-distance transportation of emulsion. However, more research is necessary to develop a user-friendly DSS based on the current 
AvgR model to estimate the pressure losses for emulsion transportation. 

It should be noted that four steel pipes with nominal diameters of ¼ inch, ½ inch, ¾ inch, and 1 inch as well as a 1-inch PVC pipe 
were used for generating the current dataset. However, industrial-scale operations may involve pipes as large as 30 inches. More data 
should be produced using larger pipes with varying surface roughness so that the current model can be validated prior to its industrial- 
scale applications. The database, as demonstrated in Fig. 12, can always be updated with new data to improve prediction accuracy. It 
makes the DSS-based application of an ML model robust. 

4. Conclusion 

The current research presents an ML-based method to estimate the pressure losses for emulsion flows in pipelines. A set of six state- 
of-the-art regression models are trained and evaluated on an emulsion flow dataset consisting of more than 7000 data points. In 
addition, an ensemble regression model, AvgR is developed by computing the mean of the top three model estimations. It demonstrates 
superiority over all other models when rigorously evaluated using nine evaluation metrics on the independent test set. Furthermore, a 
comparative analysis between the physics-based theoretical model and the AvgR regression model distinctly exhibits the superior 
accuracy of the AI-based estimations of the pressure losses. The outstanding performance of the ML model manifests its extreme utility 
in the engineering design, operation, and maintenance of emulsion pipelines. The main findings of the present study are described 
below.  

1. The feature interaction analyses suggest non-linear interactions between experimental features and the pressure gradient outcome.  
2. Out of 17 available experimental parameters, the feature importance study reveals a set of 12 significant variables that contribute 

most towards estimating the pressure losses.  
3. With a 99.70 % of R2 and Explained Variance scores, the AvgR model estimations show the highest agreement with the measured 

values of pressure losses among all regression models.  
4. The AvgR demonstrates considerably superior performance with respect to the key regression metrics as its error is orders of 

magnitude less than that of the theoretical model. 

Fig. 12. Presentation of the working methodology for the AvgR-based automated system that can be used to predict the pressure gradient for the 
pipeline transportation of emulsion. 
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Fig. A1. Presentation of the correlation analysis among the most relevant features and outcomes.    
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Fig. A2. Regression analysis of relationships between top five (5) features and outcome for sample data points.    

N. Hafsa et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e23591

21

Fig. A3. Boxplot analysis for MAE prediction error of different ML algorithms on independent test data using 100 iterations    
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Fig. A4. Boxplot analysis for MDAE prediction error of different ML algorithms on independent test data using 100 iterations.  
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