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INTRODUCTION 
 
Gastric cancer (GC) is currently the fourth most common 
type of cancer worldwide and is the second cause of 
cancer-related deaths, with 738,000 deaths occurring 
every year across the globe [1, 2]. Over the past three 
decades, the incidence of gastric cancer has gradually 
declination as a result of improved treatment. 
Nevertheless, the molecular mechanisms underlying of 
GC invasion and metastasis have not been elucidated yet. 

The HMGA1a and HMGA1b proteins were encoded 
by the high mobility group A1 (HMGA1) gene, which 
were produced through differential splicing of the 
same premessenger RNA. The other 11 internal amino 
acids located at the upstream of the second AT hook is 
the main difference between HMGA1a and HMGA1b 
[3, 4]. The biological meaning of these two diverse 
isoforms is not illuminated yet, due to functional 
studies indicated several overlapping roles. This gene 
is a transcription factor that binds to AT-rich 
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ABSTRACT 
 
HMGA1 protein is an architectural transcription factor that has been implicated in the progression of 
multiple malignant tumors. However, the role of HMGA1 in the growth and metastasis of gastric cancer (GC) 
has not yet been elucidated. Here, we show that HMGA1 is overexpressed in GC cells and the high expression 
of HMGA1 was correlated with worse survival in GC patients using a bioinformatics assay. Functionally, 
HMGA1 affected the EdU incorporation, colony formation, migration and invasion of GC cells by exogenously 
increasing or decreasing the expression of HMGA1. Mechanistically, HMGA1 directly bound to the SUZ12 and 
CCDC43 promoter and transactivated its expression in GC cells. Inhibition of SUZ12 and CCDC43 attenuated 
the proliferation, migration and invasiveness of HMGA1-overexpressing GC cells in vitro. Moreover, both 
HMGA1 and SUZ12/CCDC43 were highly expressed in cancer cells but not in normal gastric tissues, and their 
expressions were positively correlated. Finally, a tail vein metastatic assay showed that HMGA1 promoted 
SUZ12/CCDC43-mediated GC cell metastasis in vivo. Our findings suggest that HMGA1 promotes GC growth 
and metastasis by transactivating SUZ12 and CCDC43 expression, highlighting HMGA1 as a potential 
prognostic biomarker in the treatment of GC. 

mailto:jidewang@smu.edu.cn
mailto:jidewang55@163.com
mailto:liuside@163.com
mailto:tangwm208@163.com
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 16044 AGING 

sequences of DNA to regulate transcription, acting as a 
co-activator or co-repressor of gene expression [5, 6]. 
Studies have shown that HMGA1 promotes matrix 
metalloproteinase 2 (MMP2) transcription via directly 
binding to and advancing MMP2 promoter activity [7, 
8]. Moreover, it was reported that expression of 
NUMB was negatively regulated by HMGA1 at the 
transcriptional and post-transcriptional levels in 
glioblastoma stem cells [9]. HMGA1 is strongly 
expressed during embryogenesis and in virtually all 
aggressive human cancers but is silenced in adult, 
differentiated tissues [9–13]. For example, the levels 
of HMGA1 was highly expressed in breast cancer 
tissues. [10]. Recent studies have shown that HMGA1 
contributes to tumorigenesis in GC cancers [11]. 
Nevertheless, the specific function of HMGA1 in GC 
remains unclear. 
 
The SUZ12 gene is located on chromosome 17 at q11.2 
and encodes a protein consisting of 739 amino  
acid residues (https://www.ncbi.nlm.nih.gov/CCDS/ 
CcdsBrowse.cgi). SUZ12 is difficult to detect in normal 
tissues but is amplified and overexpressed in several 
solid cancers, such as breast [14], GC [15] and head and 
neck squamous cell cancer (HNSCC) [16]. Moreover, 
SUZ12 knock‐down induces impaired tumor growth, 
invasion and metastasis in bladder [17], gastric [15] and 
colorectal cancers [18]. Furthermore, we and others 
have found that SUZ12 promotes tumor cell epithelial-
to-mesenchymal transition (EMT), which presents the 
critical function in the metastatic development of 
human carcinomas [19, 20]. 
 
The coiled-coil domain, a structural motif protein, 
was verified to be involved in various biological 
processes including mediation of gene expression, cell 
division, and membrane fusion [21–23]. Ectopic 
expression of the proteins in papillary thyroid 
carcinoma [23], lung cancer [24], cervical cancer [25], 
esophageal squamous cell carcinoma [26], pancreatic 
cancer [27] and ovarian cancer [28] has been shown to 
be related with the malignant behavior of human 
cancers. CCDC43 is a new member of this family 
located at chromosome 17q21.31 and consists of 224 
amino acids (https://www.ncbi.nlm.nih.gov/gene/ 
124808). We have implicated CCDC43 as an 
oncogenic factor in gastrointestinal cancers [29, 30]. 
Overexpression expression of CCDC43 protein 
promoted proliferation in GC and CRC. Furthermore, 
CCDC43 stimulated EMT, tumor invasion and 
metastasis. Therefore, CCDC43 serves a vital function 
in cancer onset and development. 
 
In present work, we provided evidence that upregulation 
of HMGA1 increases the proliferative ability and 
migrative capacity of GC cell. Furthermore, HMGA1 

promotes GC growth and metastasis by transactivating 
SUZ12 and CCDC43 expression. Therefore, the 
HMGA1-SUZ12/CCDC43 signaling axis may lead to 
GC onset and development. 
 
MATERIALS AND METHODS 
 
Cells lines 
 
The immortalized normal gastric epithelial cell line 
GES-1 and seven human GC cell lines, including 
HGC-27, MKN-28, BGC-823, SGC-7901, MKN-45, 
MGC803 and AGS, were gotten from the Cell Bank 
of the Chinese Academy of Science (Shanghai, China) 
or the American Type Culture Collection (ATCC, 
Manassas, VA, USA). ALL these cells were 
maintained in DMEM (Gibco BRL, Rockville, MD, 
USA) including 10% fetal bovine serum, and 1% 
penicillin/ streptomycin (Solarbio, Beijing, China)  
in a 37° C humidified chamber containing 5%  
CO2 [30, 31]. 
 
Western blot assay 
 
Attached please find Supplementary Materials. 
 
Immunocytochemistry (IHC) 
 
GC surgically removed from 2019.3 to 2019.5 were 
chosen from the Department of Surgery of Nanfang 
Hospital, Southern Medical University. The 
experimental protocols were approved by The Ethics 
Committee of the Southern Medical University, 
China. Immunohistochemistry was performed as 
previously described [20, 30]. 
 
Constructs and establishment of stable transfectants 
 
Normal human complementary DNA (cDNA) 
corresponding to full-length HMGA1 (HMGA1 
variant 1) was acquired by RT-PCR. Then the 
products of PCR were subcloned into the vector 
pENTER-FLAG (ViGene Biosciences, Rockville, 
MD, USA). The AGS and BGC-823 lines were 
transfectants with pENTER vector and pENTER 
HMGA1vector to construct the stable cells line  
[30, 31]. 
 
Transfection 
 
Attached please find Supplementary Materials. 
 
Promoter reporter and dual luciferase assay 
 
A 1.4-kb SUZ12 or CCDC43 promoter was cloned 
into pGL3-Basic Luciferase Reporter Vectors 
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(Promega, USA). Empty pGL3-Basic vector was 
served as a negative control. QuikChange Site-
Directed Mutagenesis kit (Stratagene, La Jolla, CA, 
USA) was applied to generate SUM12-MUT and 
CCDC43- MUT reporters. The mutation was 
confirmed by DNA sequencing. The cells were 
transfected with recombinant plasmids by using 
Lipofectamine 3000. The pRL-CMV vector 
(Promega) was served to standardize the transfection 
efficiency during all transfections. At 36-48 hours 
after transfection, we collected the cells and incubated 
with the reporter lysis buffer (Promega). The 
luciferase activity in cells were tested by a dual 
luciferase assay kit (Promega) following the 
instruction of manufacture. Promoter transcription 
activity was shown as the fold induction of relative 
luciferase unit (RLU) compared with basic pGL3 
vector control. The sequences of oligonucleotide 
primers applied in this study is outlined in 
Supplementary Table 1. 
 
Chromatin immunoprecipitation (ChIP) 
 
ChIP was carried out following the manufacturer’s 
instructions (ChIP Assay Kit, Upstate, USA). Briefly, 
cancer cells were collected and cross-linked with 1% 
formaldehyde, then cells were incubated for 10 min at 
20˚C. After stopping the reaction by glycine, the cells 
were lysed by SDS lysis buffer supplied with protease 
inhibitor, then sonicated to produce chromatin 
fragments between 200 to 500 bp. Following 
centrifugation, using ChIP dilution buffer diluted the 
clear supernatant 10-fold and incubated at 4° C 
overnight with an anti-HMGA1 (Abcam, ab4078, 
1:200, Cambridge, UK). The protein-DNA complex 
was purified and DNA was extracted by phenol- 
chloroform, subsided with ethanol. Immunoprecipitates 
containing IgG antibody served as controls. PCR 
products were observed on a 2% agarose gel. The ChIP 
primers are listed in Supplementary Table 1. 
 
5-Ethynyl-2′-deoxyuridine (EdU) assay 
 
Attached please find Supplementary Materials. 
 
Plate colony formation assay 
 
Attached please find Supplementary Materials. 
 
Wound healing assay (migration assay) 
 
Attached please find Supplementary Materials. 
 
Invasion assays (Transwell assay) 
 
Attached please find Supplementary Materials. 

Construction and production of recombinant 
lentivirus 
 
Attached please find Supplementary Materials. 
 
In vivo experimental metastasis mouse models 
 
Attached please find Supplementary Materials. 
 
Statistical analysis 
 
All data were presented as the means ± standard 
deviation (SD), and all the experiments were repeated 
three times. Statistical analysis was applied by using 
SPSS Statistical software version 20.0 (IBM, Chicago, 
IL, USA). Survival curves were plotted by Kaplan-
Meier analysis and compared with log-rank tests. 
Differences were analyzed by two-tailed Student's t-
test. Values of p ≤ 0.05 were considered statistically 
significant. 
 
RESULTS 
 
HMGA1 expression is associated with the malignant 
biological behavior of GC 
 
We first determined the level of HMGA1 in normal 
human gastric epithelial cells (GES-1) and seven 
different GC cell lines (MKN28, HCG27, BGC-823, 
SGC7901, MKN45, MGC803 and AGS). As 
expected, HMGA1 was highly expressed in 6 GC cells 
lines, except MGC803 cells, compared with GES-1 
cells (Figure 1A). The analysis with ualcan database 
showed the higher protein expression of HMGA1 was 
also detected in GC tissues (Figure 1B). Secondly, we 
investigated the association between high expression 
of HMGA1 gene and the clinicopathological features 
of GC based on the IHC data of 51 GC samples. The 
results were shown in Supplementary Table 2, and 
Figure 1C shows a representative picture of gastric 
tissues. Increased HMGA1 expressional levels is 
closely related with differentiation (P= 0.028), lymph 
node metastasis (P= 0.004), tumor size (<5 cm3 vs ≥ 5 
cm3, P = 0.009), AJCC stage (T1/T2 vs. T3/T4, P = 
0.035) and TNM stage (I/II vs. III/IV, P= 0.002). 
Nevertheless, no significant correlation was found 
between HMGA1 expression and age (<60 y vs ≥60 y, 
P = 0.249) or sex (P = 0.764). The Kaplan-Meier 
(KM) curves obtained from the KMplot database 
(http://www.kmplot.com/gastric) demonstrated that 
high HMGA1 expression significantly reduced the 
overall survival of patients with GC (Figure 1D). 
 
We transfected with HMGA1, vector plasmid, 
HMGA1 siRNA 1 or 2 or scrambled siRNA (src 
siRNA) in AGS and BGC-823 cells and confirmed 

http://www.kmplot.com/gastric
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transfection by western blot analysis (Figure 1E). We 
thirdly determined whether HMGA1 promotes cell 
proliferation in GC using both the EdU and soft agar 
assays. As expected, the overexpression of HMGA1 
promoted cell proliferation, while silencing HMGA1 
repressed cell proliferation in AGS and BGC-823 
cells (Figure 1F, 1G and Supplementary Figure  
1A, 1B). 
 
Wound-healing and transwell assays were applied to 
assess the role of HMGA1 in cell migration and 
invasion. Compared to empty vector group, the  
stable transfectants of HMGA1 GC group showed 
notably increased migration, while siRNA-mediated 
knockdown of HMGA1 dramatically blocked the 
migratory ability of GC cells (Figure 1H). Fourthly, 
the invasiveness of AGS and BGC-823 cells after 

HMGA1 overexpression was elevated compared  
with that of the control group, whereas HMGA1 
silencing weakened the invasive capabilities of cells 
(Figure 1I, 1J). 
 
These results verified that HMGA1 expression is 
positively related with the malignant biological 
behavior of GC. 
 
Direct transcriptional mediation of SUZ12 or 
CCDC43 levels by HMGA1 in GC cells 
 
Our previously studies indicated that genes including 
SUZ12 [20], E-cadherin [20], FOXK1 [29], CCDC43 
[29] and HOXD9 [31], are implicated in the 
pathogenesis of GC. As a transcription factor, several 
downstream genes may be regulated by HMGA1;  

 

 
 

Figure 1. HMGA1 expression is associated with the biological behavior of GC. (A) HMGA1 protein levels were assessed in GC cell 
lines and a human normal gastric epithelial cell line GES-1 using western blotting. β- tubulin was used as the internal control. (B) The protein 
expression of HMGA1 in GC and normal tissues analyzed by UALCAN cancer database. (C) IHC signal intensities were scored as nontumorous 
gastric mucosa (Normal), negative, weak, moderate and strong expression of HMGA1 protein in GC tissue. (D) OS survival curves of all GC 
patients cohorts (N = 875 and N = 875) from the KM plotter databases. N = number; OS, overall survival. (E) The protein levels of HMGA1 in 
AGS and BGC-823 cells with three treatments [Scrambled (Scr) siRNA, HMGA1 siRNA 1 and HMGA1 siRNA 2] determined by western blot 
analysis. (F) The GC cells transfected with the ectopic expression or knockdown of HMGA1 gene at 48 h and then stained with EdU and 
Hoechst 33342. (G) The AGS and BGC-823 cells were tested for the ability to form soft agar colonies. (H) Relative wound density at different 
time points of GC cells over a period of 48 h or 72 h. The measurements are from wounds made on a monolayer of GC cells cultured in the 
presence of different coating treatments and control. Original magnification, 10x. **, P < 0.05 and ***, P < 0.01. (I, J) In vitro the invasive 
ability of AGS and BGC-823 cells were evaluated by Transwell assay. The relative ratio of invasive cells was counted. ***, P < 0.01. Scale bars, 
50 μm in (C); 100 μm in (F). 
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therefore, we further assessed whether the ectopic 
expression of HMGA1 regulated the expressional levels 
of a group of genes (SUZ12, E-cadherin, FOXK1, 
CCDC43 and HOXD9) in GC cells. The results indicated 
that increased HMGA1 expression significantly 
upregulated the levels of SUZ12 and CCDC43, while 
HOXD9, E-cadherin and FOXK1 protein levels remained 
unchanged upon HMGA1 overexpression (Figure 2A). 
Then, GEPIA databases were used to evaluate the 
relationship between HMGA1 and SUZ12 or HMGA1 
and CCDC43 to identify co-expression genes. As a result, 
a strikingly positive relationship between HMGA1 and 
SUZ12 or HMGA1 and CCDC43 was established in 
databases (R = 0.43 and R = 0.48, Figure 2B, 2C). 
 
To determine whether SUZ12 or CCDC43 could be 
direct transcriptional targets of HMGA1, we first 
checked approximately 1400 bp of the promoter region 

of SUZ12 or CCDC43 accompany with HMGA1 DNA-
binding consensus sequence (Figure 2D). The SUZ12 
gene promoter contains two putative HMGA1 binding 
sites (Site 1: -91 to -84 and Site 2: -1395 to -1388), and 
the CCDC43 gene promoter region includes two 
HMGA1 putative binding sites (Site 1: -721 to -714 and 
Site 2: -1377 to -1370). To further investigate whether 
HMGA1 binds directly to the human SUZ12 or 
CCDC43 promoter, ChIP assay was applied. As 
expected, with using antibodies specific to HMGA1, 
ChIP assays in AGS and BGC-823 cells indicated the 
promoter of endogenous SUZ12 or CCDC43 can be 
bound directly with HMGA1 protein (Figure 2E, 2F). 
 
We cloned the promoter regions of HMGA1 site 1 
(HMGA1p1) and HMGA site 2 (HMGA1p2) of human 
SUZ12 or CCDC43 upstream of a luciferase gene in a 
reporter plasmid. To investigating whether the SUZ12 

 

 
 

Figure 2. HMGA1 directly binds to the SUZ12 or CCDC43 promoter and up-regulated the SUZ12 or CCDC43 promoter 
activity. (A) The vector and HMGA1 plasmid were transfected into AGS and BGC-823 cells. The HOXD9, E-cadherin, FOXK1, SUZ12, 
CCDC43 and HMGA1 expression levels were detected in AGS and BGC-823 cell lines by western blot assay. (B, C) The relationship 
between HMGA1 and SUZ12 or CCDC43 levels was analyzed by GEPIA bioinformatics tool. (D) List of consensus HMGA1 sequence. (E, 
F) Binding of HMGA1 to the SUZ12 or CCDC43 promoter in vivo. ChIP assays were done with AGS and BGC-823 cells treated with anti-
HMGA1 or IgG. (G, H) HMGA1 transactivates SUZ12 or CCDC43 promoter activities in AGS cells. The SUZ12 or CCDC43 promoter 
construct was cotransfected with HMGA1 or vector, and the relative luciferase activity was determined. **, P < 0.05; ***, P < 0.01. (I, 
J) Selective mutation analyses identified HMGA1-responsive regions in the SUZ12 or CCDC43 promoter. Mutated SUZ12 or CCDC43 
promoter constructs were cotransfected with HMGA1 and relative luciferase activities were determined. *, P > 0.05; **, P < 0.05; ***, 
P < 0.01. (K) Western blot assay were used to detect the expression of SUZ12, CCDC43 and HMGA1. (L) The protein levels of SUZ12 
and CCDC43 in AGS and BGC-823 cells with three treatments [Scrambled (Scr) siRNA, HMGA1 siRNA 1 and HMGA1 siRNA 2] 
determined by western blot analysis. 
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or CCDC43 promoter was activated via upregulating of 
HMGA1, the transient transfection was applied. Dual-
luciferase assays suggested that compared with empty 
vector group, the activity of HMGA1p2 in SUZ12 cells 
enhanced 3.1 ~ 3.4-fold and CCDC43 cells increased 
3.1 ~ 3.2-fold, while the magnification shown a mild 
declination with HMGA1p1 transfection in SUZ12 or 
CCDC43 cells (Figure 2G, 2H and Supplementary 
Figure 2A, 2C). 
 
Promoter mutation assays were further applied to verified 
the results. Various mutant reporters were obtained from 
the wild-type SUZ12 or CCDC43 promoter construct, 
including a HMGA1-binding site 1 mutation only 
(SUZ12-Mut 1 or CCDC43-Mut 1), a HMGA1-binding 
site 2 mutation only (SUZ12-Mut 2 or CCDC43-Mut 2), 
and a mutation of both sites 1 and 2 (SUZ12-Mut 3 or 
SUZ12-Mut 3). These mutant luciferase reporters were 
transfected into AGS or BGG-823 cells, then their 
activity was compared with that of the wild-type SUZ12 
and CCDC43 promoters. Disruption of the HMGA1-
binding site 2 significantly attenuated SUZ12 or 
CCDC43 promoter activity in AGS and BGC-823 cells 
(Figure 2I, 2J and Supplementary Figure 2B, 2D). 

To verify the relationship between SUZ12 and HMGA1 
or CCDC43 and HMGA1, the expression of SUZ12, 
CCDC43 and HMGA1 was tested in GC cell lines. The 
data indicated the levels of protein in SUZ12 and 
HMGA1 or CCDC43 and HMGA1 were positively link 
in the majority of these GC cell lines (Figure 2K). 
Further, overexpression of HMGA1 up-regulated 
SUZ12 and CCDC43 expression, whereas the 
knockdown of HMGA1 decreased SUZ12 and CCDC43 
levels in BGC-823 and AGS cells (Figure 2L). These 
data implied that SUZ12 and CCDC43 are direct 
transcriptional targets of HGMA1. 
 
SUZ12 is essential for HMGA1-mediated GC growth 
and metastasis 
 
Next, we determined whether SUZ12 take part in 
HMGA1-mediated proliferation and metastasis. SUZ12 
was downregulated by using siRNA in HMGA1-
overexpressing cells, and the effect was verified by 
western blot (Figure 3A). We observed that the 
overexpression of HMGA1 enhanced the capability of 
GC cell proliferation by EdU incorporation and colony 
formation assays. On the contrary, downregulation of 

 

 
 

Figure 3. HMGA1 -SUZ12 axis promote development and progression. (A) Western blot analysis of SUZ12 expression in AGS and 
BGC-823 cell lines. (B, C) The AGS and BGC-823 cells, cultured for 48 hours following transfection with vector, HMGA1, HMGA1 + Src siRNA, 
HMGA1 + SUZ12-siRNA 1 or HMGA1 + SUZ12-siRNA 2, were subjected to the EdU incorporation assay. ***, P < 0.01. (D, E) The colony-
forming cell assay was performed of GC cells. ***, P < 0.01. (F) The monolayers of AGS and BGC-823 cells were scratched wounded in a one-
direction pattern. **, P < 0.05 and ***, P < 0.01. (G) Transwell assays were employed to determine the invasion ability of control and 
transfected GC cells. ***, P < 0.01. Scale bars, 100 μm in (B). 
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SUZ12 decreased HMGA1-mediated proliferation of 
AGS and BGC-823 cells (Figure 3B–3E). Furthermore, 
the up-regulation of HMGA1 significantly enhanced the 
migration and invasion of GC cell, while the down-
regulation of SUZ12 aborted the declined migration and 
invasion abilities stimulated by HMGA1 overexpression 
(Figure 3F, 3G). Therefore, SUZ12 is necessary for 
HMGA1-mediated GC growth and metastasis. 
 
CCDC43 is essential for HMGA1-mediated GC 
growth and metastasis 
 
Similarly, we treated the AGS and BGC-823 cells 
expressing CCDC43 in HMGA1-overexpressing cells 
with CCDC43 siRNA 1 and 2. As expected, compared 
with control siRNA, CCDC43-siRNA decreased the 
CCDC43 expression by western blot (Figure 4A). We 
observed that HMGA1 overexpression promoted GC 
proliferation, while knockdown of CCDC43 was 
exhibited a negative effect on HMGA1-induced DNA 
synthesis using an EdU incorporation assay (Figure 4B, 
4C). The ectopic expression of HMGA1 increased GC 
cell growth, whereas CCDC43 downregulation 
decreased the HMGA1-mediated proliferation of AGS 

and BGC-823 cells, as shown using a colony formation 
assay (Figure 4D, 4E). 
 
The functional roles of HMGA1 and CCDC43 in GC 
cell migration and invasion were further tested. Up-
regulation of HMGA1 enhanced GC cell migrative 
ability and invasion capacity. In contrast, CCDC43 
silencing in HMGA1-overexpressing cells cause a 
declination in the migratory and invasion potentials of 
HMGA-upregulation cells (Figure 4F, 4G). 
 
Taken together, these data showed that HMGA1 
promotes GC growth and metastasis by transactivating 
the expressional levels of CCDC43. 
 
Identification of an association of HMGA1, SUZ12 
and CCDC43 in human GC 
 
We observed no interaction between SUZ12 and 
CCDC43 proteins using the STRING database (Figure 
5A). We further investigated HMGA1, SUZ12 and 
CCDC43 expression in clinical specimens. The three 
genes were highly upregulation in the seven examined 
tumor samples paired with adjacent non-neoplastic 

 

 
 

Figure 4. HMGA1 -CCDC43 axis promote development and progression. (A) Western blot analysis of CCDC43 expression in AGS and 
BGC-823 cell lines. (B, C) DNA synthesis of AGS or BGC-823 cells were measured by EdU incorporation assay after the indicated transfection. 
**, P < 0.05; ***, P < 0.01. (D, E) The growth of GC cells were examined with colony forming assay. ***, P < 0.01. (F) The GC cell migration 
assays were performed. *, P > 0.05; **, P < 0.05; ***, P < 0.01. (G) Transwell assays were performed to determine the invasion capacity of 
control and transfected GC cells. ***, P < 0.01, 100 μm in (B). 
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mucosal tissues by western blot (Figure 5B). IHC 
staining revealed that these three genes were also 
strongly or moderately expressed in all nineteen 
primary GC tissue samples, whereas the three proteins 
did not expressed, or weakly expressed in adjacent non-
neoplastic tissues, as shown in Figure 5C. Positive 
correlations were found between HMGA1 and SUZ12 
(Figure 5D-a), between HMGA1 and CCDC43 (Figure 
5D-b) and between CCDC43 and SUZ12 (Figure 5D-c) 
in the nineteen GC tissues by linear correlation 
analyses. 
 
Then, the expressional levels of three genes in regional 
lymph nodes related with metastasis were tested as well. 
In total, 13/15, 14/15 and 14/15 of the metastatic tissues 
taken from lymph nodes highly expressed HMGA1, 
SUZ12 and CCDC43 by means of IHC, as exemplified 
in one patient (Figure 5E, 5F). Thus, overexpression of 
HMGA1, SUZ12 and CCDC43 is associated with 
enhanced regional lymph node metastasis in human GC. 
 
Together, these results implying that the HMGA1-
SUZ12/CCDC43 signal axis might be an attractive 
target for GC therapeutic interventions. 

SUZ12/CCDC43 is necessary for HMGA1-induced 
GC metastasis in vivo 
 
Next, a tail vein metastatic assay in nude mice was 
carried out to investigate the metastatic capacity of AGS 
cells in vivo, and organs were scanned for metastasis by 
a visualization system as well. We showed that 
metastatic lesions were grown in the lungs of mice 
(Figure 6A). Compared with the LV-vector group, more 
large lung metastatic nodules were found in LV-
HMGA1 groups. In contrast, LV-HMGA1-SUZ12-
shRNA1 or LV-HMGA1-CCDC43-shRNA1 cells 
reversed the effects observed in LV-HMGA1 cells 
(Figure 6B). H&E staining assays confirmed a 
metastasis in the lung (Figure 6C). Moreover, the IHC 
assay showed that MMP7 protein expression was 
enhanced in cancer tissues compared with adjacent 
normal lung (Figure 6D). 
 
The qPCR assay show upregulation of HGMA1 leading 
to a highly increase of MMP7 protein, whereas 
downregulation of SUZ12 or CCDC43 in HMGA1-
overexpressing cells resulted in a decrease in MMP7 
protein (Figure 6E). These results indicate that 

 

 
 

Figure 5. Protein expression level of HMGA1, SUZ12 and CCDC43 in human GC patients. (A) SUZ12-related protein-protein 
interaction (PPI) network from the STRING database. (B) Expression of HMGA1, SUZ12 and CCDC43 protein in each of the primary GC (T) and 
adjacent noncancerous tissues (N) paired from the same patient by western blotting. The protein expression levels were quantified by 
comparing the gray level of each band using Quantity One Software (below). (C) Immunohistochemical staining of HMGA1, SUZ12 and 
CCDC43 in gastric tissues. (D) The correlation between SUZ12 and HMGA1, between CCDC43 and HMGA1, or between SUZ12 and CCDC43 in 
GC tissues. (E, F) Immunohistochemical analysis of three protein expression in metastatic lymph nodes. Scale bars, 50 μm in (C, F). 
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SUZ12/CCDC43 is necessary for HMGA1-induced GC 
metastasis in vivo. 
 
DISCUSSION 
 
In this work, we observed the level of HMGA1 was 
markedly enhanced in human GC cells and related  
with an unfavourable prognosis. Moreover, the 
overexpression of HMGA1 enhanced cell growth and 
metastasis of AGS and BGC-823 cells in vitro. 
Mechanistic studies revealed that HMGA1 bound to the 
promoter of SUZ12 or CCDC43 and promoted the 
expression of SUZ12 or CCDC43. Therefore, HMGA1 
stimulates GC proliferation and metastasis via 
transactivating SUZ12 and CCDC43 expression. 
 
Growing evidence indicates that HMGA1 is an 
important oncoprotein [32, 33] and ectopic expression 
of HMGA1 is correlated with unfavorable outcomes of 
patients in cancer [34, 35]. Its overexpression in cancer 
is largely due to transcriptional, posttranscriptional and 
post-translational mechanisms. For example, the 
transcriptional activation of the fra-1 and TCF-4 gene 
upregulates HMGA1 mRNA expressional level [36, 

37]. Moreover, HMGA1 mRNA is the target of 
different miRNAs, the frequent downregulation of 
which cause HMGA1 mRNA overaccumulation [38, 
39]. In addition, upregulation of HMGA1 pseudogenes 
can interpret the advancement of the expression of 
HMGA1 by decoying the miRNAs targeting its mRNA 
as well [40]. Besides, HMGA1 is modulated through its 
post-translational protein modifications such as 
methylation, acetylation and phosphorylation in cancer 
[41, 42]. Nevertheless, the molecular mechanisms 
underlying HMGA1 regulation in GC have not been 
entirely elucidated. In this study, we revealed that most 
GC cell lines expressed high levels of HMGA1. 
Additionally, HMGA1 might function as a candidate 
unfavorable prognostic marker for human GC by 
bioinformatics analysis. Some studies have shown that 
overexpression of HMGA1 improves the proliferation 
and migration/invasion abilities of cells [43, 44]. 
Consistently, we demonstrated that HMGA1 facilitated 
the growth and invasion of AGS and BGC-823 cells by 
gain-of-function and loss-of-function experiments. 
Thus, our observations indicate that the forced 
expression of HMGA1 might have a function in the 
onset and development of GC. 

 

 
 

Figure 6. SUZ12/CCDC43 is necessary for HMGA1-induced GC metastasis in vivo. (A) Whole-body fluorescence imaging of GC 
progression in mice (n = 3). Images of metastatic loci in the lungs by arrows. (B) Number of metastatic loci in lung was counted. ***, P < 0.01. 
(C) H&E staining of lungs was performed in samples from mice. (D) MMP7 expression in the lung metastasis of GC was detected by IHC.  
(E) Expression of MMP7 in lung tumours derived from AGS cells was determined by qRT-PCR. **, P < 0.05; ***, P < 0.01. Scale bars,  
50 μm in (C, D). 
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HMGA1 acts as a transcription factor and can stimulate 
or suppress the activity of genes by binding to their 
control regions. We examined the number of promoters 
which contain potential HMGA1-binding sites. We 
revealed that overexpression of HMGA1 notably 
increased the levels of SUZ12 and CCDC43. Thus, 
SUZ12 and CCDC43 may be transcriptional targets of 
HMGA1. SUZ12 (polycomb protein SUZ12) is a zinc 
finger gene encoding zeste homolog 12 protein. SUZ12 
protein, EZH2 and EED, also forms various Polycomb 
repressive complexes [45]. SUZ12 is a crucial regulator 
of multiple cellular functions and is transcriptionally 
regulated by transcription factor genes [46]. Some 
studies have reported that the transcription of NF-kappa 
B target genes was positively mediates by the 
interaction between EZH1-SUZ12 complex and UXT 
[47]. Overexpression of SUZ12 has been found to be a 
vital factor in GC cell proliferation and metastasis via 
regulating the expression of EMT and KLF2 [15]. 
Moreover, the expressional levels of FOXC1 gene is 
negatively related with that of Polycomb group (PcG) 
genes, i.e., Bmi1, EZH2, and SUZ12, in breast cancer 
cells [48]. Another CCDC43 gene functions as an 
oncogene in GC. CCDC43 encodes a member of the 
CCDC family and is involved in multiple aspects of 
gastrointestinal cancer, such as tumorigenesis, growth, 
invasion and metastasis [29, 30]. We previously showed 
that ectopic levels of CCDC43 might be a regulator or a 
trigger of epithelial-mesenchymal transition (EMT) in 
CRC cells. Moreover, promoter assays illustrated that 
promoter of human CCDC43 gene was directly bound 
and subsequently activated by FOXK1. [29]. 
Nevertheless, the underling mechanism of which 
HMGA1 regulates SUZ12 or CCDC43 expressional 
levels by transcriptional activation to stimulate cell 
proliferation, invasion and metastasis in GC remains 
unclear. 
 
In this work, we confirmed our above findings that 
SUZ12 and CCDC43 are direct transcriptional targets of 
HMGA1, which is similar with some studies showing 
that HMGA1 transcriptionally regulates KIT ligand in 
breast and ovarian cancer cells [36], and HMGA1 and 
HMGA2 proteins positively regulate Pit1 promoter 
activity in pituitary adenoma GH3 and αT3 cell lines 
[49]. The conclusion is based on the following 
observations. First, SUZ12 or CCDC43 promoter 
activity was significantly higher in AGS and BGC-823 
cells overexpressing HMGA1. Second, ChIP and 
luciferase assays indicated that HMGA1 protein binds 
to AT-rich regions of SUZ12 or CCDC43 promoter 
DNA in vitro. Third, mutations of the AT-rich regions 
caused blockage of HMGA1 transcriptional activity. 
Four, SUZ12 or CCDC43 silencing repressed growth 
and metastatic potential stimulated via upregulation of 
HMGA1 in GC in vivo. However, the possible 

mechanisms and detailed interplay among them need 
further investigation. 
 
Some studies have found HMGA1, SUZ12 and 
CCDC43 were involved in the clinical significance in a 
great deal of tumors. Abe et al. expounded that the 
expression of HMGA1 protein were notably higher in 
cancerous tissues than non-cancerous tissues and that 
higher HMGA1 expression was positively related with 
lymph node metastasis and advanced clinical stage in 
breast cancer [9]. Xia et al. proved that the levels of 
SUZ12 was remarkably advanced in 64 GC tissues 
compared to normal tissues [15]. Moreover, aberrant 
overexpression of SUZ12 was significantly associated 
with aggressive clinicopathological features and inferior 
survival [50]. Our study have implied that CCDC43 as 
an oncogenic factor in gastrointestinal cancers [29, 30]. 
Additionally, increased the levels of CCDC43 have a 
close relationship with clinicopathological features and 
unfavorable prognosis in GC [30]. In present work, we 
found that the levels of HMGA1 was positively related 
with SUZ12 or CCDC43 expression in tumor samples 
by Spearman’s correlation. Furthermore, HMGA1, 
SUZ12 or CCDC43 expression was related with 
lymphatic metastasis in GC patients. These studies 
indicate that HMGA1 induces SUZ12 or CCDC43, 
potentially contributing to GC growth and metastasis. 
 
Taken together, this study provides convincing evidence 
that HMGA1 has an basic role in GC cell proliferation 
and metastasis by regulating the proto-oncogene SUZ12 
or CCDC43. Thus, HMGA1 might become a potential 
favorable target for prevention of GC cell proliferation 
and metastasis. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Materials and Methods 
 

 
 
 

 
Antibodies 
 
Rabbit anti-HMGA1 antibody (ab129153) and (sc -
393213) were purchased from Abcam (Abcam, 
Cambridge, United Kingdom) and Santa Cruz (Santa 
Cruz, California, USA), respectively. Rabbit anti-
SUZ12 antibody (ab12073) and (#3737) were 
purchased from Abcam (Abcam, Cambridge, UK) and 
Cell Signaling Technology (Cell Signaling 
Technology, Massachusetts, USA), respectively. 
Rabbit anti-CCDC43 antibody (NBP1-83536) was 
purchased from Novus Biologicals (Novus 
Biologicals, Colorado, USA). Rabbit anti- MMP7 
antibody (#3801) was purchased from Cell Signaling 
Technology (Cell Signaling Technology, 
Massachusetts, USA). Mouse anti-β-tubulin (RM2003) 
was purchased from Beijing Ray Antibody Biotech 
(Beijing Ray Antibody Biotech, Beijing, China). 
Rabbit anti-E-cadherin (20874-1-AP) was acquired 
from Proteintech (Wuhan, China). Rabbit anti-HOXD9 
antibody (ab90260) and anti-SP1(ab13370) were 
acquired from Abcam (Abcam, Cambridge, UK). 
Mouse anti-FOXK1 antibody (sc-373810) was 
purchased from Santa Cruz (Santa Cruz, California, 
USA). 
 
Western blot assay 
 
Cellular protein extracts were homogenized in an ice-
cold RIPA lysis buffer (Beyotime Institute of 
Biotechnology, Beijing, China) for 30 min. The lysates 
were centrifuged at 4° C, and protein concentrations 
were determined using an Enhanced BCA Protein 
Assay Kit (Beyotime Institute of Biotechnology, 
Beijing, China). Thirty μg of each protein sample was 
separated by 10% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis and electro-
transferred onto a polyvinylidene difluoride 
membrane. After blocking with nonfat milk, the 
membranes were incubated with the primary 
antibodies at 4° C overnight. The membranes were 
then washed with Tris-Buffered Saline and Tween 20 
followed by incubation with HRP-conjugated 
secondary antibodies (1:5000) at room temperature. 
Immunoreactivity was visualized by ECL 
chemiluminescence (FDbio Science, China). The 
relative protein expression levels were quantified by 
comparing the gray level of each band using Quantity 
One Software (Life Science Research, Hercules, CA, 
USA). 
 

Immunocytochemistry (IHC) 
 
Nineteen GC surgically removed from 2019.3 to 2019.5 
were selected from the Department of Surgery of 
Nanfang Hospital, Southern Medical University. The 
Ethics Committee of the Southern Medical University, 
China, approved the experimental protocols. Paraffin-
embedded specimens were cut into 4-μm sections and 
baked at 65° C for 30 min. The slides were 
deparaffinized with xylene, rehydrated with ethanol, 
washed and subjected to microwave antigen retrieval in 
a citrate buffer. Sections were then immersed in 3% 
hydrogen peroxide to block endogenous peroxidase 
activity and were incubated with the primary antibodies 
followed by incubation with peroxidase-conjugated 
anti-rabbit secondary antibody (Dako) (1:100). The 
expression of HMGA1, SUZ12 or CCDC43 was then 
visualized using 1 mg/ml 3, 3#-diaminobenzidine and 
counterstained with hematoxylin. Normal mouse IgG 
(Sigma) was used as an isotype control for anti-
HMGA1, SUZ12 or CCDC43 antibody to verify 
specificity of the staining. The results were 
independently scored by two observers. The staining 
results were classified according to the carcinoma cell 
staining intensity as follows: 0, negative staining; 1, 
weak staining; 2, moderate staining; and 3, strongly 
staining. These two scores were multiplied to obtain the 
final scores, which were used for statistical analysis. We 
defined negative- and weak-stained cells as low 
expressers, and cells that were moderate- and intense-
stained were considered to be high expressers of this 
protein. 
 
Transfection 
 
The cells of 70-80 % confluency in six-well plates were 
transfected with HMGA1 expression plasmid 
(pENTER-FLAG - HMGA1) or control vector, or 
HMGA1-siRNA (The sequences of HMGA1-siRNA 
were: siRNA 1: CAACTCCAGGAAGGAAACCAA; 
siRNA 2: AGCGAAGTGCCAACACCTAAG) ;or 
SUZ12-siRNA (The sequences of SUZ12-siRNA were: 
siRNA 1: GTCTCATCGAAACTCCAGA; siRNA 2: 
CAGCCATATGGTGAAGTCT); or CCDC43-siRNA 
(The sequences of CCDC43-siRNA were: siRNA 1: 
CGTTTATGGAGCCTACATC; siRNA 2: 
AGCCTACATCTTGGGTATC), or negative control 
siRNA (NC) (RiboBio, Guangzhou, China) using 
Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, 
USA) according to the manufacturer’s instruction. The 
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negative siRNA sequences had been confirmed not to 
interact with any mRNA sequence. 
 
5-Ethynyl-2′-deoxyuridine (EdU) assay 
 
The EdU assay kit (RiboBio, China) was used to 
measure cell proliferation. The cells were cultured in 
24-well plates (1 × 105 cells/well) with RPMI 1640 for 
24 h. After transfection, cells were incubated with 5-
ethynyl-2’-deoxyuridine (EdU, RiboBio, China) for 5 h 
before staining. The cell proliferation was detected 
using Cell-Light™ EdU Cell Proliferation Detection Kit 
(RiboBio, China) following the manufacturer’s 
instructions. EdU positive cells were observed under a 
fluorescence microscope after Apollo staining and 4’,6-
diamidino-2-phenylindole (DAPI) staining (Thermo 
Fisher Scientific, Waltham, MA, USA). 
 
Plate colony formation assay 
 
After 24 h of transfection, GC cells were trypsinized, 
adjusted to single cell suspensions, plated into 60 mm 
dishes at 500 cells/well and cultured in RPMI 1640 
medium for 12 days. Then, the dishes were washed with 
PBS, and the colonies were fixed with 4 % 
paraformaldehyde for 1 h and stained with 0.1 % crystal 
violet solution for 30 min. The number of colonies was 
counted. All the experiments were performed in 
triplicate. 
 
Wound healing assay (migration assay) 
 
The GC cells (5 × 105 ) were seeded in six-well plate 
with 100% confluence. Linear scratch wounds were 
created by 200 μl sterile pipette tip. Next, the plate was 
washed by PBS for several times to remove the 
suspended cell and the cells were cultured in serum-free 
media. After 0 and 48 or 72 h, the cells were cultured in 
the presence of 10 μg/ml mitomycin C to inhibit cell 
proliferation. Then, we imaged the wounds at the same 
position under the microscope and the distance between 
the wound sides was calculated. Experiments were 
performed in triplicate. 
 
Invasive ability assays (Transwell assay) 
 
The GC cell invasion was assessed using Matrigel 
invasion chamber (BD Biosciences, Franklin Lakes, NJ, 
USA), as per the protocol provided by the manufacture. 
Briefly, the transfections were resuspended in serum-
free media. Then, 5 × 104 cells were placed in each 
Transwell membrane filter inserts, the lower chamber 
was filled with 600 μl of complete medium, and the 
samples were incubated for an additional 24 h. The 
invading cells on the underside of the membrane were 
fixed with 4 % paraformaldehyde for 1 h and then were 

stained in 0.1 % crystal violet. The numbers of invading 
cells were calculated using a microscope (Olympus 
IX51; Olympus, Tokyo, Japan) at a magnification of 
x200 in five different random fields. The mean of 
triplicate assays for each experimental condition was 
used. 
 
Construction and production of recombinant 
lentivirus 
 
Lentiviruses expressing HMGA1 (LV- HMGA1) were 
constructed by GeneChem (Shanghai, China) using the 
Ubi-MCS-3FLAG-CBh-Cherry-IRES-puromycin vector 
(absorption 587 nm, emission 610 nm). Ubi-MCS-
3FLAG-CBh-Cherry-IRES-puromycin empty vectors 
were used as controls (Shanghai GeneChem Co., Ltd., 
China). 
 
Double-stranded oligonucleotides encoding human 
SUZ12-vshRNA (NM_015355: SUZ12 shRNA 1: 
CCGGGTCTCATCGAAACTCCAGATCAAGAGTC
TGGAGTTTCGATGAGACTTTTTG) or CCDC43-
vshRNA (NM_144609: CCDC43 shRNA 1: CCGGCG 
TTTATGGAGCCTACATCTCAAGAGGATGTAGGC
TCCATAAACGTTTTTG) were annealed and inserted 
into the U6-MCS-Ubiquitin-gcGFP-IRES-puromycin 
short hairpin RNA (shRNA) expression vector 
(absorption 475 nm, emission 505 nm). Selected pools 
of overexpression and knockdown cells were used for 
subsequent experiments. 
 
In vivo experimental metastasis mouse models 
 
BALB/C nude (nu/nu) mice (6–8 weeks, Female, SPF 
degree, 20 ± 3 g) were purchased from the Laboratory 
Animal Center of Southern Medical University 
(Guangzhou, China). All procedures were approved by 
the Institutional Animal Care Committee. All efforts 
were made to minimize animal suffering, reduce the 
number of animals used and utilize possible 
alternatives to in vivo techniques. To evaluate the in 
vivo metastatic potential of cancer cells, female 
BALB/C-nu-nu nude mice were injected with  
4 × 105 lentivirus-vector,lentivirus-HMGA1,lentivirus-
HMGA1-SUZ12 shRNA and lentivirus-HMGA1-
CCDC43 shRNA-transfected cells per mouse (n = 3 
mice/group) through the tail vein (TV). Post-TV 
injection, body weight and the status of nude mice were 
monitored every 3 days. The animals were euthanized 4 
weeks after the injection, their lungs were removed, 
and individual organs were removed and assessed using 
the In Vivo F Imaging System (Kodak). Tissues  
were harvested for the H&E analysis, and 
immunohistochemistry (IHC) staining and qRT-PCR 
were performed. 
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Supplementary Figures  
 

 
 

Supplementary Figure 1. Effect of HMGA1 on cell proliferation capacity. (A) The GC cells transfected with the ectopic expression or 
knockdown of HMGA1 gene at 48 h and then stained with EdU and Hoechst 33342. ***, P < 0.01. (B) The results are presented as the average 
number of colonies from three wells. **, P < 0.05 and ***, P < 0.01. 
 

 
 

Supplementary Figure 2. HMGA1 transactivates SUZ12 or CCDC43 promoter activities. (A, C) The SUZ12 or CCDC43 promoter 
construct was cotransfected with HMGA1 or vector in BGC-823 cells, and the relative luciferase activity was determined. **, P < 0.05; ***, P < 
0.01. (B, D) Selective mutation analyses identified HMGA1-responsive regions in the SUZ12 or CCDC43 promoter. Mutated SUZ12 or CCDC43 
promoter constructs were cotransfected with HMGA1 and relative luciferase activities were determined. *, P > 0.05; **, P < 0.05; ***,  
P < 0.01. 
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Supplementary Tables 
 
Supplementary Table 1. Oligonucleotides sequences. 

Experiment Name Position or orientation Sequence (5’-3’) 

Luciferase construction 

SUZ12 
R: 95~ 77 TCCGCTCGAG GATTCCCCCGTCAGTCAC(XhoI) 

L: SUZ12p1-WT -91~ -84 F: 5’ - GGGGTACCATTTTCCCGCGAATTCAGTT (Kpn I) -3’ 
L: SUZ12p2-WT -1395 ~ -1388 F: 5’- GGGGTACC AGGCTTCAGGAAGTCTGAGAA (Kpn I) -3’ 

CCDC43 

R: 271~ 251 TCCGCTCGAG CAAAGTCACGCGGCTAATAA (XhoI) 

L: CCDC43p1-WT -737~ -714 F: 5’ - GGGGTACC TTGTTTGTTTTGAGACGGAATTT (Kpn I) -
3’ 

L: CCDC43p2-WT -1389 ~ -1369 F: 5’- GGGGTACC  GAAGCCTTCCTGGATTTCCT (Kpn I) -3’ 

Site-directed 
mutagenesis 

SUZ12 

L: SUZ12p1-MT -91~ -84 F: ACTGTACCGCGAATTCAGTTAA 
L: SUZ12p2-MT -1395 ~ -1388 F: AGGCTTCAGTACGGCTGAGAA 

L: SUZ12p3-MT -91~ -84 and -1395 ~ -1388 
F: ACTGTACCGCGAATTCAGTTAA 
and AGGCTTCAGTACGGCTGAGAA 

CCDC43 

L: CCDC43p1-MT -737~ -714 F: TTGTTTGTTTTGAGACGTAGTCT 
L: CCDC43p2-MT -1389 ~ -1369 F: GAAGCCTTCCTGGGTCTTCT 

L: CCDC43p3-MT -737~ -714and -1389 ~ -1369 F: TTGTTTGTTTTGAGACGTAGTCT and 
GAAGCCTTCCTGGGTCTTCT 

Chip 

SUZ12 
Chip 1 

L: -179~ -155 CTAAGGATCTAGACTCGCTAAACC 
R: 92 ~ 77 GATTCCCCCGTCAGTCAC 

Chip 2 
L:-1477 ~ -1457 GTGCCCCAAGAGCTTAACAG 
R:- 1296~ -1272 CAGGCACTGCTAACACTACTATGA 

CCDC43 
Chip 1 

L: -757~ -737 CCTGGCTTTTGTTGTTGTTG 
R: -564 ~ -544 GGAGAACCCCCGTCTCTACT 

Chip 2 
L:-1404 ~ -1384 CATCATCTCCACTGGGAAGC 
R:- 1228~ -1204 TTTTTAATCCATTAGGAACAGACA 

*Bold and italic: HMGA1 binding sites; underline: mutated nucleotide residues. 
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Supplementary Table 2. Correlation between HMGA1 protein expression and 
the clinicopathological parameters of gastric carcinoma. 

Features Total number (n=51) 
HMGA1 expression 

P 
Low High 

Age (years)     
  <60 30 10(33.3%) 20(66.7%) 0.249 
  >60 21 11(52.4%) 10(47.6%)  
Gender     
  Male 34 15(44.1%) 19(55.9%) 0.764 
  Female 17 6(35.3%) 11(64.7%)  
Differentiation     
  Well 11 8(72.7%) 3(27.3%) 0.028 
  Moderate 16 7(43.8%) 9(56.2%)  
  Poor 24 6(25.0%) 18(75.0%)  
Lymph node metastasis     
  Yes 36 10(27.8%) 26(72.2%) 0.004 
  No 15 11(73.3%) 4(26.7%)  
Tumor size(cm3)     
  <5 27 16(59.3%) 11(40.7%) 0.009 
  ≥ 5 24 5(20.8%) 19(79.2%)  
AJCC stage     
  T1,T2 11 8(72.7.6%) 3(27.3%) 0.035 
  T3,T4 40 13(32.5%) 27(67.5%)  
AJCC TNM stage     
  I`II 16 12(75.0%) 4(25.0%) 0.002 
  III`IV 35 9(25.7%) 26(74.3%)  

 


