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Abstract  
Background: 
Alzheimer’s disease is the most common cause of dementia and is characterized by amyloid-β plaques, tau 
neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer’s disease, 
it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and 
neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to 
be dysregulated in Alzheimer’s disease, including WNT, TGFβ, p53, mTOR, NFkB, and Pi3k/Akt signaling. 
Here, we predict altered cell-cell communication between glia and neurons. 
 
Methods:  
Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted 
altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte 
progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in an independent 
orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the 
downstream effects of altered interactions in inhibitory neurons through gene expression and transcription 
factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory 
neurons.  
 
Results: 
Cell-cell communication between glia and neurons is altered in Alzheimer’s disease in a cell-type-specific 
manner. As expected, ligands are more cell-type-specific than receptors and targets. We validated 51 ligand-
receptor pairs in an independent dataset that included two known Alzheimer’s disease risk genes: APP and 
APOE. 17 (14 upregulated and 3 downregulated in Alzheimer’s disease) of the 51 interactions also had the 
same downstream target gene. Most of the signaling mediators of these interactions were not differentially 
expressed, however, the mediators that are also transcription factors had differential activity between AD and 
control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had 
repressor activity in Alzheimer’s disease, along with decreased WNT and p53 activity in inhibitory neurons. 
Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and activator activity of 
NFIL3, an NFkB signaling-associated transcription factor. 
 
Conclusions: 
Cell-cell communication between glia and neurons in Alzheimer’s disease is altered in a cell-type-specific 
manner involving Alzheimer’s disease risk genes. Signaling mediators had altered transcription factor activity 
suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and 
NFkB in inhibitory neurons. 
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Background 
Alzheimer’s disease (AD) is the most common cause of dementia, and an estimated 55 million people have 
dementia worldwide [1]. AD is characterized by amyloid-β plaques and phosphorylated tau tangles that result 
in neuronal loss, leading to memory deficits and overall cognitive decline [2]. While there are identified causes 
of familial early-onset AD, the causes of sporadic late-onset AD are largely unknown. Although neuronal loss is 
a primary hallmark of AD, it is known that non-neuronal cell populations maintain brain homeostasis and 
neuronal health through neuron-glia and glial cell crosstalk via chemical messengers [3–6]. For example, 
astrocytes provide metabolic and nutritional support to neurons, while oligodendrocytes are responsible for 
neuron axon myelination [7–9]. Additionally, oligodendrocyte progenitor cells (OPCs) are in direct contact with 
neuronal synapses, and signaling between OPCs and other cell types, including glia and endothelial cells, has 
been previously indicated [10]. Microglia, as the resident macrophages of the central nervous system (CNS), 
release cytokines, chemokines, and growth factors in response to injury, which influence the synaptic activity of 
neurons [11–13]. Yet the glia-neuron interactions altered in AD have not been fully investigated despite being 
critical for understanding disease mechanisms and their potential as targets for therapeutic intervention. 
Between 2003 and 2021, no AD-mitigating therapeutics were approved by the FDA [14]. Aducanumab and 
lecanemab were approved in 2021 and 2023, respectively, despite concerns about their safety and efficacy, 
underscoring that the need for novel therapeutic targets persists. 
 
Multiple signaling pathways have been proposed to be dysregulated in AD, including WNT (reviewed in [15, 
16]), TGFβ (reviewed in [17–19]), mTOR (reviewed in [20, 21]), NFkB (reviewed in [22, 23]), p53 (reviewed in 
[24]), and Pi3k/Akt signaling (reviewed in [25–27]). Recently, multiple computational cell-cell communication 
(CCC) inference tools, which use single-nucleus RNA-sequencing (snRNA-seq) data to infer ligands and 
receptors, were developed to predict signaling patterns between cell types (reviewed in [28]). Using these 
approaches, CCC patterns in the human postmortem prefrontal cortex (PFC) were previously shown to be 
disrupted in AD compared to control patients [29, 30]. For example, chandelier neurons were associated with 
an inhibitory signaling pattern in control PFC, though in AD they were associated with excitatory signaling 
involved in the WNT signaling pathway [29]. Additionally, signaling involving glial cells, such as astrocytes and 
microglia, had an increased involvement of known AD-risk and neuroinflammatory genes in predicted ligands 
and receptors [29, 30]. While previous studies investigated overall patterns of altered CCC across all cell types 
without specifically describing altered glia-neuron interactions or focused on interactions between neurons and 
microglia [29–31], altered glia-neuron interactions and their downstream consequences in neurons remain 
understudied in AD.  
 
Here, we used publicly available snRNA-seq AD and control (CTRL) data generated from postmortem human 
PFC to study altered glia-neuron interactions and their downstream effects in AD (Fig 1A) [32]. We inferred 
differential CCC interactions between astrocytes, microglia, oligodendrocytes, or OPCs (sender cell types) and 
inhibitory or excitatory neurons (receiver cell types; Fig 1B). We also investigated whether CCC is similar 
across cell types by calculating the Jaccard Similarity Index (JI) of ligands, receptors, and target genes 
between cell types (Fig 1C). We also validated our interactions using an independent human PFC AD snRNA-
seq dataset [33] and further investigated the resulting high-confidence ligand-receptor pairs from both data 
sets, their predicted downstream target genes, and signaling modulators through transcription factor (TF) and 
canonical signaling pathway activity (Fig 1D-E). 
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Figure 1. Schematic overview of our study design. (A) We downloaded and processed two publicly 
available snRNA-seq datasets from human postmortem prefrontal cortex (PFC) with Alzheimer’s disease
as well as age- and sex-matched controls. (B) We inferred ligand-receptor pairs between senders (astro
microglia, oligodendrocytes, and oligodendrocyte progenitor cells - OPCs) and receivers (excitatory and 
inhibitory neurons) using gene expression and known ligand-receptor information. We also predicted targ
genes downstream of the ligand-receptor pairs [34]. (C) To determine whether interactions were cell-typ
specific or shared, we calculated the Jaccard Similarity Index (JI) of ligands, receptors, and targets in se
and receivers. Shapes can refer to either ligands, receptors, or targets. (D) Then, we generated cell-type
specific count matrices to determine differentially expressed genes. (E) Using the differentially expresse
genes, we inferred transcription factor (TF) activity of signaling mediators that are TFs and investigated 
canonical pathway activity [35]. 
 
Methods 
Data Acquisition and Alignment  
We downloaded 2 publicly available snRNA-seq datasets (GSE174367 [32], GSE157827 [33]) generate
postmortem human PFC using the SRA-Toolkit v3.0.0. Both datasets include AD as well as age- and se
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matched control samples (GSE174367: 11 AD and 8 control, GSE157827: 12 AD and 9 control). We aligned 
FASTQ files to the 10x Genomics human reference genome (GRCh38) on the UAB Cheaha supercomputer 
using 10x Genomics Cell Ranger 6.1.1 [36].   
 
Data Processing and Quality Control 
We performed all analyses in docker [37] with R v4.1.3 (Availability of data and materials). Since 
GSE157827 had increased levels of ambient RNA after alignment, we performed ambient RNA removal using 
SoupX [38] v1.6.2 on Cell Ranger h5 files, which resulted in filtered Cell Ranger output matrices. We did not 
remove ambient RNA from GSE174367, as there was no evidence of increased ambient RNA levels. We used 
version 4.3.0.9002 of the Seurat R package for our analyses [39]. We combined Cell Ranger output matrices 
into sparse expression matrices using the Read10x function [39]. We created a Seurat object using the 
CreateSeuratObject function for each sample and condition (AD and control) before merging them into a single 
Seurat object. We performed quality control metrics at both the cell (i.e., mitochondrial ratio < 0.2, log10 of the 
number of genes per UMI > 0.8, and the number of genes per cell) and gene level (i.e., removing zero count 
values to prevent skewing of average expression values, therefore retaining genes expressed in 10 cells or 
more). We filtered GSE174367 and included cells with > 1,000 and < 10,000 genes per cell and we filtered 
GSE157827 to include cells with > 500 and < 10,000 genes per cell. Then, using default parameters, we 
performed batch correction within each dataset using harmony v0.1.0 [40], as it preserves biological variation 
while reducing variation due to technical noise [41]. We also performed Principal Component Analysis (PCA) 
using the RunPCA function from Seurat [39] without approximation (approx = FALSE). We scaled and 
normalized features/genes before plotting UMAPs to confirm successful integration across conditions. 
 
Clustering and Cell Type Identification 
In order to determine clustering resolution, we compared multiple resolutions between 0 and 2 using clustree 
v0.5.0 for each dataset [42]. We chose resolutions 1.2 and 1, which identified 32, and 34 clusters using leiden 
v0.4.3 [43] for GSE174367 and GSE157827, respectively. We identified differentially expressed marker genes 
for each cluster (using the FindAllMarkers function on the RNA assay from Seurat [39]) with a log fold change 
threshold  > 0.2 and a significant Bonferroni adjusted p-value. We assigned cell types using differential 
expression of cell-type-specific genes (Tables S1 and S2) identified through PanglaoDB [44], CellMarker [45], 
and the Human Protein Atlas [46] at https://www.proteinatlas.org/ and feature plots using canonical cell type 
markers (Table S3). We sub-clustered neuron clusters initially unidentifiable as excitatory or inhibitory using 
the FindSubCluster function from Seurat [39] and assigned their cell type through differential expression (log 
fold change threshold > 0.25) of marker genes.  

 
Cell-Cell Communication Inference 
To infer CCC between glia and neurons across conditions (AD and CTRL), we applied multinichenetr v1.0.0 
and used the Nichenet v2 prior [34]. We converted our processed Seurat objects to Single Cell Experiment 
objects using the SingleCellExperiment R package [47] v1.16.0 before using them as input to MultiNicheNet. 
Then, we performed ligand-receptor pair prediction between all cell types in each dataset and filtered for 
senders (astrocytes, microglia, oligodendrocytes, and OPCs) and receivers (excitatory and inhibitory neurons) 
between conditions. Since MultiNicheNet uses pseudobulk aggregation for its differential expression analysis, 
we only included samples with a minimum of 10 cells per cell type per sample. We identified differentially 
expressed ligands, receptors, and target genes using a 0.5 logFC threshold with non-adjusted p-values of 
0.05, as recommended by the package developers. When calculating ligand activity, we considered the top 
250 targets with the highest regulatory potential. We prioritized ligand-receptor interactions by min-max scaling 
the scores for all comparisons of the following metrics: differential expression of ligand, differential expression 
of the receptor, the fraction of ligand-receptor pairs expressed across samples, expression of ligand, 
expression of the receptor, scaled ligand activity, the abundance of the sender in the condition of interest, and 
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abundance of the receiver in the condition of interest. Then, we performed weighted aggregation of the scaled 
scores using default MultiNicheNet prioritization weights. We calculated expression correlation information 
between ligand-receptor pairs and their targets by calculating Pearson and Spearman correlation coefficients. 
Downstream analyses only included ligand-receptor-target (LRT) interactions with Spearman and Pearson 
correlation coefficients greater than 0.33 and less than -0.33, as recommended. Finally, we compiled a list of 
high-confidence LRTs. High-confidence interactions were LRTs that met previous filtering criteria in both 
datasets while involving the same sender and receiver cell type. 

 
Similarity Calculations of Ligands, Receptors, and Target Genes Across Cell Types 
We calculated the JI to determine the degree of overlap of ligands, receptors, and target genes between 
sender or receiver cell types. First, we calculated JI between receiver cell types (excitatory and inhibitory 
neurons) based on the overlap of receptors and target genes. Then, we calculated JI between sender cell 
types (astrocytes, microglia, oligodendrocytes, and OPCs) based on the overlap of ligands, receptors, and 
target genes. 
 
Gene Regulatory Network Inference 
For every high-confidence LRT, we generated gene regulatory networks (active signaling networks) that 
included the top 2 regulators (based on whether they were upstream of the target and downstream of the 
ligand) in each dataset with the get_ligand_signaling_path_with_receptor function from multinichenetr v1.0.0 R 
package [34]. We scored and ranked signaling regulators based on whether they were upstream of the target 
gene and downstream of the ligand. We assigned edge weights to the networks by combining them with 
MultiNicheNet’s prior knowledge, which includes information on ligand-receptor to target signaling paths. Then, 
we investigated the active signaling networks’ topology using the igraph v1.5.1 R package [48]. We generated 
weighted and directed igraph objects for individual LRT-specific active signaling networks using the 
graph_from_data_frame function. Then, we determined all potential signaling mediators by identifying nodes 
outgoing from the receptor node using the neighbors function. Finally, we determined the shortest path 
between the receptor and target gene nodes using the shortest_paths function using Dijkstra’s algorithm to 
infer the most likely path and, therefore, the top mediator(s) of signal transduction of our high-confidence 
interactions (Table 1).  
 
Pseudo-bulking of snRNA-seq Data 
To overcome the data sparsity in snRNA-seq [49], we pseudo-bulked both of our datasets and generated cell-
type-specific count matrices, as previously described [50]. We converted raw data from the Seurat object 
counts slot into Single Cell Experiment objects using SingleCellExperiment [47] v1.16.0 while also 
incorporating necessary metadata with information on sample origin (sample_id), condition (group_id), and cell 
type (cluster_id). We aggregated counts for each cell type across samples using the aggregate.Matrix function 
(Matrix.utils R package v0.9.7), yielding gene by sample counts for each cell type. We appended the metadata 
with condition information (AD or CTRL) in preparation for our differential gene expression analysis (see 
below). 
 
Differential Gene Expression Analysis 
We performed differential gene expression analysis between conditions (AD vs CTRL) using DESeq2 v1.34.0 
for each cell type [51]. First, we created dds objects using the DESeqDataSetFromMatrix function. We made 
pairwise comparisons for every cell type between conditions using the Wald test. Then, we performed log fold 
change shrinkage to generate more accurate log2foldchange estimates. While DESeq2 recommends the 
application of Bayesian log fold change shrinkage (type = apeglm), we used its original shrinkage estimator 
(type = normal), as it preserves the Wald test statistic (stat) needed for our downstream analyses of TF and 
pathway activity. 
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Transcription Factor Activity Analysis 
To determine whether transcription factors (TFs) that are signaling mediators had activator or repressor roles 
in inhibitory neurons, we used the Wald test statistic (stat) from previously generated pseudo-bulk differential 
gene expression analysis outputs. To compare across both datasets, we combined stat scores from both 
datasets into one data frame before inferring TF activity. However, as datasets did not have the same number 
of identified differentially expressed genes, we replaced NAs with 0. We used the CollecTRI prior (accessed in 
September 2023), which has information on TFs, including their direction of regulation on their targets [52], and 
combined it with pseudo-bulked count matrices for inhibitory neurons. We calculated activity scores for all TFs 
in inhibitory neurons that had a minimum of 5 targets using the Multivariate Linear Model (run_mlm function 
decoupleR v2.7.1 [35]), where the t-values from the model represent regulator activity [35]. Positive values 
represent an activator role, while negative values represent a repressor role in AD compared to control. After 
inferring TF activity, we subsetted for TFs that were signaling mediators in our high-confidence LRTs in 
inhibitory neurons. 
 
Pathway Activity Analyses 
Similarly to our TF activity analysis, we used the Wald test statistic (stat) from pseudo-bulk differential gene 
expression analysis outputs to infer pathway activity in inhibitory neurons. As before, we replaced NAs with 0, 
as the datasets did not have the same number of differentially expressed genes. We used the top 500 
responsive genes ranked by p-value in PROGENy, a collection of pathways and their target genes (accessed 
in October 2023) [53]. We calculated pathway activity scores for all pathways with a minimum of 5 targets 
using the Multivariate Linear Model (run_mlm function decoupleR v2.7.1 [35]). Positive values represent an 
increase, while negative values represent a decrease in pathway activity in AD compared to CTRL.  
 
Results 
Identification of cell-cell communication patterns from AD snRNA-seq data 
To infer cell-cell communication (CCC) patterns in AD, we used previously published snRNA-seq data 
generated from 19 postmortem human PFC, including 11 AD and 8 age- and sex-matched CTRL samples 
(Morabito et al., 2021, Fig 2) [32]. We aligned raw fastq files and retained ~65K nuclei after quality control. We 
identified 32 distinct clusters using Leiden clustering [43], and assigned eight major brain cell types using 
differential expression of canonical marker genes (Fig 2A-B, Tables S1-3). Cell types were evenly distributed 
and integrated across conditions (AD, CTRL, Fig. 2C). Next, we determined whether cell types were balanced 
across conditions. We observed that all cell type proportions were slightly biased towards AD (Fig 2D). 
However, as there is an imbalance of AD to control samples in the dataset (11 and 8, respectively), we 
expected this.  
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Figure 2. Overview of our approach and dataset (A) Uniform Manifold Approximation and Projection 
(UMAP) of 65,546 nuclei colored by their assigned cell types. (B) Violin plot of canonical marker gene 
expression used for cell type assignment. Color represents cell type. (C) UMAP of integrated dataset sp
condition (AD, CTRL). (D) Stacked barplot of cell type proportions across conditions (AD, CTRL). 
 
Ligand, receptor, and target gene patterns are mostly cell-type-specific in AD 
We predicted interactions using MultiNicheNet [34] by determining genes differentially expressed betwee
and CTRL in all cell types before filtering for our sender (astrocytes, microglia, oligodendrocytes, and OP
and receiver (excitatory and inhibitory neurons) cells of interest (Fig 1B). By cross-referencing differentia
expressed genes with the NicheNet prior, we identified more than 45,000 differentially expressed ligand
receptor interactions between AD and control across all cell types (Fig S2A). After filtering interactions b
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on our senders and receivers of interest (Fig S2B) and prioritizing interactions based on ligand activity and 
regulatory potential [34], we were left with 1,618 ligand-receptor-target (LRT) pairings (Fig 3A). 1,334 of the 
1,618 predicted interactions were up-regulated in AD, and 284 were up-regulated in CTRL, suggesting their 
decreased expression and, therefore a loss of signal in AD (Fig S2C). Most interactions originated from OPCs 
(n = 647), followed by astrocytes (n = 355), microglia (n = 316), and oligodendrocytes (n = 300). Interestingly, 
OPCs had the fewest (n = 3,097), and oligodendrocytes had the most nuclei (n = 38,864). In contrast, 
astrocytes and microglia had 5,272 and 3,862 nuclei, respectively, suggesting that the number of predicted 
interactions is independent of the number of nuclei in each cell type. Of the 1,618 prioritized LRTs, 778 were 
specific to excitatory, and 840 were specific to inhibitory neurons (Fig 3A). To determine whether CCC 
patterns were cell-type-specific or shared, we compared ligands, receptors, and target genes by Jaccard 
Similarity Index (JI). JI scores range from 0 (no overlap, i.e., cell-type specific) to 1 (total overlap, i.e., shared). 
In order to determine the similarity between excitatory and inhibitory neuron signaling patterns, we calculated 
their JI with respect to senders for receptor and target genes only. Since ligands are specific to senders and 
not receivers, we did not evaluate their overlap in excitatory and inhibitory neurons. Overall, receptors and 
target genes were not highly similar between neuronal subtypes (JI < 0.5 for all comparisons; Fig 3B). 
Interestingly, we observed overall higher JI in receptors (JI 0.13 - 0.44) than in target genes (JI 0.1 - 0.18), 
indicating differential downstream effects despite overlapping receptors between excitatory and inhibitory 
neurons (Fig 3B). In addition to comparisons between receiver cell types, we were interested in the similarity 
of ligands, receptors, and target genes between sender cell types by neuron subtypes (Fig 3C-H). For ligands 
associated with inhibitory neurons, the greatest overlap was between ligands from OPCs and astrocytes (JI = 
0.12), closely followed by oligodendrocyte-OPC (JI = 0.1) interactions (Fig 3C). For ligands interacting with 
excitatory neurons, OPCs and oligodendrocytes had the highest similarity with astrocytes (JI = 0.14 for both; all 
other comparisons JI < 0.11; Fig 3F). Additionally, microglia-expressed ligands had the lowest similarity to all 
other sender cell types in both receivers (Fig 3C & Fig 3F). Receptor JI scores were higher overall than 
ligands, and OPCs had the highest similarity score with astrocytes for both receiver cell types (inhibitory JI = 
0.25, Fig 3D and excitatory JI = 0.21, Fig 3G). Finally, the target genes of inhibitory and excitatory neurons 
had a higher JI than ligands or receptors (Fig 3E & 3H). The greatest overlap of target genes in inhibitory 
neurons was between microglia and astrocytes (JI = 0.46; Fig 3E), despite microglia- and astrocyte-expressed 
ligands having low similarity (JI = 0.05; Fig 3C). Within inhibitory neurons, OPCs and oligodendrocytes shared 
the least number of target genes (JI = 0.32; Fig 3E). We observed the same pattern of high target gene 
similarity with low ligand similarity between senders in excitatory neurons (e.g., microglia-astrocytes: target JI = 
0.28 and ligand JI = 0, Fig 3F and 3H). Overall, OPCs and astrocytes showed similar and consistent overlap 
across ligands, receptors, and targets with both inhibitory and excitatory neurons (Fig 3C-H). We performed 
the same analyses in an independent snRNA-seq dataset (Lau et al., 2020) [33] from the same brain region. 
The Lau et al. dataset included 21 human postmortem PFC samples (12 AD, 9 control). As with the Morabito et 
al. data, we aligned fastq files and assigned cell types using differential expression of canonical marker genes 
(Fig S1A-B). We integrated ~32,000 cells across conditions (Fig S1C), which resulted in 7 cell types (Fig 
S1A). Finally, the cell type proportions were balanced across conditions for all but the endothelial cells, which 
had an increased proportion in AD (75% AD, 25% CTRL; Fig S1D). After differential CCC analysis, we 
identified fewer total interactions (n = 887) in the Lau et al. data, and as before in Morabito et al., we predicted 
more interactions specific to inhibitory neurons (n = 543) compared to excitatory neurons (n = 344; Fig S3A). 
Similarly, receptors and target genes were not highly similar between neuronal subtypes (JI < 0.2 for all 
comparisons, Fig S3B), and target genes between senders had a higher JI than ligands and receptors in both 
excitatory and inhibitory neurons in the validation dataset (Fig S3C-H). Generally, the results from our 
independent validation dataset recapitulate our original findings. Overall, we found that ligands, receptors, and 
target genes are largely cell-type-specific between and across sender and receiver cell types in two datasets. 
This supports cell-type-specific altered CCC patterns in AD. 
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Figure 3. Ligand, receptor, and gene target patterns are mostly cell-type-specific in AD (A) Stacke
barplot of the number of prioritized interactions where excitatory or inhibitory neurons are the receiver. (B
Jaccard Similarity Index (JI) between excitatory and inhibitory neurons of receptors and targets. JI betwe
sender cell type (C) ligands, (D) receptors, and (E) targets for inhibitory neurons. JI between sender cell
(F) ligands, (G) receptors, (H) targets for excitatory neurons. 
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across datasets, comprised of 29 ligands and receptors (Fig S4A). Out of 29 ligands, only CADM2 and NRG2 
were predicted in more than 1 cell type, while multiple ligands from more than one sender cell type jointly 
targeted 7 receptors (CADM3, ACVR2A, APP, ACVR1B, EGFR, LRRTM2, PLXNA; Fig S4). Additionally, we 
identified 8 ligand-receptor pairs that were upregulated in CTRL, which we inferred as interactions lost or 
downregulated in AD. Interestingly, these interactions included 2 AD-risk genes as ligands: APP and APOE, 
predicted in oligodendrocytes and astrocytes, respectively (Fig S4B). Except for OPCs, we find that ligand-
receptor pairs overlapping across datasets seem to be receiver-specific, as no interactions are shared between 
excitatory and inhibitory neurons (Fig 4A). Additionally, oligodendrocytes were the only sender across both 
datasets that had overlapping communication with excitatory neurons only (Fig 4A). We also predicted APP as 
a receptor in both excitatory and inhibitory neurons through ligands from OPCs and microglia, respectively (Fig 
4A). Additionally, we also identified APP as a ligand in oligodendrocytes interacting with GPC1 in excitatory 
neurons, while the risk factor APOE functions as a ligand in astrocytes interacting with LRP8 in inhibitory 
neurons (Fig 4A). Both of these interactions were downregulated in AD. We identified EGFR as an inhibitory 
neuron receptor in 3 of 4 senders (oligodendrocytes had no overlapping interactions with inhibitory neurons; 
Fig 4A), which has been proposed as a therapeutic target in AD [54, 55]. However, ligands targeting EGFR 
were dependent on the sender cell type. Out of 51 ligand-receptor pairs identified in both datasets, only 17 also 
shared the same downstream target gene (Fig 4B). In comparison, the 34 remaining ligand-receptor pairs did 
not show target gene overlap (Table S4). Our 17 high-confidence LRTs included interactions originating from 
all senders and converged to four target genes: SMAD7, LMO1, PRLR, and CCND1 (Fig 4B). Interestingly, 
most of our high-confidence interactions originated from OPCs (n = 8) and astrocytes (n = 7). The interactions 
involving the AD-risk genes APP and APOE, as well as EGFR, also remained among our high-confidence 
interactions. Additionally, pseudo-bulk expression information for the four overlapping target genes confirms 
the same gene expression directionality across datasets in AD, where LMO1 and PRLR were upregulated in 
excitatory neurons, while SMAD7 and CCND1 are up- and downregulated, respectively, in inhibitory neurons 
across datasets (Fig 4C). Altogether, we showed that ligand-receptor pairs are mostly receiver-specific and 
that the majority of our senders, except for oligodendrocytes, had altered CCC with both excitatory and 
inhibitory neurons across AD datasets. Our findings also indicate that interactions involving AD-risk or AD-
associated genes (like EGFR) are preserved across different patient cohorts.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Ligand-receptor pairs and target genes overlap between 2 independent snRNA-seq datasets 
from the same brain region (A) Alluvial plots of overlapping ligand-receptor pairs for each sender cell type 
colored by receiver cell type. (B) Alluvial plot of the 17 ligand-receptor-target pairings that overlap across 
datasets, colored by sender cell type. Grey indicates the involvement of more than one sender cell type. (C) 
Heatmap of pseudo-bulk expression values for target genes which were identified in both datasets annotated 
by receiver cell type and dataset.  
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Table 1. Signaling mediators of ligand-receptor pairs and their downstream targets across datasets. 

L-R Pair Target 
Gene 

Signal Mediators Top Mediator(s) 
Morabito et al., 

2021  

Top Mediator(s) 
Lau et al., 2020 

Receiver Cell 
Type (Neurons) 

FGF14 - SCN8A SMAD7 N/A N/A N/A Inhibitory 

VCAN - EGFR SMAD7 CD44, ESR1, 
GSK3B, IRAK1, 
JUN, MYC, SRC, 
STAT3, TLR2, 
LCK, PTK2, 
STAT1, STAT2 

ESR1 MYC Inhibitory  

VCAN - EGFR CCND1 CD44, ESR1, 
GSK3B, IRAK1, 
JUN, MYC, SRC, 
STAT3, TLR2, 
LCK, PTK2, 
STAT1, STAT2 

STAT2 MYC Inhibitory 

TGFB1 - APP SMAD7 SMAD3, TP53, 
GSK3B, JUN, 
MYC, SP1 

TP53 TP53 Inhibitory 

SEMA3D - PLXNA4 SMAD7 CDK5, NRP1, 
PAK2  

CDK5 - EP300 CDK5 - EP300 Inhibitory  

SEMA3D - PLXNA1 SMAD7 AKT1, CDK5, 
KDR, PAK2 

KDR - NFKB1 AKT1 - TP53 Inhibitory  

CDH2 - CDON SMAD7 CTNNB1 CTNNB1 CTNNB1 Inhibitory 

SEMA5A - PLXNA1 SMAD7 CDK5, PLXNA3 N/A CDK5 - MYC Inhibitory  

NRG2 - LRRTM2 SMAD7 N/A N/A N/A Inhibitory 

SEMA3A - PLXNA1 SMAD7 CDK5 CDK5 - MYC CDK5 - TP53 Inhibitory  

BMP2 - ACVR2A SMAD7 MAP3K7, SMAD1, 
SMAD3 

SMAD3 SMAD3 Inhibitory  

NRXN1 - VSTM2B LMO1 TCOF1 N/A TCOF1 Excitatory 

NRG3 - EGFR CCND1 ERBB2, ESR1, 
SRC, STAT3, 
CTNNB1, MYC, 
PTEN, STAT1, 
CCNB1, CCND1, 
IFIT3, IRF9, NFIL3 

Direct Direct Inhibitory  

FLRT2 - UNC5D CCND1 DAPK1, RAC1 RAC1 RAC1 Inhibitory  

APOE - LRP8 CCND1 APP, LRP1, 
MAPK8 
 
 

MAPK8 - TFAP2A 
- TP53 

LRP1 - TP53 Inhibitory  

APP - GPC1 PRLR MYC MYC N/A Excitatory 

FGF14 - SCN1A CCND1 N/A N/A N/A Inhibitory  

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.29.569304doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.29.569304
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figure 5. Signaling mediators in inhibitory neurons are not differentially expressed but show alte
and pathway activity in AD. (A) Heatmap representing pseudo-bulk differential gene expression (DGE
potential signaling mediators in inhibitory neurons annotated by dataset. Asterisks indicate significant DG
in both datasets and * in Morabito et al.). Mediators that are TFs are denoted in black. (B) Heatmap of T
activity scores that are different between AD and control of signaling mediators, annotated by dataset. G
and purple represent TF activity as an activator or a repressor, respectively. (C) Heatmap of pathway ac
scores of all differentially expressed genes in AD from DESeq2 annotated by dataset. Tan and green rep
pathway activity as increased or decreased, respectively. 
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mediators were not differentially expressed in AD, this could indicate that their downstream effects may be due 
to gene regulatory mechanisms instead of gene expression, therefore, we investigated their TF activity. Using 
pseudo-bulked gene expression information from inhibitory neurons, we calculated TF activity scores for 14 
signaling mediators that were also TFs. While none of the TFs were differentially expressed, 8 out of 14 had 
divergent gene expression patterns across datasets (gene expression was increased in only one dataset and 
vice versa, Fig 5A). Overall, MYC, CTNNB1, SMAD1, STAT2, EP300, TP53, and SP1 consistently function as 
repressors, suggesting that they downregulate their target genes in AD inhibitory neurons across datasets (Fig 
5B). MYC, a cancer-associated cell cycle regulator [56], showed the greatest overall significant difference in 
TF activity in AD (Fig 5B). MYC had slightly increased expression (logfc of 0.008 and 0.073 in Morabito and 
Lau, respectively; Fig 5A) while downregulating its targets in AD (Fig 5B). Additionally, CTNNB1, which is 
associated with cell-cell adhesion regulation and coordination [57], also significantly downregulates its targets 
in AD in the Morabito et al. dataset (Fig 5B). Like MYC, CTNNB1 also had increased expression in AD (logfc 
of 0.021 and 0.026 in Morabito and Lau, respectively; Fig 5A). Both CTNNB1 and MYC are involved in the 
WNT signaling pathway [58], which was decreased in AD (Fig 5C). Interestingly, despite their divergent gene 
expression patterns (downregulated in Morabito, upregulated in Lau; Fig 5A), TP53 and its transcriptional 
cofactor EP300 [59] function as transcriptional repressors in AD (Fig 5B), which is further recapitulated by 
decreased p53 signaling pathway activity in inhibitory neurons (Fig 5C). NFIL3 and IRF9, associated with NF-
kappaB (NFkB) [60] and type I interferon signaling [61], respectively, were the only TFs to function as 
transcriptional activators across both datasets in AD (Fig 5B). Along with high TF activity, we observed 
increased NFIL3 expression (Fig 5A) and high activity of the NFkB signaling pathway (Fig 5C) in AD, which 
were both consistent across datasets. The expression of IRF9 was not consistent across datasets (increased 
in Lau et al. and decreased in Morabito et al., Fig 5A) in AD, and we were unable to predict type I interferon 
signaling activity. All other TFs, including STAT1, STAT3, SMAD3, ESR1, and JUN showed divergent TF 
activity across datasets. STAT1, STAT3, SMAD3, and ESR1 activity was increased in Lau et al. and 
decreased in Morabito et al., while JUN activity was reversed (Fig 5B). Interestingly, there was STAT2 
repressor activity in both datasets in AD, while STAT1 and STAT3 TF activities were different across datasets 
(Fig 5B); therefore it was not surprising that JAK-STAT signaling in AD was decreased in Morabito et al. and 
increased in Lau et al. (Fig 5C). Overall, we find consistently altered TF and pathway activity associated with 
WNT, p53, and NFkB signaling dysregulation in inhibitory neurons across datasets despite the lack of 
significant gene expression changes of signaling mediators. This further suggests gene regulatory 
consequences of altered CCC between glia and neurons in AD. 
 
Discussion 
In this study, we investigated altered CCC in two publicly available snRNA-seq datasets from postmortem 
human PFC in AD using in silico approaches to generate high-confidence LRT interactions. Previous in silico 
studies have either investigated overall CCC patterns across all brain cell types without specifically describing 
glia-neuron interactions and their downstream effects or focused on interactions between excitatory neurons 
and microglia [29–31]. Here, we predicted interactions between glia (astrocytes, microglia, oligodendrocytes, 
and OPCs) and neurons (excitatory and inhibitory), while also investigating their potential downstream 
consequences in inhibitory neurons. Although neuronal loss is a primary hallmark of AD, glia are important for 
maintaining brain homeostasis and neuronal health through interactions with neuronal cell populations [3–6]. 
For example, astrocytes provide metabolic and nutritional support [7, 8], oligodendrocytes myelinate neuronal 
axons [9], microglia respond to injury affecting neuronal function [11–13], and OPCs make direct contact with 
neuronal synapses [10]. Consistent with previous studies [29, 30], our JI analyses of ligands, receptors, and 
targets confirm that interactions between glia and neurons are altered in a cell-type-specific manner in AD. 
Although ligands are known to target many receptors across different cells, causing a variety of downstream 
effects [62, 63], a previous study in hematopoietic stem cells revealed greater cell-type-specificity in ligands 
than receptors [64]. Our findings corroborate this in the PFC, as we observed the greatest cell-type-specificity 
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in ligands, followed by receptors and then targets. Finally, since our high-confidence interactions converge to 4 
downstream target genes, it is plausible that although ligand-receptor pairs are sender-specific, the aggregated 
effects of altered glia-neuron communication converge in both excitatory and inhibitory neurons.  
 
Our high-confidence interactions included APP, a familial AD risk gene, and APOE, the strongest genetic risk 
factor of sporadic AD [65], which has previously been confirmed as a ligand for another AD-risk gene, TREM2.  
A recent study has shown the involvement of APOE as a ligand in astrocyte-neuron interactions through the 
receptors LRP1 and SORL1 in both inhibitory and excitatory neurons [31]. Interestingly, we predicted an 
interaction of APOE with a different low-density lipoprotein receptor, LRP8, between astrocytes and inhibitory 
neurons. Even though the association of LRP8 with AD was not robust in previous work [66], the APOE-LRP8 
interaction was among our high-confidence interactions. Additionally, low-density lipoprotein receptors have 
high and isoform-specific binding affinity for APOE [67]. Combined, this suggests a potential role for receptors 
in the low-density lipoprotein receptor family in AD that requires further investigation. 
 
Additionally, semaphorins are signaling proteins that most often bind to plexin receptors crucial to 
neurodevelopment and the adult CNS [68]. Immunohistochemistry work in the human brain illustrated that 
semaphorin3A (SEMA3A) colocalizes with tau neurofibrillary tangles in neurons during the later stages of AD 
[69]. SEMA3A has also been indicated to induce activation of cyclin-dependent kinase 5 (CDK5), promoting 
phosphorylation of tau neurofibrillary tangles [69, 70]. Our data further support these initial findings, as we 
predicted 4 high-confidence interactions involving semaphorin ligands and plexin receptors. Interestingly, we 
also showed the involvement of CDK5 as a signaling mediator for 3 of the 4 predicted semaphorin-plexin 
interactions. Additionally, SEMA6D interacts with TREM2 through altered neuron-microglia interactions, 
regulating microglia activation in AD [30]. This further indicates the importance of semaphorins in AD, as their 
signaling is altered between multiple sender and receiver cell types across patient cohorts. 
 
Canonical signaling through the WNT [15, 16], p53 [24], and NFkB [22, 23] signaling pathways have been 
shown to be dysregulated in AD. The WNT signaling pathway is crucial for normal brain function and neuronal 
survival in the adult CNS and has been extensively implicated in AD (reviewed in [15, 16]). Interestingly, our 
pathway activity analyses indicated decreased WNT signaling in AD inhibitory neurons. Increased levels of 
Wnt signaling have been shown to have a protective role against amyloid-β plaques in both in vitro and in vivo 
models of AD [71–73]. We also identified MYC and CTNNB1 as potential signaling mediators of high-
confidence interactions in inhibitory neurons. MYC is at the crossroads of multiple signaling pathways, 
including WNT signaling [58], and its increased expression leads to elevated vulnerability of neurons in 
degenerative diseases [74]. CTNNB1 is a key player in the WNT signaling pathway [57]. In concordance with 
the literature, we observed increased expression of MYC and CTNNB1, increased repressor TF activity for 
both, and overall decreased WNT signaling in AD. Furthermore, the p53 signaling pathway is often associated 
with carcinogenesis due to its role in DNA damage and cellular stress responses, but there is mounting 
evidence of its involvement in AD. In vitro data indicates increased levels of p53 expression [75], which we also 
observed. Additionally, the inactivation of the p53 pathway is known to lead to cell cycle re-entry of senescent 
cells [76], and, in AD, neuronal cell cycle re-entry exacerbates neuronal loss [77, 78]. While we found different 
gene expression patterns of TP53 and its co-regulator EP300 across datasets, we identified repressor TF 
activity of TP53 and EP300 and decreased p53 signaling pathway activity in AD inhibitory neurons consistent 
across datasets. The NFkB signaling pathway regulates the expression of proinflammatory genes in the 
context of immunity [79]. It has also been shown to be associated with neuroinflammation in AD (reviewed in 
[22, 23]), as well as amyloid-β plaque and tau neurofibrillary tangle pathologies (reviewed in [80]). Multiple 
studies have shown that amyloid-β accumulation in AD leads to neurotoxic activation of the NFkB signaling 
pathway [80], which may lead to activation of Beta-site APP cleaving enzyme 1 (BACE1), initiating the 
formation of amyloid-beta through splicing of APP [81]. Interestingly, we observed differential NFIL3 gene 
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expression between AD and CTRL and activator TF activity in AD of NFIL3, an important regulator of the NFkB 
signaling pathway, consistent across datasets. We also observed increased activity of the NFkB signaling 
pathway in inhibitory neurons in AD. Altogether, this suggests that altered glia-neuron interactions may play a 
role in dysregulating canonical signaling pathways like WNT, p53, and NFkB signaling in inhibitory neurons in 
AD. 
 
Although our study provides insight into dysregulated glia-neuron interactions and their downstream effects in 
AD, there are limitations including the use of curated priors for CCC and biological activity inference and 
postmortem data with varying sequencing depth and number of nuclei. Our CCC inference relies on curated 
priors, therefore, any interactions that have not been described previously are excluded from the prior, limiting 
our ability to predict entirely novel interactions. Additionally, we inferred protein abundances of ligands and 
receptors from gene expression information. Due to multiple processes like post-translational modifications and 
protein degradation, mRNA and protein levels are not always directly related. Therefore, our hypothesis-
generating approach calls for further confirmation of predicted interaction through additional experimentation 
(e.g.,RNAscope or co-culture) in future studies with access to appropriate samples. Similarly, TF and pathway 
activity analyses also rely on previously curated priors. Finally, despite our best efforts to choose comparable 
datasets, there was extensive technical variability between datasets (number of nuclei and sequencing depth). 
While AD is a heterogeneous and multifactorial disorder, we expected greater LRT overlap. This suggests that 
the technical variability between the two snRNA-seq datasets in our study might be a confounding factor. As 
more snRNA-seq datasets with increased sequencing depth and number of nuclei become available, our 
analyses should be expanded to confirm and extend findings from the present study. Finally, we are using data 
generated from postmortem human brains, a timepoint where extensive neuronal degeneration and loss has 
occurred. Therefore, we are likely not capturing the altered CCC patterns relevant to disease etiology and 
progression. Future studies should investigate altered signaling across time points or disease stages (e.g., in 
AD mouse models) to properly address how disease progression affects CCC in AD.  
 
Conclusions  
Overall, using public snRNA-seq data from postmortem human PFC, we inferred altered cell-type-specific CCC 
between glia and neurons in AD. We find that the AD-risk genes APP and APOE are among altered 
interactions conserved across patient cohorts. Additionally, we observed altered TF activity of signaling 
mediators, along with altered signaling pathway activity, in inhibitory neurons. Therefore, our findings suggest 
that altered glia-neuron interactions may dysregulate canonical signaling in pathways like WNT, p53, and 
NFkB through TFs and co-regulators like MYC, CTNNB1, TP53, EP300, and NFIL3. 
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