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Abstract

Sleep state development in preterm neonates can provide crucial information regarding functional 

brain maturation and give insight into neurological well being. However, visual labeling of sleep 

stages from EEG requires expertise and is very time consuming, prompting the need for an 

automated procedure. We present a robust method for automated detection of preterm sleep from 

EEG, over a wide postmenstrual age (PMA = gestational age + postnatal age) range, focusing first 

on Quiet Sleep (QS) as an initial marker for sleep assessment. Our algorithm, CLuster-based 

Adaptive Sleep Staging (CLASS), detects QS if it remains relatively more discontinuous than non-

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative 
Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited 
(http://creativecommons.org/licenses/by/4.0/).

maarten.devos@eng.ox.ac.uk.
*These authors are joint first authors.

Europe PMC Funders Group
Author Manuscript
Int J Neural Syst. Author manuscript; available in PMC 2019 January 22.

Published in final edited form as:
Int J Neural Syst. 2017 September ; 27(6): 1750023. doi:10.1142/S012906571750023X.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://creativecommons.org/licenses/by/4.0/


QS over PMA. CLASS was optimized on a training set of 34 recordings aged 27–42 weeks PMA, 

and performance then assessed on a distinct test set of 55 recordings of the same age range. 

Results were compared to visual QS labeling from two independent raters (with inter-rater 

agreement Kappa = 0. 93), using Sensitivity, Specificity, Detection Factor (DF = proportion of 

visual QS periods correctly detected by CLASS) and Misclassification Factor (MF = proportion of 

CLASS-detected QS periods that are misclassified). CLASS performance proved optimal across 

recordings at 31–38 weeks (median DF = 1.0, median MF 0–0.25, median Sensitivity 0.93–1.0, 

and median Specificity 0.80–0.91 across this age range), with minimal misclassifications at 35–36 

weeks (median MF = 0). To illustrate the potential of CLASS in facilitating clinical research, 

normal maturational trends over PMA were derived from CLASS-estimated QS periods, visual QS 

estimates, and nonstate specific periods (containing QS and non-QS) in the EEG recording. 

CLASS QS trends agreed with those from visual QS, with both showing stronger correlations than 

nonstate specific trends. This highlights the benefit of automated QS detection for exploring brain 

maturation.
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1 Introduction

Despite advances in perinatal and neonatal intensive care, preterm birth is still associated 

with a high risk of neurological disabilities that will manifest later in life.1–4 Intensive 

monitoring of these vulnerable preterm infants is increasingly complemented with bedside 

neuromonitoring to achieve optimal insight into neurological well being. Assessment of 

neurological function by electroencephalogram (EEG) in this intensive period of neonatal 

care, can help to identify the influence of various endogenous and exogenous disturbances 

on the maturation of cortical activity,5–7 with the ultimate goal to improve therapeutic 

strategies and neurodevelopmental outcome. Previous research has highlighted sleep 

ontogenesis (the changing nature of sleep states with age) as an important 

neurophysiological biomarker of functional brain development, based on the visual labeling 

of sleep states by expert clinicians using full polysomnography (PSG) traces.8–11 This 

highlights the importance to support and optimize neonatal sleep in the Neonatal Intensive 

Care Units (NICUs).

A significant organization of these sleep states occurs from 28 and 29 weeks of gestational 

age. Deeper brain nuclei modulate the first reflections of sleep states in the cortical activity 

and the differentiation between Active Sleep (AS, also known as Rapid-Eye Movement 

(REM) sleep) and Quiet Sleep (QS, also known as non-REM (NREM) sleep) from EEG can 

be made.11,12 As more complex sleep states follow the growth of major cortical afferent 

connections,13 the organization of the four traditional sleep states and wakefulness are 

established near term age of 36–40 weeks postmenstrual age (PMA = gestational age + 

postnatal age).8,11,12
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In order to expand existing knowledge of extrauterine brain development and to translate 

these neurophysiologic findings to clinical practice, an automated approach to detect preterm 

sleep states is necessary, as visual labeling of sleep by clinicians requires particular 

expertise12 and is very time consuming. This can potentially open the possibility for scoring 

sleep in real time, useful in the day-to-day monitoring of preterms, for assessing optimal 

periods for feeding and perinatal care. Producing a method for automated and robust 

detection of preterm sleep states would also allow a faster and more efficient collection of 

sleep-labeled recordings, from which, one can define objective quantitative maturational 

characteristics of cortical function for the definition of normal maturational trends, with the 

ultimate aim to detect abnormal patterns in preterm brain maturation (dysmaturity).5,9,14–

18

This motivates our choice to develop an automated algorithm for sleep scoring, focusing first 

on QS as an initial primary marker for sleep assessment. Some EEG background 

abnormalities are only apparent in QS making EEG more discontinuous and asynchronous, 

reflecting more subtle alterations in brain function.9,14,15,19,20 Furthermore, QS contains 

relatively low levels of artifacts (due to very little motion of the preterm during this state), 

potentially allowing for a more robust calculation of maturational trends from QS and an 

automation of the full procedure, from QS detection to dysmaturity assessment.

Current methods for automated QS detection in preterm infants are limited, however.21,22 

Turnbull et al. focused on detecting a particular discontinuous EEG pattern, known as tracé 
alternant, to subsequently classify these periods as QS.23 While proving reliable for tracé 
alternant detection, this was not sufficient to infer QS over a wide age range, as tracé 
alternant is only present at term age and does not define the entirety of QS at this age (e.g. 

there is also the presence of high voltage slow wave QS). Palmu et al. developed an 

algorithm based on detecting the percentage of burst periods in the EEG, defined as 

spontaneous activity transients.24 Regions with the lowest percentage of spontaneous 

activity transients (SAT%) over time were observed in the deeper periods of sleep, often 

corresponding to rudimentary QS.22 However, the SAT% method has only been performed 

on specifically selected clean EEG recordings for ages <32 weeks PMA and has not yet been 

used to explicitly detect QS.

There remains no quantitative method to detect QS robustly in the vulnerable preterm age 

range >32 weeks PMA. Krajca et al. proposed a method that involved segmenting the EEG 

periods and extracting simple time-domain and frequency-domain features which were then 

clustered into distinct groups. The evolution of these cluster labels over time reflected 

transitions into and out of QS.25–27 However, the method was vulnerable to high power 

artifacts and the concept was illustrated only on a single recording at term age.

In this study, our aim is to build on this approach and develop an automated QS detection 

algorithm that performs robustly over a wide PMA range and stage of brain development, to 

be directly applicable for the clinical setting. We present a novel method, called CLuster-

based Adaptive Sleep Staging (CLASS), with the performance of CLASS QS detections 

compared to the clinicians’ visual labeling of QS. We also illustrate from these results, the 

potential of CLASS QS estimates for defining normal maturational trends, and compare this 
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to the trends derived from the visual labeling of QS, as well as from nonstate specific EEG 

epochs (containing QS and non-QS). This is to assess if normal maturational trends are 

improved when focusing on QS specifically, and if it can then be defined using CLASS in a 

fully automated approach.

2 Methods

2.1 Data acquisition and EEG recordings

This study was performed at the NICU of the University Hospitals of Leuven, Belgium and 

approved by the Ethics Committee of the University Hospitals of Leuven, Belgium. 

Neonates were enrolled in the study after informed parental consent. The dataset consisted 

of 26 preterm neonates with gestational age ≤32 weeks. Neonates were retrospectively 

selected as ‘normal’, based on strict inclusion criteria: (1) A normal neurodevelopmental 

outcome score at 9 and 24 months corrected age (Bayley Scales of Infant Development-II, 

mental and motor function >85), (2) no use of any sedative or anti-epileptic medication 

during EEG registration, and (3) the absence of a severe cerebral lesion (normal cerebral 

ultrasonography or intraventricular hemorrhage grade ≤ II, no periventricular leukomalacia 

or ventricular dilatation >p97).

EEG recordings were obtained from the neonates between the first and the third week of life, 

followed by one recording every 2 to 3 weeks up to transfer or discharge. This resulted in 89 

recordings ranging from 27 to 42 weeks PMA. The age distribution of this dataset is 

presented in the histogram of Fig. 1.

Mean EEG monitoring time was 4 h 55 min (range 1 h 40 min–9 h 00 min), in accordance 

with neonatal EEG surveillance guidelines28 to acquire at least two complete sleep cycles. 

Feeding and care were carried out per the normal routine of the NICU. Kangaroo Care was 

encouraged and allowed during the recordings as part of the application of the Newborn 

Individualized Developmental Care and Assessment Program. All EEG recordings were 

recorded with nine electrodes (Fp1, Fp2, C3, C4, T3, T4, O1, O2, and reference electrode 

Cz) placed per the modified international 10–20 standard locations (BRAIN RT, OSG 

equipment, Mechelen, Belgium) at a sampling frequency of 250 Hz. In premature infants 

<36 weeks PMA, unobtrusive sleep EEG monitoring was performed including a channel for 

respiratory activity, electrocardiogram and oxygen saturation. Infants ≥36 weeks PMA had 

an overnight PSG recording with 12-channel EEG, electrocardiogram, oxygen saturation, 

electromyogram, 2 electro-oculograms, piezoelectric belts (to measure abdominal and 

thoracic respiratory effort), and a nasal thermistor (for airflow monitoring before discharge).

In the remainder of this paper, the first 34 visually labeled recordings that were obtained for 

algorithm development and optimization, are referred to as the training set. The subsequent 

55 labeled recordings obtained were referred to as the test set, used solely to assess final 

algorithm performance.

2.2 EEG visual sleep labelling

Video-EEG segments were visually related to different sleep states for the given PMA, by 

two independent EEG readers (AD and KJ), for periods of AS, QS, indeterminate sleep, and 
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wakefulness. Sleep was defined based on previous definitions of EEG characteristics in 

premature sleep and simultaneous assessments of multiple cerebral and noncerebral 

measures were used to better identify neonatal state transitions. Physiological parameters of 

REM (present in AS, absent in QS), body movements (present in AS, absent in QS) and 

cardiorespiratory regularity (regular during QS, irregular in AS) were considered, depending 

on the behavioral state for the given PMA. Indeterminate sleep was defined as a sleep state 

with noncerebral characteristics of AS, coinciding with EEG features of QS, or vice versa, 

often observed in a transition from one state to another.12,28–31 In this study, the onset of 

QS or AS was considered as the beginning of a segment in which three consecutive minutes 

or three of four consecutive minutes were scored as QS or AS, respectively.32,33 Disagreed 

epochs and epochs with more than 3 min difference in overlap were re-evaluated and a final 

state was assigned based on consensus agreement. For the current analysis, AS, 

indeterminate sleep and wakefulness were grouped together as a single non-QS state, and the 

EEG finally categorized as either QS or non-QS. Cohen’s Kappa for inter-rater agreement of 

QS versus non-QS periods was calculated and proved to be high with Kappa = 0.93 (95% 

CI: 0.90–0.95)34 across all ages. The lowest inter-rater agreement was observed at the 

youngest ages <31 weeks PMA, with Kappa = 0.89 (95% CI: 0.82–0.96), and improved 

towards term ages.

2.3 EEG pre-processing

Data was band-pass filtered at 1–40 Hz, with an additional 50 Hz notch filter to remove 

mains noise. Electrode drop-off (the poor contact of an electrode) was also present in some 

recordings, in which case affected channels were discarded when >20% of the signal was 

missing.

2.4 Cluster-based adaptive sleep staging

CLASS assumes that QS is relatively more discontinuous than non-QS and that this is 

maintained over a wide range of PMA. The method extends concepts introduced by Krajča 

et al.25–27 and a flowchart of the algorithm stages are presented in Fig. 2(a). Each stage of 

the algorithm is detailed below in Secs. 2.4.1–2.4.4, with a series of parameters defined (in 

italics) throughout. The optimization method and the selected values for these parameters 

are presented in Sec. 2.5.

2.4.1 Artifact subspace reconstruction—As CLASS aims to detect EEG 

discontinuities, it can easily confuse high power artifacts as periods of discontinuity and QS, 

and thus a rigorous artifact removal scheme was required.

Current neonatal EEG pre-processing often exclusively uses band pass and notch filtering 

for artifact removal.24 However, some artifacts cannot be sufficiently removed by this 

method alone. Popular artifact removal methods include Independent Component 

Analysis35 and Principal Component Analysis (PCA),36 which involve transforming the 

EEG channels into a new component space that more clearly isolates the artifacts. However, 

such methods assume that movement artifacts are also stationary in nature, which is not the 

case. An alternative technique called Artifact Subspace Reconstruction (ASR), developed by 

Kothe and Makeig,37 was used here. The method applies PCA over a sliding window along 
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the EEG channels, locally separating high-power artifacts from the clean signal.38 ASR is 

illustrated in Fig. 3(a) on an epoch of EEG containing high-power, nonstationary artifacts.

ASR begins with a calibration procedure, where a 1 min epoch of artifact-free multichannel 

EEG (calibration data) is used to obtain thresholds for identifying clean signal and artifact 

subspaces within each sliding window of the EEG recording. With the subspaces identified, 

only the clean subspace is then used to reconstruct the signal.

A choice of calibration data at 40 weeks PMA was found, by trial and error, to best remove 

artifacts across the training set. To obtain the thresholds, PCA is performed on the 

calibration data in a robust manner by estimating the covariance matrix (Y) using the 

geometric median. With xi denoting the vector of calibration data amplitudes across 

channels at the ith time point, and n denoting the length of the calibration data, the 

geometric median (covariance) is defined by:

argmin
Y

∑
i = 1

n
xixi

⊤ − Y 2 . (1)

Unlike the conventional (mean) covariance, Y is less skewed by the presence of possible 

residual artifacts that may not have been identified when the calibration data was first 

selected. After performing PCA on the calibration data (using the eigenvectors of Y, defined 

as VY), each resulting principal component is segmented into fixed-length segments and the 

root-mean-square (RMS) power calculated for each segment. 0.5 s is chosen as the segment 

duration, to match the typical time length of discontinuities in the signal, and produce 

enough windows to calculate a smooth RMS distribution. 66% window overlap is used to 

avoid missing any discontinuities at the segment boundaries. A Gaussian distribution is fitted 

to the RMS values of each component, and the component threshold (tc) is defined based on 

the mean (µc) and standard deviation (σc) of the fitted distribution:

tc = μc + ASR_thresh ⋅ σc . (2)

ASR_thresh is a parameter for weighting the contribution of the standard deviation. The 

choice of estimating µc and σc from a Gaussian, rather than directly from the RMS values, is 

to further ensure the robustness of the threshold estimates to potential extremities in the 

RMS distribution (brought upon by residual artifacts). The resulting set of component 

thresholds (t = [t1 t2 … tc …]) is represented as a diagonal threshold matrix (T). In addition 

to T, a mixing matrix (M) is also defined in this calibration stage, from the covariance 

matrix (by Y = MM⊤). M is required to later reconstruct the EEG signal from the identified 

clean subspace.

To identify the clean and artifact subspaces from an EEG window (S) in the recording, 

conventional PCA is applied to S, by obtaining the eigenvector (V) and eigenvalue (Λ) 

matrices from the window’s covariance matrix (by Σ = VΛV⊤). Determining which of these 

EEG window’s principal components are potential artifacts is achieved by comparing Λ to 
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T, after T is first projected into the same principal component space as Λ. Projecting T is 

achieved by returning it from the calibration principal component space, which it was first 

defined in, to the original EEG space (using the calibration eigenvectors VY). This is then re-

projected from the EEG space to the new principal component space of Λ (using the 

window’s eigenvectors V):

Tproj = TVY
⊤V . (3)

The resulting projected thresholds (Tproj) is a full matrix representing the RMS thresholds 

for each of the window’s principal components, while the diagonal matrix Λ is equivalent to 

the total variance along each principal component. As the original EEG window is zero-

mean (achieved by the band-pass filter during pre-processing in Sec. 2.3), the variance is 

equivalent to the square of the RMS. Therefore, the eigenvalues can be directly compared to 

the thresholds, by squaring each element of Tproj and summing the resulting variances along 

each column (each principal component) to achieve the total threshold variance for each 

component, as shown in (4) below. This forms a binary matrix (A) which identifies those 

components that lie below the threshold (the clean subspace) and those that form the artifact 

subspace, by setting each jth row of A (denoted by aj* below) to ones or zeros, respectively:

aj* =
1, λ j j < ∑

i
ti j
2 ,

0, λ j j ≥ ∑
i

ti j
2 ,

Λ = λi j , Tproj = ti j . (4)

The final step to reconstruct the EEG from the clean subspace, is performed at a fixed time 

point (sample) within the EEG window, with this vector of amplitudes across channels 

denoted by s. This is illustrated in Fig. 3(b). The previously determined mixing matrix (M) 

and s are rotated into the same space as A, spanned by the window’s eigenvectors (resulting 

in V⊤M and V⊤s, respectively). This rotation allows a ‘reduction’ of V⊤M directly by A (as 

V⊤M ◦ A, where ◦ denotes elementwise multiplication), with the result used to perform a 

clean, linear projection of the rotated sample V⊤s. This projection is clean, as V⊤M ◦ A 
removes the contribution of the artifact subspace. By finally reversing this clean projection 

(using the full V⊤M) and rotating back to the original EEG space, the cleaned EEG sample 

(sclean) is reconstructed from only the clean subspace. These operations simplify into a 

single reconstruction matrix (R) for cleaning s, with + denoting the pseudo-inverse:

R = M(V⊤M ∘ A)+V⊤, (5)

Sclean = Rs . (6)
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To clean the entire EEG, the sliding window is shifted sample-by-sample along the 

recording, with R recalculated each time and applied to the new s to obtain sclean. T and M 
(used for determining R) are both derived from the calibration sequence and remain the 

same throughout.

2.4.2 Adaptive Segmentation—To reduce processing time after ASR is applied, the 

cleaned recordings are downsampled by a factor of three, reducing the sampling frequency 

to 83 Hz (while satisfying the Nyquist rate of the band-pass filtered (1–40 Hz) EEG).

Each EEG channel is divided into varying length segments (typically 1–5 s long) by 

Adaptive Segmentation (ASG), which segments the signal nonuniformly such that each 

segment locally resembles a specific EEG pattern and characteristic.

ASG utilizes sliding contiguous windows comparing amplitude and frequency-based 

measures between the windows as they slide along the recording, to detect periods where 

large changes occur.26 The locations of these large changes denote ASG segment 

boundaries. This reflects where deviations in both the amplitude and frequency behavior 

exist, and the onset of a new segment pattern.

Each window has length WIN seconds which moves along the channel in steps of SHIFT 
samples. For each shift, the amplitude-based and frequency-based measure is calculated for 

each window. Denoting ADIF and FDIF as the amplitude- and frequency-based measures, 

respectively, and x(i) as the ith sample in the window:

ADIF = ∑
i = 1

WIN
x(i) , (7)

FDIF = ∑
i = 1

WIN
x(i) − x(i − 1) . (8)

Differences between the measures from each window are determined and combined in a 

weighted difference measure (G), with the subscripts 1 and 2 denoting which window the 

measures originate from:

G = ADIF1 − ADIF2 + kF FDIF1 − FDIF2 . (9)

kF is an integer parameter that weighs the contribution of the FDIF (and ADIF) measures.

Calculating G for every shift along the channel results in the signal G(t) over time for the 

full EEG recording. The ASG segment boundaries are estimated from the peaks of G(t). 
From G(t), it was noticed that oversegmentation could occur due to too many low-amplitude 

peaks, making the algorithm computationally expensive. Additions to this method have 
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previously been attempted to solve this issue, such as incorporating a static or adaptive peak 

threshold.26 Here, we choose to modify the method using a pair of thresholds that set a 

minimum allowable height (MINPEAKHEIGHT) and distance (MINPEAKDISTANCE) 

between successive peaks.

ASG is applied separately for each EEG channel and Fig. 2(b) shows the segment 

boundaries for a 100 s epoch of EEG in a single channel.

2.4.3 Feature extraction and cluster-time profiles—After segmenting the EEG into 

distinct characteristic segments by ASG, clustering is performed to group similar segments 

together. Using variance alone to group these segments is sensitive to artifacts and other 

unusual amplitude fluctuations, while not fully expressing the distinct behaviors between 

them. Thus, the defined characteristics of each group can be more distinctly expressed by 

calculating a series of both time-domain and frequency-domain EEG features:

• Amplitude Standard Deviation

• Difference between maximum and minimum amplitudes

• Maximum absolute amplitudes of first derivative of samples

• Maximum absolute amplitudes of second derivative of samples

• Mean frequency of EEG activity

• Square root of the power in the delta (1–3 Hz) frequency band

• Square root of the power in the theta (3–8 Hz) frequency band

• Square root of the power in the alpha (8–12 Hz) frequency band

• Square root of the power in the beta (12–30 Hz) frequency band

The mean frequency and power measures are calculated from the periodogram of power 

spectral density.

The features (and therefore the corresponding segments) from all channels are clustered 

together into k clusters using the k-means algorithm (with 20 repetitions to ensure a good 

initialization and clustering performance) and the mean variance of each clustered group of 

segments used to relabel the clusters by increasing order. Each sample in a segment is then 

replaced by its cluster label and plotted over time27,39 and the resulting label evolution over 

time for all channels are referred to as cluster-time profiles. A cluster-time profile of a 2 h 

EEG recording is shown in Fig. 2(c) for a single channel.

2.4.4 QS classification—By representing the evolving characteristics of the segments 

using cluster-time profiles, periods indicating large changes in segment behavior (the 

relatively higher discontinuity associated with QS) are reflected by larger fluctuations in the 

cluster labels. To classify these periods as QS:

(1) The cluster-time profiles are averaged across channels forming a single average 

cluster-time profile. This is to accentuate periods of large fluctuation, while 
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smoothing out channel-specific deviations and is illustrated in Fig. 2(d). Periods 

of relatively larger fluctuation (evident during QS) are also shaded.

(2) The resulting average profile is de-trended by subtracting the running (time-

varying) mean of the profile (Fig. 2(e)). This eliminates any natural underlying 

transients in the signal that may affect the QS classification. The running mean 

is calculated using a moving average (MA) filter of length avg_win_length 
samples and the resulting profile squared to further accentuate the peak regions 

(Fig. 2(f)).

(3) A longer MA filter of length smooth_win_length samples is further applied to 

the squared profile to produce a smooth envelope curve. QS periods are 

estimated by a threshold, calculated as the mean of the envelope curve (Fig. 

2(g)).

In cases of long recordings >2 h are processed (common in preterm recordings >36 weeks 

PMA), envelopes are derived separately for each 2 h segment and then stitched together 

before thresholding is performed (as in Fig. 2(g)).

A minimum of three consecutive minutes or three out of four consecutive minutes of the 

same sleep state are required to identify AS and QS, as described in previous studies.33,40 

Based on this scoring criteria, QS detections <3 mins are removed as a final post-processing 

stage. Figure 2(h) shows the output of CLASS with the estimated QS periods shaded, and 

the corresponding clinicians’ visual QS labels are shown in Fig. 2(i).

2.5 CLASS Optimization

The CLASS parameters (ASR_thresh, WIN, SHIFT, kF, MINPEAKHEIGHT, MINPEAK 
DISTANCE, k, avg_win_length, and smooth_win_length presented throughout Sec. 2.4) 

required specific tuning to perform best across the full PMA range. A summary of the 

parameters and definitions can be found in Table 1.

For parameter optimization, an exhaustive grid search is often used, where all possible 

combinations of parameters are tried with the algorithm to achieve a global optimum. 

However, with many parameters to tune, such a procedure would be computationally 

expensive. In addition, performance needed to be assessed over a range of PMAs. Selecting 

a single optimization criterion over age (as is typical for a grid search) was not appropriate 

for assessing age specific changes as the parameters were varied. Furthermore, certain 

combinations of parameters could cause the algorithm to become detrimentally slow and 

inefficient. Therefore, perturbation analysis was used to determine a sufficiently good set of 

parameters, using the defined training set of recordings, aged 27–40 weeks PMA.

In perturbation analysis, parameters are initially selected based on methods in literature25–

27 and informed estimates. Each parameter is independently perturbed in large steps and 

updated if it clearly improves CLASS performance (along with reasonable computational 

efficiency), based on Sensitivity and Specificity, when compared to the clinicians’ visual 

labeling. Those parameters whose CLASS performance is sensitive to, are additionally tuned 

using a finer local sweep to further improve performance. The optimized CLASS parameter 
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values, as selected by perturbation analysis, are also listed in Table 1. Parameters which 

proved most sensitive to CLASS performance are indicated.

2.6 Measures of agreement and assessing CLASS performance

Based on those ages exhibiting similar EEG behavior, six groups were defined according to 

PMA28,41 spanning two weeks (group 1: <31 weeks, group 2: 31–32 weeks, group 3: 33–

34 weeks, group 4: 35–36 weeks, group 5: 37–38 weeks, group 6: >38 weeks). Agreement 

of the clinicians’ visual labeling and CLASS-estimated QS periods was initially determined 

by the Sensitivity and Specificity. While these measures assess agreement between visual 

labeling and CLASS labeling sample by sample, they do not specify exactly how many QS 

periods are correctly detected or the exact number of misclassifications. We use two 

additional measures to quantify this, the Detection Factor (DF) and Misclassification Factor 

(MF). DF measures the proportion of visually labeled QS periods correctly detected by 

CLASS (also referred to in literature as the True Positive Fraction42), while MF measures 

the proportion of the CLASS-detected periods that are misclassifications:

DF = No. of correctly detected periods
Total no. of visually labeled periods , (10)

MF = No. of incorrectly detected periods
Total no. of CLASS detected periods . (11)

Both measures, being a proportion, have a range 0–1. A correctly detected QS period was 

defined if the CLASS-estimated and visually labeled period overlapped by >50%.

As an overall measure of performance, Receiver Operating Characteristics (ROC) curves and 

AUC values were defined across the test recordings (using the optimized parameters). The 

classification threshold of the smooth envelope curve (the red line shown in Fig. 2(g)) was 

varied about the originally selected mean value, for each recording. The median ROC curve 

over the recordings was then determined and its area under curve (AUC) calculated by the 

trapezium integration method. Median values were selected, as with most measures defined 

in this study, in the case of any extreme values brought about by analyzing over a wide range 

of PMA. CLASS performance was further assessed with respect to PMA over the range 27–

42 weeks, using Sensitivity, Specificity, DF and MF.

These agreement measures were also calculated for CLASS without ASR (using band-pass 

filtering alone), to assess the importance of ASR. Similarly, to quantify the contribution of 

ASG, CLASS was run alternatively using a uniform segmentation of the EEG signal at both 

1 s and 5 s durations (the typical duration range of the adaptive segments). CLASS was also 

applied using only the segment standard deviations to derive the profiles and classify the QS 

periods, omitting the calculation of multiple features and the clustering stage.
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As a third and final assessment of performance, CLASS was compared to the SAT% 

algorithm of Palmu et al.24 The algorithm is based on the Non-Linear Energy Operator 

(NLEO). With x(i) denoting the ith sample of the EEG channel, NLEO is defined as:

NLEO(i) = x(i) × (i − 3) − x(i − 1) × (i − 2) . (12)

To classify the QS periods in each recording, a threshold was applied to the final SAT% 

signal, defined as the mean SAT% of the recording. This allowed the threshold to change for 

each recording, adapting to the potential change in SAT% behavior with PMA. The 

threshold was selected by assessing classification performance on the training set (compared 

to visual labeling) under different weighted mean values, with the conventional mean 

performing best.

2.7 Defining normal maturational trends

To illustrate the usefulness of automated QS detection by CLASS in assessing electro-

cortical brain development, QS characteristics were derived from the CLASS QS estimates 

on the test set to obtain QS-specific maturational trends. This was performed on the band-

pass filtered EEG to allow for a direct comparison of the trends with those from the 

clinicians’ visual QS labeling.

Scher et al. and Jennekens et al. have previously revealed maturational trends in the spectral 

powers of preterm cohorts,40,43 while Koolen et al. have developed a robust burst detection 

method to assess the change in burst behavior in EEG over age.18,44 Based on these 

previous findings, the following characteristics were calculated for defining the trends:

(1) Relative spectral power in the delta, theta, alpha, and beta energy bands, 

calculated by dividing each band power by the total power over the full 

frequency range. Relative values take into account between-subject variability in 

total spectral power, which may vary substantially due to slightly different 

electrode positions between recordings.

(2) Burst percentage (Burst%), to quantify the relative proportion of suppressed 

periods (interburst intervals (IBIs)) and bursts in the signal. This used a robust 

burst detection method developed by Koolen et al.44

Median characteristics over channels were calculated from the QS periods to improve 

robustness to channel-specific deviations. The mean characteristic value across all QS 

periods in an individual recording was then used to test for a significant correlation with 

PMA. To correct for intra-patient and inter-patient variability, a random effects regression 

model was selected and extended to test for nonlinear trends. Statistical analysis was 

performed in SPSS version 23.

As well as comparing with the visual QS trends, CLASS QS trends were also compared to 

those derived from nonstate specific periods of EEG (both QS and non-QS). This was to 

determine if QS-specific trends were more clearly defined, and there-fore warranted. 

Nonstate specific EEG periods were extracted by selecting 20 min successive epochs of 
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EEG (equivalent to the average QS duration) across up to 4 h of EEG, depending on the total 

recording length. These extracted epochs were used to derive similar trends as for the QS 

periods.

3 Results

3.1 Assessing CLASS performance on the test set

3.1.1 CLASS performance with respect to PMA—Figure 4(a) shows the overall 

ROC performance of CLASS on the test set for each recording (in gray) and the median 

ROC curve (in black) which has an excellent AUC of 0.9703.

Figure 4(b) shows the Sensitivity, Specificity, DF and MF results for CLASS over PMA. 

Error bars denote the medians and interquartile ranges (IQRs).

In preterm infants in the range 31–38 weeks PMA, CLASS distinguished QS periods with 

excellent Sensitivity (median Sensitivity range 0.93–1.0), DF (median DF = 1), Specificity 

(median Specificity range 0.80–0.91), and MF (median MF range 0–0.25). Between 35–36 

weeks PMA, MF was optimal (median MF = 0) indicating very few misclassifications. At 

>38 weeks PMA, while DF, Sensitivity, and Specificity remained high, MF was also 

comparatively higher than at younger ages (median MF = 0.50). This suggested that QS 

periods were well detected but misclassifications were also prevalent. For ages <31 weeks, 

CLASS performance was most dubious, showing comparatively worse results for all 

measures. Recordings <31 weeks PMA corresponded to the poorer ROC curves shown in 

Fig. 4(a), although these were few. Overall, the results show that CLASS has an affinity to 

EEG recordings in the range of 31–38 weeks PMA.

3.1.2 Comparing CLASS performance for different algorithm stages—Table 2 

lists the median Sensitivity, Specificity, DF, MF and AUC values across recordings, 

comparing CLASS in its entirety to CLASS without ASR (CLASS-noASR), CLASS with 

uniform segmentation of 1 s (CLASS-USG1), CLASS with uniform segmentation of 5 s 

CLASS-USG5), CLASS using only standard deviation instead of multiple features and 

clustering (CLASS-SD), and the SAT% method. A paired t-test was used to test for 

statistically significant differences between CLASS and the other algorithms/versions of 

CLASS. Asterisks denote significant differences at the p < 0.05 level.

When comparing CLASS to CLASS-noASR, all agreement measures showed significant 

differences. Notably, CLASS-noASR had a higher MF of 0.40 and lower AUC of 0.85, 

although all measures were comparatively worse than CLASS with ASR. This shows the 

great importance of ASR in improving the quality and robustness of CLASS.

Comparing CLASS performance against CLASS-USG1, DF proved to be equivalent, with a 

statistically significant improvement in Sensitivity with CLASS-USG1 (although small). 

However, Specificity of CLASS-USG1 was significantly lower (0.76) compared to CLASS 

(0.82). Although not statistically significant, MF and AUC also showed lower values with 

CLASS-USG1 (0.33 and 0.96) compared to CLASS (0.25 and 0.98). Increasing the length 

of the uniform segmentation, as in CLASS-USG5, produced a worse performance. Apart 

Dereymaeker et al. Page 13

Int J Neural Syst. Author manuscript; available in PMC 2019 January 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



from DF (which remained the same as CLASS), all other values were statistically 

significantly poorer than CLASS, including MF and AUC values (0.33 and 0.95).

Performance with CLASS-SD revealed no statistically significant differences. In fact, 

CLASS-SD resulted in a slightly better MF and Sensitivity value of 0.20 and 0.84 

respectively, compared to CLASS (0.25 and 0.82). However, Sensitivity and AUC were both 

(marginally) lower than with CLASS.

3.1.3 Comparing CLASS with SAT%—The final comparison is between CLASS and 

the SAT% algorithm. It is clear from the results of all measures that the SAT% method was 

poor at performing automated QS detection. This indicates that SAT% alone is insufficient 

for accurately and robustly detecting QS.

3.2 Assessing QS characteristics

Table 3 lists the regression analyses for the QS characteristics of Burst% and the relative 

spectral powers for delta, theta, alpha, and beta bands during QS. This is shown for CLASS, 

visually labeled QS and nonstate specific EEG periods. Regression analysis results are 

presented with a p-value (significance defined as p < 0.05), a coefficient b (slope of the 

regression line), standard error, and 95% confidence intervals.

Based on the optimal ages for CLASS performance identified from the results in Sec. 3.1, 

QS characteristics were scrutinized only for the PMA range of 31–38 weeks (resulting in 45 

of the original 55 test recordings studied), as results for >38 weeks and <31 weeks would 

have proven unreliable due to the higher number of misclassifications.

After log-transformation, Burst% during QS (both with CLASS and visually labeled 

estimates) increased significantly with PMA (p< 0.001, linear correlation), and spectral 

power analyses showed a significant trend for relative delta, theta and beta powers during 

QS. Relative delta power decreased slightly across PMA, (p< 0.01 linear correlation), while 

relative theta power showed a significant quadratic relationship with PMA (p < 0.05). 

Relative alpha band power showed no significant correlation with PMA in both visual and 

CLASS QS estimates, whereas relative beta power showed a clear quadratic relationship (p 
< 0.05 CLASS, p = 0.056 visual). In terms of the slopes of the significant trends, all 

characteristics showed very similar agreement between CLASS and visual QS estimates, 

particularly for Burst% (b = 0.045 for both CLASS and visual) and log relative delta power 

(b = −0.014 for CLASS, b = −0.013 for visual). When compared with the maturational 

features derived from the non-state specific EEG epochs, the trends derived from QS proved 

to be superior. While the decrease in relative delta power and increase in Burst% with PMA 

were still significantly correlated, they were weaker, and relative theta and beta powers 

showed no significant correlations.

4 Discussion

To the best of our knowledge, this study provides the first approach for automated QS 

detection in multichannel EEG recordings of preterms without preselecting a PMA range. 

We show that the physiologically inspired CLASS algorithm can successfully and robustly 

Dereymaeker et al. Page 14

Int J Neural Syst. Author manuscript; available in PMC 2019 January 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



capture detections of QS periods. The study also provides a preliminary illustration for 

objectively examining premature sleep behavior, based on the fully automated detection and 

quantification of normal maturational trends from QS periods, and the broad age range that 

can be targeted.

Automated detection of sleep is challenging during this period of rapid brain maturation, 

because of the biological and technical variability in EEG background patterns. Previous 

attempts were either based on limited channel EEG recordings in very preterm infants <32 

weeks22,45 or focused on neonatal, term EEG.23,40,46–48 From a physiological point of 

view, the performance of CLASS actually reflects the development of QS EEG behavior in 

preterm infants, since it is based on the relative discontinuity at each PMA caused mainly by 

the difference in amplitude of the EEG activity between QS and other states.28,41

The overall results of the ROC, Sensitivity, Specificity, DF, and MF (with CLASS in its 

entirety) confirm the ability of this novel, automated algorithm to align with clinicians’ 

visual PSG sleep labeling and identifies the best performance of the algorithm to classify QS 

at 31–38 weeks PMA.

At <31 weeks, there is still great uncertainty in classifying QS. A combination of behavioral 

and EEG characteristics have been used for visual sleep labeling, since neither of these 

characteristics alone are considered as the gold standard.12,28,33,49,50 However, when all 

these criteria are required for state definition, increasingly immature infants will have higher 

proportions of indeterminate sleep. This indicates the immaturity of each cerebral and 

noncerebral sleep characteristic to represent distinct sleep states in the very premature 

infant50 resulting in an increase of indeterminate sleep periods and lower levels of definite 

QS.11,20,50,51 However, this limitation is true for visual as well as for CLASS 

classification. CLASS relies on discontinuity, and in this respect, indeterminate sleep can 

strongly resemble QS and be detected as such by the algorithm. Therefore, in premature 

infants <31 weeks, CLASS more accurately captures vigilance state cyclicity (variations in 

the states of discontinuity that is made up of both QS and indeterminate sleep periods) rather 

than definite QS, and should be interpreted as such.11,20,22,45,51

Near term age of >38 weeks PMA, a new sleep developmental trajectory is expressed, with 

the emergence of both high voltage slow-wave as well as tracé alternant QS patterns. This 

leads to a globally more continuous EEG and the relative change in discontinuity between 

QS and non-QS becomes less distinguishable. At this point, misclassifications may be too 

intrusive within the signal, further explaining the higher MF values and lower Specificity for 

infants >38 weeks PMA.

Introduction of the artifact removal method, ASR, proves to remove a major proportion of 

artifacts, as revealed in the improvement in results (most clearly notable with MF) when 

included. Of all the stages of CLASS (ASR, ASG, clustering), results point to ASR as 

providing the most significant improvement in performance. High power artifacts can skew 

the clustering by CLASS and ‘appear’ to be discontinuous QS, while also affecting the 

signal stitching. Upon division into 2 h segments, regions containing artifacts can be 

classified differently to regions that are relatively artifact-free. Envelope peak amplitudes 
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may differ across stitched segments as a result, and the QS detection threshold becomes 

highly inaccurate. With this said, the use of a single age calibration sequence might still be a 

limitation of ASR. In future applications of CLASS, the ability of ASR to automatically and 

robustly select a sequence over PMA, and therefore adapt to age, may further improve the 

QS detection capabilities of CLASS at the extreme ages.

The use of ASG as opposed to a uniform segmentation also results in better detection. The 

separation of the EEG into characteristic segments allows for a more structured and distinct 

clustering, unlike the selection of segments achieved by uniform segmentation. Such an 

arbitrary selection at fixed time points can lead to adjacent segments with elevated cluster 

labeling, resulting in increased misclassifications (the rise in MF) when compared to ASG. 

In addition, CLASS-USG1 was more computationally expensive than CLASS as it resulted 

in a larger number of segments to process by the algorithm. However, we showed that 

simply increasing the length of the segmentation (to 5 s) to alleviate this, is further 

detrimental to performance. Overall, this indicates that ASG improves CLASS performance, 

providing a faster segmentation of the EEG that will aid in the algorithm’s clinical 

usefulness.

The use of SD only for QS classification, yields similar results to CLASS with multiple 

features and clustering. While SD is typically a very sensitive feature to high-power 

artifacts, with the inclusion of ASR and ASG in preceding steps, it proves sufficiently robust 

within this dataset to classify QS well. Therefore, this implementation of CLASS may be 

sufficient in most cases and is a more intuitive interpretation of the method. However, when 

dealing with very noisy recordings (that may not be adequately filtered by ASR), SD would 

be more susceptible to artifacts than using a combination of features (and clustering), for 

distinguishing between QS and non-QS. Encountering noisy recordings is especially likely 

when assessing clinical outcomes from very large EEG datasets with no preselection and 

limited screening.

Comparison of CLASS with SAT% further motivates the usefulness and novelty of CLASS 

in the clinical setting. SAT% depends on the detection of the suppressed periods of EEG (the 

IBIs) in the EEG signal (with periods of longer IBI duration resulting in lower SAT% 

values). However, as the preterm matures, IBIs are reduced and effectively vanish near term 

age. The method is therefore only feasible at very young ages, although even then, SAT% 

more accurately resembles vigilance state cyclicity22,45 rather than definite QS (as in the 

case of CLASS). Therefore, while SAT% continues to show merit in other research, its use 

in explicit QS detection culminates in a poor performance across all ages.

To demonstrate the usefulness of CLASS for studying maturational trends, we show that 

QS-derived characteristics are very similar between visual and automated assessment. When 

focusing on the age groups with the best performance of CLASS (31–38 weeks PMA), the 

findings of time-domain and frequency-domain characteristic trends in these selected QS 

periods agree with those previously reported, and prove to be stronger than those assessed on 

nonstate specific EEG periods.17,31,43,52 Furthermore, with the close agreement in 

maturational trends between CLASS and visual QS estimates, the algorithm allows for the 

complete automation of this entire process. Future work with the aid of CLASS may help to 
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define the neurophysiological basis for background alterations in QS, and determine 

different maturational trends in infants with abnormal brain maturation.

Some limitations to this study are recognized. Our aim to develop a novel automated QS 

detection algorithm required the selection of a well-characterized dataset of healthy 

premature infants. As a consequence, this resulted in a small sample size with limited 

recordings, especially in the youngest and oldest PMA groups (further affected by the use of 

a distinct training and test set). However, to assess the robustness of the algorithm and avoid 

possible bias due to preselection of data, all EEG recordings were included (without 

omission), making this study transparent.

To assess algorithm performance, accurate visual sleep classification is also required. 

Cerebral and noncerebral signals were used in combination to increase the accuracy, but this 

ground truth remains somewhat ambiguous. Recently, the American Academy of Sleep 

Medicine12 renewed their recommendations for neonatal EEG sleep scoring in infants zero 

to two months of age. However, strict rules for scoring sleep from EEG in premature infants 

are lacking and based on expert opinion and most of the previously published studies of 

(automated) neonatal sleep classification, are from the experience of a single rater.21,22,48 

As a first step to optimize visual classification (and the accuracy of the ground truth), two 

raters independently labeled the data for this study. In our opinion, the inter-rater agreement 

achieved in this study (Kappa = 0.93), was sufficiently high to use as a basis for algorithm 

development. However, testing on new well-described databases and the input of different 

EEG experts, will further improve preterm and term neonatal EEG sleep interpretation.

Developing a QS detection algorithm was chosen as a first step to fully automate the 

analysis of preterm sleep behavior, but we did not yet focus on AS detection. However, the 

importance of AS in the conservation of a qualitative sleep-wake cycle, cannot be overstated.

11 Further directions towards algorithm development will aim to implement automated AS 

detection together with QS detection.

5 Conclusion

This is the first study to automatically and robustly detect QS periods from EEG recordings 

of preterm infants, covering a wide range of PMA (well into the final trimester of human 

pregnancy). The introduction of ASR to the CLASS algorithm improves robustness to 

artifacts in long duration multichannel EEG recordings, and most significantly strengthens 

the direct practical applicability of CLASS to aid clinical care. Objective QS maturational 

trends from CLASS QS estimates agree with the clinician’s visual labeling and provides 

stronger trends than those derived from nonstate specific EEG periods in the recordings. 

This opens the possibility for fully automated detection of abnormal preterm brain 

maturation and allows for further exploration into the relationship between cerebral activity, 

brain development, and neurodevelopmental outcome.
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Fig. 1. 
Histogram of the total number of EEG recordings used in the study, ordered by PMA. There 

are a total of 89 recordings ranging from 27 to 42 weeks PMA.
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Fig. 2. 
(Color online) (a) Flowchart of the stages of EEG processing by CLASS. (b) Illustration of 

the Adaptive Segmentation (ASG) stage for a 100 s period of EEG in a single channel. Red 

line denote the ASG segment boundaries. (c) Illustration of a Cluster-Time Profile for a 2 h 

epoch of EEG from a single channel. Features are extracted from each segment defined by 

ASG and then clustered and the corresponding segment cluster labels are then plotted over 

time for each sample. (d) The average cluster-time profile determined by taking the mean 

profile across all channels. Regions of increasing cluster fluctuation (shaded) correspond to 
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higher EEG discontinuity and QS periods. (e) De-trended signal after subtraction of the 

average channel from its running mean. (f) The square of the zeroed signal with the signal 

envelope shown by a red curve. (g) The signal envelope of a complete 4 h EEG recording, 

with the mean threshold to estimate the QS periods shown in red. Here, the 4 h signal 

envelope is formed by stitching the signal envelope processed for every 2 h epoch of EEG. 

The first 2 h of the stitched envelope shown in this figure correspond to the envelope derived 

in (f). (h) The QS periods as estimated by CLASS after thresholding with the mean of the 

signal envelope. Estimated QS periods are shaded. (i) The shaded QS periods as visually 

estimated by the clinician using the full PSG recording.
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Fig. 3. 
Illustration of the ASR method. (a) Top: A 30-min epoch of bandpass filtered (1–40 Hz) 

EEG in a single channel, before ASR is applied. High power artifacts are shaded. Bottom: 

The bandpass filtered signal after ASR is applied. The same shaded artifacts are now 

reduced while surrounding clean periods of the signal remain intact. (b) Illustration of the 

cleaning procedure of ASR on the EEG recording. Reconstruction metrics are calculated 

within the sliding window S in order to clean the sample of data along the dotted line 

denoted by s. As the sliding window moves sample-by-sample across the recording, the 

metrics are updated and the new sample s is cleaned.
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Fig. 4. 
Assessing the performance of CLASS on a test set of 55 recordings aged 27–42 weeks 

PMA. (a) ROC of CLASS performance by varying the detection threshold while keeping all 

other optimized parameters constant. ROC curves for each recording in the test set (in gray) 

are shown, and resulting median ROC curve (in black). The AUC of the median ROC curve 

is also presented. (b) CLASS performance with respect to PMA denoting Sensitivity (Sens), 

Specificity (Spec), DF and MF. DF and MF denote Detection Factor and Misclassification 

Factor measures, respectively. DF measures the proportion of visually labeled QS periods 

correctly detected by CLASS, while MF measures the proportion of CLASS-detected 

periods that do not correspond to the visual QS periods (i.e. are misclassifications). Error 

bars denote the medians and IQRs.
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Table 1

CLASS parameters that are tuned by perturbation analysis.

Parameter CLASS stage Definition Tuned value

ASR_thresh ASR Threshold for separating the artifact and artifact-free subspaces in the 
EEG.

10

WINa ASG Length of the contiguous windows that slide across the EEG. Used to 
detect large amplitude and frequency changes in the signal for 
identifying adaptive segment boundaries.

0.7s

SHIFTa ASG The step shift size of the sliding contiguous windows. 9 samples

kF ASG The weighting used to determine the joint contributions of the 
frequency and amplitude measures from which adaptive segment 
boundaries are determined.

10

MINPEAKHEIGHT ASG Minimum height between peaks in the combined amplitude and 
frequency signal, for defining an adaptive segment boundary.

100

MINPEAKDISTANCEa ASG Minimum allowable distance between successive adaptive segment 
boundaries.

25 samples

k Feature Extraction 
and Clustering

Number of clusters for grouping the features used to define the cluster-
time profiles.

12 clusters

avg_win_length QS classification Window length of moving average filter to determine a running mean of 
the cluster-time profile, for de-trending the signal.

500 samples

smooth_win_lengtha QS classification Window length of moving average filter to smoothen the cluster-time 
profile signal for QS classification.

35,000 samples

Note: CLASS: Cluster-based Adaptive Sleep Staging (automated QS detection algorithm); ASR: Artifact Subspace Reconstruction; ASG: Adaptive 
Segmentation; QS: Quiet Sleep.

a
denotes CLASS-sensitive parameters which caused large changes to the performance of the algorithm, when fluctuated.
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Table 2

Comparing CLASS performance at different stages of the algorithm, using Sensitivity (Sens), Specificity 

(Spec), DF and MF.

Algorithm Median Sens (IQR) Median Spec (IQR)   Median DF (IQR) Median MF (IQR) Median AUC (IQR)

CLASS 0.97 (0.92–1.0) 0.82 (0.71–0.88)   1.0 (1.0–1.0) 0.25 (0–0.5) 0.98 (0.92–0.99)

CLASS-noASR 0.81 (0.61–0.95)a 0.74 (0.65–0.83)a   1.0 (0.62–1.0)a 0.40 (0.25–0.65)a 0.85 (0.71–0.96)a

CLASS-USG1   1.0 (0.94–1.0)a 0.76 (0.67–0.82)a   1.0 (1.0–1.0) 0.33 (0–0.44) 0.96 (0.91–0.99)

CLASS-USG5 0.92 (0.87–0.98)a 0.79 (0.68–0.87)a   1.0 (1.0–1.0) 0.33 (0.036–0.54)a 0.95 (0.89–0.97)a

CLASS-SD 0.95 (0.90–1.0) 0.84 (0.73–0.90)   1.0 (1.0–1.0) 0.20 (0–0.44) 0.97 (0.93–0.99)

SAT% 0.54 (0.33–0.66)a 0.50 (0.47–0.54)a 0.50 (0.33–0.74)a 0.87 (0.80–0.92)a 0.48 (0.39–0.58)a

Note: ‘CLASS’ above denotes the algorithm in its entirety. This is compared to CLASS without ASR, with uniform segmentation of 1 s (USG 1) 
and 5 s (USG 5) (instead of ASG) and final classification using standard deviation alone (SD) (instead of multiple features and clustering).

a
Denotes significant differences between values at each stage and CLASS in its entirety, at p < 0.05 using the paired t-test. IQR: interquartile range.
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Table 3

Regression results for mean burst percentage (Burst%) and mean relative spectral power in delta, theta, and 

beta frequency bands. The log-transform of results are shown for CLASS QS estimates and visually labelled 

estimates from the clinician, as well as for non-state specific EEG epochs, for 31–38 week PMA range 

(optimal CLASS performance). For each measure, the slope (or b-coefficient, b), standard error (SE) of b, 

95% confidence interval (CI), and p < 0.05 significance is presented. In case of quadratic correlations, 

coefficients b1 and b2 of the equation are provided (y = a + b1x + b2x2). The alpha band power showed no 

significant correlations, and was therefore omitted from this table.

CLASS QS estimates Visual QS estimates Non-state specific EEG

Log Burst% b = 0.045 SE: 0.004
95% CI: (0.036 to 0.053)
linear correlation with PMA,
p < 0.001

b = 0.045 SE: 0.005
95% CI: (0.035 to 0.055)
linear correlation with PMA,
p < 0.001

b = 0.035 SE: 0.006
95% CI: (0.023 to 0.047)
linear correlation with PMA,
p < 0.001

Log relative delta power b = −0.014 SE: 0.004
95% CI: (−0.021 to −0.006)
linear correlation with PMA,
p < 0.01

b = −0.013 SE: 0.004
95% CI: (−0.022 to −0.004)
linear correlation with PMA,
p < 0.01

b = −0.010 SE: 0.005
95% CI: (−0.019 to −0.000)
linear correlation with PMA,
p < 0.05

Log relative theta power b1 = −0.679 SE: 0.284
95% CI: (−1.253 to −0.104)
b2 = 0.011 SE: 0.004
95% CI: (0.002 to 0.019)
quadratic correlation with PMA,
p < 0.05

b1 = −0.673 SE: −0.320
95% CI: (−1.334 to −0.012)
b2 = 0.010 SE: 0.005
95% CI: (0.000 to 0.020)
quadratic correlation with PMA,
p < 0.05

b1 = −0.281 SE: 0.333
95% CI: (−0.956 to 0.392)
b2 = 0.005 SE: 0.005
95% CI: (−0.005 to 0.014)
no significant correlation with PMA,
p = 0.35

Log relative beta power b1 = 1.071 SE: 0.342
95% CI: (0.377 to 1.765)
b2 = −0.016 SE: 0.005
95% CI: (−0.026 to −0.006)
quadratic correlation with PMA,
p < 0.05

b1 = 1.103 SE: 0.576
95% CI: (−0.060 to 2.267)
b2 = −0.016 SE: 0.008
95% CI: (−0.033 to −0.000)
quadratic correlation with PMA,
p = 0.056

b1 = 0.389 SE: 0.507
95% CI: (−0.646 to 1.411)
b2 = −0.007 SE: 0.007
95% CI: (−0.0203 to 0.007
no significant correlation with PMA,
p = 0.428
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