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How do societies learn and maintain social norms? Here we use
multiagent reinforcement learning to investigate the learning dy-
namics of enforcement and compliance behaviors. Artificial agents
populate a foraging environment and need to learn to avoid a
poisonous berry. Agents learn to avoid eating poisonous berries
better when doing so is taboo, meaning the behavior is punished
by other agents. The taboo helps overcome a credit assignment
problem in discovering delayed health effects. Critically, introduc-
ing an additional taboo, which results in punishment for eating a
harmless berry, further improves overall returns. This “silly rule”
counterintuitively has a positive effect because it gives agents
more practice in learning rule enforcement. By probing what
individual agents have learned, we demonstrate that normative
behavior relies on a sequence of learned skills. Learning rule
compliance builds upon prior learning of rule enforcement by
other agents. Our results highlight the benefit of employing a
multiagent reinforcement learning computational model focused
on learning to implement complex actions.

multiagent reinforcement learning | norms | third-party punishment |
cultural evolution | social norms

One of the central attributes that differentiates human from
other animal societies and accounts for the enormous gains

of human ultrasociality (1) is the presence of third-party enforced
norms (2–4). Many of these norms generate direct benefits for in-
dividual and group well-being: Norms that prescribe reciprocity,
fair sharing of rewards, or noninterference with property prop-
erly claimed by another, for example, can coordinate behavior
and sustain incentives for cooperation and investment. These
are the norms that are the primary focus of most research into
the properties and origins of human normativity (see ref. 3 for a
review).

The normative landscape is also, however, populated by many
norms that appear essentially arbitrary and without direct ma-
terial consequences (5–7). For instance, in some societies, eating
particular animals is unacceptable; in others, men are expected to
wear pants, not skirts; in many, there are words or hand gestures
that should not be used in polite company; and, in most, there are
rules about how one styles one’s hair or what one wears on one’s
head. Boyd and Richerson (8) use these examples: “wearing a tie,
being kind to animals, or eating the brains of dead relatives.” Fol-
lowing Hadfield-Menell et al. (9) we call such norms “silly rules.”
Silly rules abound in every human society (10). People generally
do not experience these rules as silly: They treat compliance with
these norms as important, and punish violations. Indeed, silly
rules are often imbued with great meaning; religious traditions
in most cultures are awash in silly rules. This is what makes them
such a puzzle: They are meaningful and enforced but, except for
effects generated by this socially- constructed salience, they have
no direct or first-order impact on welfare.

A few explanations for the existence of silly rules have been
explored in the literature. One explanation posits that silly

rules may exist to serve as cheap signals of group membership
and thus facilitate cooperation within the group (11). Another
account holds that silly rules are stable because, in any society,
the survival of each generation depends on the transmission
from prior generations of a large amount of culturally specific
and causally opaque knowledge (12). This includes everything
from which local plants produce edible versus poisonous fruit
to how best to organize to resolve disputes between family
members. Most of the time, individuals have no way of knowing
which of the many rules they follow are critical for their well-
being (13–15). Thus, silly rules may remain stable by virtue
of their incorporation into larger normative systems that also
include important rules (1). Further support for this hypothesis
is found in the tendency of human children to overimitate adults,
copying—and moralizing—even apparently irrelevant aspects
of adult behavior (16). No doubt these explanations account
for some aspects of the phenomenon of silly rules. However, it
would seem that a society would do better to minimize costly
efforts to punish and conform with norms that produce no
material benefits, and so to economize on the number of silly
rules used as markers for group solidarity or retained as a by-
product of the cultural transmission of knowledge. The sheer
abundance of silly rules seems to require an account that grants
the normative moralization (5) of seemingly irrelevant actions a
more fundamental role.

Significance

The fact that humans enforce and comply with norms is an
important reason why humans enjoy higher levels of coopera-
tion and welfare than other animals. Some norms are relatively
easy to explain: They may prohibit obviously harmful or unco-
operative actions. But many norms are not easy to explain. For
example, most cultures prohibit eating certain kinds of foods,
and almost all societies have rules about what constitutes
appropriate clothing, language, and gestures. Using a com-
putational model focused on learning shows that apparently
pointless rules can have an indirect effect on welfare. They can
help agents learn how to enforce and comply with norms in
general, improving the group’s ability to enforce norms that
have a direct effect on welfare.
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Fig. 1. Schematic overview of the experimental conditions. In the no rules condition, agents collect berries for reward. One berry color is poisonous and,
after a time delay, reduces reward obtained from consumed berries. Being poisoned is invisible to all players and a hard credit assignment problem. In the
important rule condition, eating the poisonous berry is a social taboo. When eaten, the player who ate the berry immediately gets marked, which is only
visible to other agents. Other agents can collect a reward by punishing a marked agent. In the silly rule condition, the same taboo against the poisonous berry
is in place, but, additionally, there is an identical taboo on a berry that is not poisonous. Therefore, there are two taboos for which agents can experience
punishment by others. Our experiment sets out to study the effects of these different normative schemes.

In this paper, we describe a mechanism through which silly
rules can benefit a society. Our argument is based on the dynam-
ics of learning in a group that lacks a priori knowledge of which of
their rules are truly important (causal opacity). Our explanation
relies on an essential asymmetry between the enforcement and
compliance aspects of normative behavior. In short, the skills
involved in third-party norm enforcement readily transfer from
norm to norm, while the skills involved in compliance are norm
specific. Thus, adding a silly rule to a normative system that al-
ready contains some number of important rules can be beneficial
because the silly rule may provide greater opportunity to practice
third-party norm enforcement, a generic skill. Improved norm
enforcement by the group then makes it easier for individuals to
learn, from experience, the skills necessary for norm compliance,
such as how to prospectively recognize and avoid specific taboos.
Therefore, introducing a silly rule may positively impact the
learnability of compliance behavior for all of a society’s rules,
including those that truly are important. The benefit of learning
important rules faster can outweigh the dead-weight loss created
by the silly rule.

Silly rules can support the emergence and stability of a bene-
ficial normative social order (17). In a normative social order, a
stable enforcement mechanism supports an equilibrium in which
group behavior is patterned on a classification scheme (called a
norm) that partitions behaviors into approved and disapproved
(taboo) categories. Here, we employ a computational approach
to investigate the effects of silly rules (Fig. 1) on how well
a normative social order is learned. Our model consists of a
multiagent reinforcement learning (RL) environment with eight
artificial agents, all simultaneously learning and interacting with
one another. Agents in our environment (Fig. 2) are faced with
learning a foraging task: learning to find and consume food
(“berries”). We assume that berries are relatively abundant, so
there is no competition between agents and no common pool re-
source problem. What makes the environment challenging is the
presence of a poisonous berry which, if eaten, will then reduce the
value of an agent’s future consumption. It can be interpreted as a
toxic food with delayed deleterious effects. The delay introduces
a difficult credit assignment problem, meaning it is difficult for
our agents to learn which particular berry caused the negative
effect and thus to learn to avoid it. Third-party punishment of
consuming poisonous berries could greatly simplify the credit
assignment problem, by providing a large negative reward closer
in time. In this setting, a taboo on the poisonous berry—however
it may evolve—raises individual welfare. As Boyd et al. (12) em-
phasize, this is a critical pathway by which culture raises human
well-being: through the transmission of cultural practices, such
as the avoidance of harmful foods, even when agents lack direct

causal awareness of why their practices are beneficial (12, 15).
For example, there are long-term negative health effects from
consuming maize without previously soaking it in an alkaline
solution—a practice that is well established in many cultures
dependent on maize, but which is often not understood causally
(13, 18).

The mechanisms behind social learning in humans may be
multiple: a psychological propensity to conformity (19, 20), de-
liberate teaching practices (21), and individual trial-and-error
learning in conjunction with third-party punishment of failures
to follow norms (22). Our work focuses on the last of these. The
requisite punishment actions can stand for anything that imposes
costs on the receiving agent, including nonphysical punishments
such as criticism or mockery (23). We show that agents are able
to sustain the transmission of a valuable taboo in order to avoid a
poisonous berry. For this, agents need to have learned generically
to recognize when another agent has violated a taboo and to
deliver a costly punishment to the violator.

Our model allows us to separate the learning of enforcement
and compliance behaviors from the learning of norm content
itself. We designed an experiment in which norm content was
fixed in advance by the experimenter (which berries are taboo).
Thus, by varying the content of the norms, we can study the down-
stream effects on how the normative behaviors (enforcement and

Fig. 2. Depiction of the environment. The agents inhabit a 2D world.
Agents earn a reward for eating berries, which regrow probabilistically after
being harvested. One type of berry is poisonous, and, if collected by an
agent, it diminishes the agent’s ability to gather rewards from other berries,
after a delay period. If an agent eats one of the poisonous berries in the
important rule condition, the agent immediately gets marked and appears
in a different color to the other agents. In the silly rule condition, one
additional, nonpoisonous, berry also triggers an agent’s marking. Agents
are able to punish each other using a “punishing beam,” causing a loss to
themselves and a larger loss to the punished agent. If a marked agent is
punished, the punishing agent receives a significant reward.
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compliance) are learned and hence whether and how normative
social order is achieved. If a player breaks a taboo, they change
color in the observations of other agents viewing their transgres-
sion. They become marked. Note that players cannot directly
observe their own marking. This reflects that norm violation is in
the eye of the beholder. The agent viewing the transgression, not
the agent committing it, sees the marking. If a player is marked,
other players can collect a reward for punishing them—modeling
either intrinsic or extrinsic rewards to third-party punishment.
This creates an incentive for players to learn to punish rule
violations, and thus for players to learn not to violate the rules.
This reflects the common situation across human history in which
there is a centralized classification scheme that labels transgres-
sive behavior, but enforcement is decentralized. For example,
in medieval Iceland, the “law speaker” was available to publicly
label acts as unlawful, and citizen juries at public meetings would
declare violators to be “outlaws”—performing the classification
function. But enforcement was completely decentralized, with no
public enforcers: Citizens were obligated to shun outlaws and
were authorized to take of an outlaw’s property (or even life)
without repercussions (24).

We first show that individuals achieve higher overall welfare in
a world where eating the poisonous berry is taboo, relative to a
world in which there are no taboos so avoidance of the poisonous
berry must be learned only through individual experience. We
show that, even with the cost of enforcement, overall group
welfare is higher with a norm than without. Thus, the normative
social order is valuable. We then show our main result: that
the value of a normative order is higher if the set of norms
in this regime includes not only important rules—such as the
rule against eating poisonous berries—but also silly rules which
make the eating of a harmless berry taboo and bring about the
same third-party punishment. In our environment, agents learn
to enforce, and comply with, norms more quickly if the rule
system includes two taboos—one against eating the poisonous
berry and one against eating a harmless berry.

Our results suggest an account of the ubiquity of rules that have
no direct impact on well-being by showing how such rules can
nonetheless raise group payoffs. They also provide a formaliza-
tion of normativity in a computational setting that we think will
expand the tools available for understanding both how human
normativity operates and how artificial agents that are capable of
participating in human normative social orders might be built. In
this sense, this work is part of a research program that ultimately
aims to develop models capable of capturing distinctive features
of human intelligence such as the origin of institutions (25).

Studying Social Norms with Deep RL
Norms are aggregate social phenomena. They can be studied
using a microfoundational approach by investigating mechanisms
by which they could emerge from the collective behavior of
individuals (17, 26). A wide range of methods exist for doing
this. For instance, one can study norms using stochastic evolu-
tionary game theory to capture tipping points and norm-change
phenomena (27) or use agent-based models to capture situations
where diverse agents have heterogeneous preferences (28). In
both classical and evolutionary game theory (29), the reduction
is often to a level of description where the elementary actions
are abstract choices like cooperate or defect (e.g., refs. 30–33).
These choices are treated as atomic, meaning they have no sub-
structure. However, that specific level of analysis is not special.
It’s possible that reducing to a more fine-grained description
of behavior may bring new microfoundational mechanisms into
view. For instance, it may be important to study not only what
choice agents make but also how they implement that choice (34).
Modern methods based on deep RL algorithms (e.g., ref. 35)
make this possible (36). By using them, we can construct models
of aggregate social phenomena that reduce to substantially more

fine-grained descriptions of individual behavior than was possible
in the past. This may prove especially important for phenomena
related to learning, such as social norms. For instance, learning
how to enforce a norm may be as important as learning to
enforce it.

Our approach to studying the microfoundations of normativity
uses multiagent deep RL, a suite of algorithmic techniques that
have been applied in recent work to study spatially and tempo-
rally complex (sequential) social dilemmas (37–46). Agents in
this framework are artificial neural networks, which learn behav-
ioral policies (associating actions to states) and obtain rewards
from an environment. They do not start out with representations
for any concepts like “norm,” “punishment,” “norm violation,” or
“social approval.” In fact, they have no prior knowledge of game
rules or states at all. The actions available to them operate only
at the most basic level: turn left, turn right, move one step for-
ward, etc. They must learn how their actions, observations (raw
pixels), and rewards relate to each other. They do this by learning
representations that generalize between similar situations.

The environment our agents inhabit provides the raw materials
of a third-party punishment regime: Agents see each other move
around the environment and may observe norm violations. Also,
at any time, they may take actions that reduce another player’s
reward (thereby punishing them). Our goal is to investigate
whether learning agents, interacting in groups, can discover—on
their own—the latent capacities the environment has provided.
When successful, agents generate a regime where latent norma-
tive infrastructure becomes manifest: Agents enforce norms and
comply with norms.

Environment Description. Agents in our experiment inhabit a two-
dimensional (2D) world in which they and other objects are
located at coordinates in space and only perceive locally around
themselves. An agent’s action space consists of basic movement
(such as moving forward or rotating left and right) and using a
“punishing beam” that can be directed at a nearby agent (Fig. 3).
Use of the punishing beam costs the punisher 20 points and
inflicts a cost of 35 points on the punished agent. A variety of
“berries” of different colors are distributed randomly throughout
the world. An agent receives a reward of four points if it navigates
to a square with a berry, interpreted as “eating it.” Berries grow in
sufficient abundance that there is no competition between agents.
Pink berries are poisonous: 100 time steps after consumption,
they reduce reward gained from consuming future berries to one
point.

The environment can include a latent classification scheme
(17) that designates some berries (colors) as “taboo.” This nor-
mative classification is implemented by inducing a change in the
color of an agent (visible only to other agents) who consumes a
taboo berry and changing the payoff associated with use of the
punishing beam against such an agent. Punishing a marked agent
generates a reward for the punisher of 15 points instead of a loss
of 20 points (note that punishment is always net negative for the
collective reward of the group). We consider the environment in
three conditions corresponding to three different classification
schemes. In the “no rules” condition, no berries are designated
as taboo. Agents never become marked, and punishing is never
profitable. In the “important rule” condition, the poisonous berry
is taboo. In the “silly rule” condition, both the poisonous berry
and another, harmless, berry are taboo. We manipulate the clas-
sification scheme to assess its causal effect on learning dynamics.
We hypothesize that overall returns are improved by adding the
important rule, and are further improved by adding the silly rule.

Multiagent RL. RL is a formalization of trial-and-error learning
in which an agent takes actions according to a policy in response
to observations it receives in an environment. The environment
is organized into episodes that reset after a certain number of
time steps. In particular, we use an “actor–critic” formulation, in
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Fig. 3. Agent architecture and training procedure. Agents learn together in one population of 12 agents, 8 of which are selected to play in one episode
in order to generate experiences (in multiple parallel environments). Each agent contains an independent neural network that receives a batch of its own
experiences from these environments to update its neuronal weights. The inputs the agents receive are the raw pixels from their field of view. The neural
network architecture of each agent learns abstract representations that parse the observations in a way that allows the agent to take reward-maximizing
action. The output of neural network on each time step is a prediction of the value of the current state and an action (movement or zap). The expected
received reward and actual received reward are compared, and the network weights are gradually adjusted to maximize long-term cumulative reward.

which the policy and the value function that estimates the value
of environment states are computed in a (deep) neural network.
This use of neural networks is necessary when agents observe
raw pixel inputs, as this creates too many states (unique pixel
patterns) for tabular RL to be tractable. The same problem would
apply also to other tabular approaches such as evolutionary game
theory. In deep RL, the neural network transforms the raw pixel
input into actions in a series of nonlinear transformations as the
agent’s observation propagates through the network. The neural
network weights in these transformations are gradually tuned to
produce rewarding behavior. In our simulation, the agent outputs
an action and a value prediction on each time step. The mismatch
between the reward prediction and the actual reward achieved
in the environment is used to adjust the neural network weights
in order to improve the prediction and chosen action in the
future.

As displayed in Fig. 3, we consider populations that consist
of 12 agents. Each of these agents contains a separate neural
network. The networks are identical in architecture, and are
initialized with random weights. Each agent’s experiences over
time—including its observations, actions, and rewards—shape
the weights in that agent’s neural network. The weights are
gradually optimized to choose actions that maximize the agent’s
reward over a long-term horizon, where rewards in the more
distant future are discounted relative to nearer-term rewards.
This setup in which each agent learns independently is analogous
to noncooperative games in economic models, as opposed to
multiagent setups where agents share rewards or use the same
neural network weights. These agent experiences are recorded
in batches from episodes in which 8 of the 12 agents are selected
to play in a shared environment. Each episode consists of 1,000
time steps. On each time step, each agent receives an observation
(the pixels in their individual field of view), obtains any reward
received on that time step (if any), and issues an action (moving
in the environment or zapping). At the start of training, agents’
actions are random, but, with growing experience, they are grad-
ually shaped to maximize reward. Importantly, while all agents

learn individually, they inhabit a shared environment. Through
this coexistence, they influence each other’s experiences and
learning. For example, one agent learning to effectively punish
taboo-breaking behavior may create incentives for other agents
to avoid breaking taboos.

Features of the Deep RL Framework. Agents learn continuously
while being exposed to episode after episode of interactions in
the same environment with a population of other agents who
are themselves learning simultaneously. In order to do this effec-
tively, agents need to correctly assign credit to current stimuli and
actions based on subsequent rewards they receive. This creates a
rich dynamic in which every part of a behavior has to be learned,
and strategic decisions have to be implemented via a behavioral
policy. Both the cognitive challenge of correct credit assignment
(determining which actions contribute to rewards over time)
and figuring out how to perform complex action sequences are
difficult. The dynamics of how norms are learned and imple-
mented are endogenous to the multiagent learning model. This
leads to a number of important differences from more abstracted
simulations like matrix games. We argue that, by focusing on
learning, this computational model may be particularly appro-
priate to model anthropological phenomena like the emergence
and importance of social norms. In particular, the model creates
rich learning dynamics for individual agents as well as groups that
could not otherwise be approached.

1) Complex action sequences: Punishing other agents’ behavior,
observing a rule violation or complying with a rule are com-
plex sequences of subactions that can look different each time
they are performed or observed.

2) Skills build on each other: As agents have to learn to imple-
ment complex behaviors, we can expect a temporal depen-
dency and sequentiality among these behaviors. For example,
for agents to learn to avoid a taboo, agents will first need to
learn how to effectively apply punishing, in order to motivate
rule compliance.
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3) Opportunity cost: As agents are driven by maximizing total
reward, whether or not an agent engages in social punishing
depends on the opportunity cost of the action sequence, the
agent’s skill in implementing it, and the reward gained by
punishing the other agent’s transgression. This means there
is an intrinsic economy to behavior that is bounded by what
agents have learned.

4) Generalization: Since the social dynamics are learned in neu-
ral networks, they afford the opportunity for, or even necessi-
tate, a degree of generalization. In particular, as punishment
is identical for the consequences of transgressing against an
important or silly rule, there is an opportunity for generaliza-
tion of the enforcement behavior learned for both rules.

5) Endogenous errors: As social punishing of silly or important
rules is implemented in the same way, a confusion between
the two can arise. Similarly, punishing might be misdirected
at agents that did not break a social taboo. These costly false-
positive incidents provide an intrinsic counterweight to the
development of an indiscriminate social punishing dynamic.
Importantly, unlike other frameworks, deep RL does not
require us to model mistakes in behavior as random noise
(e.g., refs. 33 and 47). Instead, mistakes in RL are emergent
from the learning dynamics and the inherent difficulty of
implementing an effective behavior policy.

Results
As displayed in Fig. 4, we examine group-level metrics about
agent populations over the trajectory of learning. For each
episode, we obtain a metric such as the number of times
unmarked agents were punished during the episode (Fig. 4A).

We also calculate the average number of training steps that
agents in the episode have experienced. We plot the average
metric obtained across all populations per conditions for a given
average of number of training steps for agents in the episode
that generated the metric. The plots thus show how average
behavior in an episode changes as agents in the episode gain
more experience.

The first result to highlight is that learning to avoid the poi-
sonous berry in this environment without the help of a social
punishing mechanism is prohibitively hard: Agents in the no rules
condition show no decrease in time spent poisoned (Fig. 4D).
This suggests the credit assignment problem is too hard in this
condition. By the time the negative rewards associated with
eating a poisonous berry are experienced, an agent has eaten
a lot of other berries and had possibly many interactions with
other agents, all of which interfere with learning the correct
association.

In contrast, in both normative conditions, we see that agents
learn to avoid poisonous berries: Total time spent poisoned in
these conditions quickly falls below the no rules level (Fig. 4D).
Effectively, the normative scheme alleviates the credit assign-
ment problem by introducing a negative reward for eating the
poisonous berry more immediately in time after consumption.
Moreover, Fig. 4F shows that it is worth it for a group to devote
resources to establishing this normative scheme. Once initial
learning is complete, collective return—the sum of total rewards
earned by the group net of the costs of punishment—is higher in
both the important and silly rule conditions than in the no rules
condition.

Fig. 4. We are examining per episode group-level metrics about agent populations (y axis) over the trajectory of learning (x axis in time steps). We plot
the average trajectory per condition (and standard error of the mean). (A) Number of times unmarked agents are punished (agents that have not broken
a taboo). (B) Number of times marked agents are punished (agents that have broken a taboo). (C) Fraction of time spent marked after breaking a taboo.
(D) Fraction of time agents spent poisoned. (E) The number of “taboo” berries eaten (poisonous and nonpoisonous combined, if available in the condition).
(F) Total sum of reward gained by group (including costs of punishing). In total, we observe a benefit of the silly rule condition in the intermediate stages
of learning, driven by an increased ability to avoid poisonous berries. We also see a temporal order to learned behaviors, for example, an increase in social
punishment that then declines together with a decrease in number of taboo berries eaten.
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But, surprisingly, for a significant period, the group’s rewards
are highest in the silly rule condition—that is, in the ostensi-
bly wasteful setting in which the group devotes resources to
punishing the eating of a harmless food. We test the differ-
ence in collective returns between the important rule and silly
rule conditions in 10 separate time bins. There is a significant
benefit of the silly rule in the fourth, fifth, and sixth time bin
(fourth: t((28)) = 3.94, p = 0.0005; fifth: t((28)) = 3.26, p =
0.003; sixth: t((28)) = 2.43, p = 0.022; the fourth and fifth time
bins remain significant after Bonferonni correction for 10 multi-
ple comparisons).

The reason for the benefit of a silly rule can be seen in the
learning dynamics and, in particular, the sequence with which
behaviors are learned in the group as a whole. Before the group
can enjoy the benefits of a rule that ties immediate negative
consequences to the eating of poisonous berries, its agents need
to learn to effectively punish rule violations—to recognize when
a rule is violated and that punishment of a transgression will earn
rewards.

As visible in Fig. 4A, the first thing agent populations learn is to
reduce the frequency with which unmarked players are punished.
Punishing unmarked players is costly to both the punished and
the punishing agent, so it is unsurprising that this behavior does
not persist long once actions become less random. As can be
seen in Fig. 4F, this rapid initial learning increases the collective
return. Note that the suppression of misdirected punishing hap-
pens fastest in the no rules condition. This is expected, as, in this
condition, there is no direct incentive to punish any other players
at all, because there are no taboos that lead to marked players.

The second important learning dynamic we observe is that, in
our normative conditions, the number of times marked players
get successfully punished initially strongly increases before it
decreases (Fig. 4B). We interpret the increase as an improvement
in the agents’ skill at enforcing the social norm, that is, being
increasingly skilled at effectively punishing marked agents. We
also see, as shown in Fig. 4C, that the amount of time agents
spend marked is steadily declining. However, taken by itself,
this metric does not differentiate between the case in which
this decline is driven by agents becoming better at avoiding rule
violation and the case in which agents get better at punishing
rule breakers and thereby converting marked players back to
unmarked players. As can be seen in Fig. 4E, the decline of
successful punishments coincides with a decline in the number
of taboo berries eaten. This shows that there is a sequence in the
learned behaviors, as, first, the social punishing system needs to
be successfully implemented before it is possible for agents to
learn that they should avoid breaking the social norm.

This sequencing—learning to punish effectively before learn-
ing to comply with rules—expresses the value of silly rules: Silly
rules help a group to more quickly learn to punish, which leads
individuals to learn to comply more quickly with the impor-
tant rule and thereby avoid the toxic food. Early in learning,
unsurprisingly there are more taboo berries eaten in the silly
rule condition than in the important rule condition (Fig. 4E);
there are twice as many taboo berries in the environment. As
agents learn to punish players who have eaten a taboo berry,
this also leads to more punishment in the silly rule condition
(Fig. 4B). But this higher rate of punishment then apparently
leads agents to learn to avoid poisonous berries faster and more
effectively as measured by the number of poisonous berries eaten
and the time spent marked (Fig. 4 C and D); once these quantities
start to decline, they decline more rapidly in the condition with
two taboos instead of one and, in fact, reach a lower level. So,
it appears that increased exposure to taboo berries and pun-
ishing early leads to more robust learning. This is evident in
later stages of learning where agents eat fewer taboo berries in
total in the condition in which there are twice as many in the
environment.

Fig. 5. Higher rates of punishment in early stages are related to less time
spent poisoned later in training. Each marker is an independent population
of agents. On the y axis, we plot how often players are punished in an
episode early in training (between time steps 0 and 2e8). On the x axis, we
plot the mean time players spend poisoned in later episodes (time steps 2e8
to 4e8). The results are consistent with the interpretation that a high peak in
punishment early in training is followed by more avoidance of the poisoned
berry later.

The results suggest that more frequent punishment early in
learning is associated with less time spent poisoned in subsequent
stages of learning (Fig. 4). We directly test this hypothesis by
exploiting the variance across different training runs (i.e., sep-
arate populations.) For each of the 15 populations that trained
in each normative condition, Fig. 5 plots the average amount
of punishment delivered in an episode during the first quintile
of learning (between time steps 0 and 2e8) on the vertical axis
and the total time spent poisoned during the second quintile
(between time steps 2e8 and 4e8) on the horizontal axis. In
both normative conditions, we find that high rates of punish-
ment in the early stages of learning are related to low amounts
of time spent poisoned in subsequent stages (important rule:
r =−0.79, p = 0.0004; silly rule: r =−0.39, p = 0.15, n = 15).
Note that the correlation is weaker in the silly rule condition,
but that the magnitudes of both measures differ strongly with
substantially higher early punishment and lower subsequent poi-
soning in the silly rule condition. However, like all large-scale
observational longitudinal studies with multiple actors, this result
could potentially be confounded, since all actions are entangled
and interdependent—because agents react to other agents. We
address this issue in the following analysis.

Probing What Agents Have Learned. Studying the effects of mul-
tiple agents’ interactions over time allows us to investigate the
effects of social norm enforcement on the population at large
but does not enable conclusions about what specific mechanisms
cause an individual agent’s behavior. Psychology experiments
with human participants address this issue by isolating specific
mechanisms and testing these in controlled conditions, such as
reactions to particular stimuli in laboratory experiments. Our
simulation allows us to follow this logic and confront our arti-
ficial agents with tightly controlled experimental environments
inspired by laboratory testing to directly probe what the agents
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Fig. 6. Single target probes or “zero-shot generalization.” (A) Depiction of probe. An agent is placed in an empty room with just one other object (berry
or agent), and we measure how many time steps it takes before either the agent interacts with the object (eats the berry or zaps the player) or time expires
(30 time steps). Note that, in all following plots, the y axis is reversed: The origin represents that the maximal amount of time steps passed (30), and the
top represents that the minimal amount of time steps passed (zero) until the episode is terminated. (B–D) Berry types across the three different conditions.
Agents learn to avoid berries that are taboo. Lines depict the mean across populations of how quickly the agent interacts with the object (y axis) over learning
(x axis). Error bars represent SEM over different independent populations. (E and F) Difference between important rule and silly rule for approaching the
poisoned berry (same as in C and D) and punishing the marked player. Agents are faster to learn to avoid the poisoned berry and punish taboos in the silly
rule condition. (G) Early punishing (mean 0 to 2e8 steps) of the marked player is associated with reduced consumption of the poisoned berry (mean 2e8 to
4e8 steps) later in training.

have learned. As shown in Fig. 6A, we implement these quasi-
laboratory experiments by extracting agents at different points
in training and recording their actions when placed in a simple
empty environment with no other agents, and only one stimulus
to interact with. Critically, the agent is not learning in this en-
vironment. Running this experiment with multiple copies of the
same agent allows us to run multiple trials to probe an agents’

response to a particular game object in isolation. This tests what
the agent has learned at different stages of training. Even though
these tests constitute environments that the agent has not seen
during training, the behavioral results align with what the agent is
expected to learn in its training environment. This is particularly
interesting because it requires a degree of generalization from
the agents (“zero shot,” as the agents do not learn during the
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probe). Their successful transfer of behaviors learned in large
complex environments to an empty testing environment indicates
that they learned robust behavioral responses to game objects.

In each of these experiments, we measure how many time
steps out of a maximum of 30 it takes for an agent to move
toward different objects. Fig. 6 B–D displays how the number of
time steps to approach different berries changes over training,
when confronted with one berry at a time. Note that the vertical
axis begins at 30 and declines to 0, so that a rapid approach is
represented by points toward the top of the plot. These approach
behaviors vary over the course of training and by the conditions
the agents have learned in. As expected (compare Fig. 4D),
agents learn to avoid the poisonous berry (pink) in the important
rule and silly rule conditions but not in no rules condition. Ad-
ditionally, agents learn to avoid the harmless taboo berry (teal)
in the silly rule condition. Fig. 6E overlays the poisonous berry
lines from Fig. 6 B and D and illustrates that agents learn to avoid
the poisonous berry more in the silly rule condition than in the
important rule condition. Similarly, Fig. 6F shows the results of
placing an agent in an environment with a marked player and
measures the time until the agent punishes the marked player.
The result illustrates that agents punish marked players more if
they trained in the silly rule than if they trained in the important
rule condition.

Again, we set out to test the hypothesis that learning about
punishment early in training is associated with subsequent avoid-
ance of the poisoned berry. Fig. 6G mirrors the results of Fig. 5,
demonstrating that the single-player probes are consistent with
the behavior observed in the multiagent setting. We correlate
the degree to which a probed agent punishes the marked player
during the early stages of training (mean of time window 0 to 2e8
steps, marked in Fig. 6F) with that agent’s subsequent tendency
to consume the poisonous berry (mean of time window 2e8 to 4e8
steps, marked in Fig. 6E). In both conditions, we find a negative
relationship (important rule: r =−0.86, p < 0.0001; silly rule:
r =−0.46, p = 0.085, n = 15). Again, note that the absolute
magnitude of the values differs across conditions; all data points
in silly rule are restricted to relatively high punishment and low
rates of approaching the poisonous berry. In sum, these results
support the conclusions drawn from the full multiagent simu-
lation: The additional taboo leads to more frequent punishing
events earlier during training, which, in turn, supports agents’
learning to avoid the poisonous berry. Crucially, these results
were obtained in a controlled experimental setting that directly
probed what agents have learned by observing their reactions to
single objects. These results suggest a sequential, social acqui-
sition of skills, explaining why silly rules help agents learn and
behave according to rules.

Discussion
This work suggests an account of why human normative systems
contain so many silly and arbitrary rules that is grounded in the
mechanics of learning within a single group. The presence of silly
rules creates the potential for a larger number of norm violations.
From the perspective of an agent learning the skills necessary to
effectively enforce their society’s norms, the additional violations
constitute additional opportunity for practice, and thus promote
a faster rate of improvement in their command of the mechanics
of third-party punishment. On the compliance side, the rate at
which individuals may learn by trial and error to avoid violating
taboos depends on the enforcement environment they inhabit.
When their group mates implement highly effective third-party
enforcement strategies, then exploratory taboo violations are
punished both swiftly and surely. Since both speed and certainty
of reward (or punishment) are factors known to improve credit
assignment in trial-and-error learning (42, 48, 49), highly “ef-
fective” compliance policies (i.e., policies that avoid violating
taboos) can be learned rapidly under these conditions. On the

other hand, when third-party enforcement is ineffective, then
exploratory taboo violations frequently go unpunished, or their
punishment comes only after a substantial delay. Such conditions
are known to make trial-and-error learning very difficult and
slow. Enforcement and compliance are asymmetric in the sense
that the former is a skill that may be applied without modification
to any norm, since many of the subbehaviors involved in third-
party punishment are directed toward the violator (e.g., chasing
them), not toward the event of the violation itself. Thus they
are “transferable skills,” generically applicable to any norm.
Compliance, on the other hand, requires learning to recognize
for oneself what would constitute a violation. Now consider also
that every society contains a certain number of important rules
for which ensuring compliance has first-order effects on welfare.
The interpretation of our key result is that the role of silly rules
in human normative systems may (in part) be to help train a
society’s ability to comply with important rules. Adding silly rules
into a normative system that already contains important rules
can be expected to improve the learning of enforcement for all
rules, thereby improving the learning of compliance for all rules,
including the rules that truly matter.

Although we have used the language of physical punishment
in referring to the punishment mechanism available to our agents
as a “zapping beam,” we could also interpret punishment as com-
municative: conveying the information to an agent that they have
violated a social norm. The communicative aspect of punishment
is also consistent with our modeling of a norm violation as being
information that is available, in a foundational sense, only to third
parties: It is socially constructed. Agents learn what is a norm
violation (what produces marking) only from the reactions—the
messages—of others. If third parties are incentivized to deliver
such messages and violators develop the cognitive apparatus that
causes such messages to trigger a cost, then the core features of
our model are in play. A raised eyebrow, for example, can cause
a person to feel shame, and avoiding the experience of shame is
the avoidance of punishment—even though the punishment is, in
a sense, self-inflicted (50). Such subtle punishment dynamics may
underlie cultural learning, as in models that implement a taste for
conformity. In our model, inflicting punishment on another is a
costly act for a third party to take, and the high cost is important
in our setup to ensure punishment is not overincentivized. This
cost is felt most when punishing unmarked players, since the cost
of punishing marked players is balanced by the intrinsic drive to
punish transgression. Thus the cost to the punisher could be seen
as reflecting the effect of a not explicitly modeled second-order
punishment scheme that discourages the punishing of unmarked
individuals.

Our model also resonates with other accounts of how multiple
norms relate to one another. The generalization between norms
is reminiscent of the concept of cultural “tightness” or “loose-
ness” of societies (51, 52), which explores group-level benefits
such as more effective coordinated responses to threats. This
formulation describes the strength of social norms and sanctions
in a society overall, across a wide range of norms. Similarly, in
a simulation by Hadfield-Menell et al. (9), the presence of silly
rules allows individuals to draw more accurate conclusions about
whether or not rules in general are enforced in a given society.
However, our model does not rely on, or speak to, competition
between groups. For instance, explanations centered around in-
group/out-group classification and group cohesion (14) could
operate in addition to the dynamics we describe in our model.

The fact that average group payoffs are higher in simulated
environments with silly rules is not, of itself, a basis for con-
cluding that this is why silly rules evolved in human societies.
However, this work illuminates what it would take to support that
claim. A fully evolutionary account of silly rules requires showing
that the group-level benefits which could drive group selection
are unlikely to be overwhelmed by individual selection favoring

8 of 11 PNAS
https://doi.org/10.1073/pnas.2106028118

Köster et al.
Spurious normativity enhances learning of compliance and enforcement behavior

in artificial agents

https://doi.org/10.1073/pnas.2106028118


SO
CI

A
L

SC
IE

N
CE

S

individuals within the group who do not participate in the silly
rule behaviors (53). In our approach, punishment and compli-
ance are fundamentally generic behaviors: Agents learn to punish
any behavior for which social punishment is rewarded. Group
selection in this context would operate not at the level of individ-
ual norms but rather at the level of normative infrastructure: the
practice of punishing what the group designates as punishable,
whatever that might be (8). The benefit of the silly rule in our
environment is that it supports the learning of the behaviors
that constitute a normative infrastructure, and, once established,
that normative infrastructure is capable of enforcing important
norms. The individual trait at work is the inclination to punish
what the group designates as punishable, and there is no distinc-
tion between the silly rule and important rule conditions in this
regard. The major boundary from an evolutionary perspective is
the boundary between the no rules condition and the normative
conditions. This grounds our approach in the central question
considered by the literature on cultural evolution of why third-
party punishment of group norms has evolved in humans. We
have not shown proof that punishment will evolve; we supplied
our agents with an exogenously determined and hefty reward
for punishing behaviors identified by an exogenous classification.
We have only shown that agents can learn more quickly that
punishment of certain third-party behaviors is rewarded if there
are more rules to generate opportunities to practice. Therefore,
this work focuses attention on how those rewards might have
arisen among humans. Henrich and Boyd (20) offer one possi-
bility: If there is second- (or higher-) order punishment of agents
who fail to punish what the groups deems punishable, a small
amount of a conformist tendency to punish what others punish
could provide the (intrinsic) reward. This idea was explored in
a deep RL model by Vinitsky et al. (54). Our simulation does
not model second-order punishment, but we would conjecture
that, if an agent who failed to punish another agent seen eating
a taboo berry were marked in our environment, then agents
would also learn to punish that behavior. Rewards for third-party
punishment might also have arisen initially in the context of one
individual assisting a victim in retaliating for directly harmful
behaviors, and being rewarded by that individual for doing so,
or from cooperative efforts to deter uncooperative actions that
reduce subgroup payoffs. Boyd et al. (55) present a model in
which such cooperative punishment can be evolutionarily stable
if cooperative punishers can signal their presence in a group
and only punish when there are enough others signaling their
willingness to do so. These are possibilities to explore in further
elaborations of the deep RL model.

Future work in this vein could seek to synergize deep RL mod-
els with cultural evolution models. This could be accomplished
by adding an evolutionary algorithm layer using group selection
(56) or endowing agents with a cognitive architecture that can
dynamically generate particular norms (54). Understanding how
cultural abilities can be learned in multiagent settings may play
a critical role in understanding the emergence of human-level
intelligence (25, 57, 58).

Materials and Methods
Multiagent RL: Model and Notation. Formally, we consider multiagent RL
in partially observable general sum Markov games (59, 60). In each game
state, agents take actions based on a partial observation of the state space
and receive an individual reward. Agents must learn, through experience,
an appropriate behavior policy while interacting with one another. We
formalize this as follows: an N-player partially observable Markov game
M defined on a finite set of states S. The observation function O : S ×
{1, . . . , N} → R

d , specifies each player’s d-dimensional view on the state
space.

In each state, each player i is allowed to take an action from its own setAi .
Following their joint action (a1, . . . , aN) ∈ A1 ×. . .× AN, the state

changes, obeying the stochastic transition function

T : S × A1 ×. . .× AN → Δ(S), where Δ(S) denotes the set of discrete
probability distributions over S, and every player receives an individual
reward defined as

ri : S × A1 × . . . × AN → R for player i. Finally, let
oi = {O(s, i)}s∈S be the observation space of player i.
Each agent learns, independently through its own experience of the

environment, a behavior policy πi : Oi → Δ(Ai) (written π(ai|oi)) based on
its own observation oi = O(s, i) and extrinsic reward ri(s, a1, . . . , aN). Each
agent’s goal is to maximize a long-term γ -discounted payoff defined as
follows:

Vi
�π(s0) = E

[ ∞∑
t=0

γ
tri

(st ,�at)|�at ≈ �πt , st+1 ≈ T (st ,�at)

]
. [1]

Experiment and Conditions. Agents play a foraging task implemented as a
partially observable Markov game in a 2D world (Fig. 2). Agents gain reward
by collecting berries that stochastically respawn. The respawn probabilities
are high, so there is little competition for resources. Moving onto the
coordinates of a berry, agents earn a reward of four points. Each berry
type is persistently mapped to a color (24 different types). One berry type
is “poisonous.” There is no other signal of which berry type is poisonous
that is observable to an agent at the time of consumption, except the color,
which remains consistent for all episodes. If collected by a player, this player
is “poisoned” after a delay of a fixed number of time steps (100 time steps).
Poisoning reduces a player’s ability to absorb nutrition: After poisoning sets
in, each subsequent berry the player collects yields a reward of one point
instead of four points. Besides moving, agents have, in their behavioral
repertoire, the ability to apply a “punishing beam.” If successfully targeted
at another player, the user of the beam loses a reward of 20 points (the
cost of punishing) and incurs the opportunity cost of time spent aiming and
firing the beam instead of collecting berries, and the punished player loses
a reward of 35 points.*

Each instance of the training regime for a population of agents is initial-
ized in one of three different conditions. This is a between-subjects design:
Each agent population only experiences one of these three conditions. The
conditions differ in the content of the classification scheme that marks
agents if they have broken a taboo. We consider three conditions: no berry
is taboo (no rules), the poisonous berry is taboo (important rule), and the
poisonous berry and one harmless berry are taboo (silly rule). In no rules,
there are no additional mechanics to the game beyond what is described
above. Agents have to learn which berry is poisonous without any additional
information. In important rule, we introduce a group rule against eating
the poisonous berry type. In this condition, a player that eats a poison
berry is automatically marked: From the perspective of other agents in
the environment, the marked player changes color. This color change is
not visible to the marked player itself. This color change implements the
idea that other agents evaluate the consumption behavior of the agent
that has chosen to eat a “taboo” food. This marking then interacts with
the punishing capacity of other agents. If a marked player is successfully
targeted by another player with a punishing beam, the punishing player
gets a reward of 35 points—effectively transferring reward from the marked
player to the punishing player, for a net payoff to the punishing player of
15 points. Note that, when considering the sum of rewards of the whole
group, a successful punishment results in a net loss for the group of 20 points
because of the cost of using the punishment beam. Aiming punishment at a
nonmarked player is costly to both players as in the no rule condition. Once
punished, the marking disappears.

In silly rule, we augment the important rule with an additional silly rule,
or arbitrary taboo. Players become marked not only if they consume the
poisonous berry but also if they consume another designated, but harmless,
berry. As in the important rule condition, successful punishing of an agent
that has violated the silly rule by consuming the designated harmless berry
earns the punishing agent a net of 15 points and costs the transgressing
agent 35 points. Thus, from the perspective of the agents, the “important”
and “silly” rules are isomorphic if they have not integrated knowledge of
the actual poisoning dynamic.

Note that, in these settings, the classification scheme is implemented
by the environment. We have not modeled the emergence of the rules
themselves. Agents are incentivized to learn policies that implement the

*Video of example episode is available at https://youtu.be/Xn2eTSX-4GU. Consumption
of taboo berry and subsequent punishment are shown at 23 s to 25 s. Note that agents
see a lower-resolution version of the environment in which each entity is represented
by a single pixel.
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behaviors of collecting berries, delivering third-party punishment, and
avoiding taboo berries that create a risk of punishment.

Agent Architecture and Training Method. Each instance of the training
regime contained a population of 12 learning agents, each comprising a
separate neural network. Note that this population size is too small to
accurately reflect human societies (61). We assume that population-level
dynamics would generalize to larger populations, but this has to be tested
empirically by future work. The environment is a 2D world of size 33 × 12
pixels, and agents observe a 15 × 15 pixel RGB window, centered on their
current location. (Note that the figures in this paper are higher resolution
for display purposes.) In each episode, a random subset of eight agents
was drawn (without replacement) to play in that episode. Each episode
lasted for 1,000 steps. For each time step s, each agent i in the population
produced a policy πi and an estimate of the value Vi

�π(s) computed by a
neural network, implemented on a GPU. The neural networks were trained
by receiving importance-weighted policy updates (62) sampled from a queue
of trajectories. These trajectories were created by 64 simultaneous environ-
ments on CPUs that play the game (with eight players, which used policies
sampled uniformly from the population of learners without replacement).
The learners received truncated sequences of 100 steps of trajectories in
batches of 16.

As illustrated in Fig. 3, each agent maintained an independent neural
network. This network took raw pixel inputs as observations and output
an action and an estimate of the value of the current state. This value
estimate was used to calculate whether the actual reward outcome was
better or worse than expected. The first layers of the neural network were
convolutional layers that learn spatial patterns. They were followed by
fully connected layers that can learn more abstract representations of the
game. Finally, a recurrent neural network that can maintain activations over
multiple time steps learned temporal dependencies.

In detail, the neural network’s architecture consisted of a visual encoder
(2D convolutional neural net with six channels, with kernel size and stride
size one) followed by a two-layer fully connected multilayer perceptron
(MLP) with 64 rectified-linear unit (RELU) neurons in each layer, a long short-
term memory network (LSTM) (128 units), and, finally, linear policy and
value heads, outputting the value of the current state and a probability over
actions to be chosen. We used a discount factor of 0.99, the learning rate was
0.0004, and the weight of entropy regularization of the policy logits was
0.003. We used the root mean squared propagation (RMSProp) optimizer
(learning rate = 0.0004, epsilon = 1e-5, momentum = 0.0, decay = 0.99). The
agent also minimized a contrastive predictive coding (CPC) loss (63) in the
manner of an auxiliary objective (64).

Statistical Analysis of Observational Data. In order to assess the difference
between conditions, we divide the learning time course into 10 bins and

average the collective returns for each instance of agent populations in each
bin. We use a t test to compare the important rule and silly rule conditions in
each bin. We correct the results with a Bonferonni correction for 10 multiple
comparisons (10 time bins).

For the important rule and silly rule conditions, we extracted the mean
values for each population of early punishment (mean of the time steps
0 to 2e8) and subsequent (mean of the time steps 2e8 to 4e8) time spent
poisoned. These two measures were then correlated within each condition.

Note that all statistics are done with the data points corresponding to
entire populations that each contain 12 agents. This is done because only the
data of the entire populations are independent of each other (the agents
within one population affect each other, and therefore do not produce
independent data).

Probe Methods. For each agent in each population, the agent’s unique neu-
ral networks were loaded from 20 evenly spaced time points spanning the
training run. The agent was then placed in a small empty black environment
that contained only one sprite placed in front of the agent (the sprite of a
berry or agent). Each episode terminates when the agent interacts with the
sprite, or after 30 time steps (timeout). Valid interactions with sprites are
“eating” (upon contact) when the sprite is a berry and “zapping” with the
punishment beam when the sprite is an agent. The duration of an episode
is our metric for measuring the agent’s tendency to interact with the sprite,
akin to a “revealed preference” for interacting with a game object. Shorter
episode duration indicates a higher preference of the agent to interact with
the sprite. Note that the agents do not learn in these episodes. In these
probe episodes, agents are exposed to the sprite of the pink poisonous
berry, a green berry that is taboo in the silly rule condition, four berries
that are neither poisonous nor taboo, and the sprite of the marked player.
The 20 samples per agent from different time points during training are
probed individually with each sprite. Each probe is repeated 20 times, and
the duration of all episodes is averaged. The results for each time point are
then averaged across all 12 agents in the population, resulting in 20 data
points of each population’s probe performance over the course of training
(15 each for important rule and silly rule and 5 for no rules). Mirroring the
observational data, we extracted the mean values for each population of
early punishment (mean of the time steps 0 to 2e8) and subsequent (mean of
the time steps 2e8 to 4e8) approach of the poisoned berry for the important
rule and silly rule conditions. These two measures were then correlated
within each condition.

Data Availability. Learning trajectories from the simulation displayed in
the plots have been deposited in GitHub (https://github.com/deepmind/
spurious_normativity).
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