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Abstract

Background: Efficient light acclimation of photosynthetic cells is a basic and important property of plants. The
process of acclimation depends on transformation of retrograde signals in gene expression, transcript accumulation
and de novo protein synthesis. While signalling cues, transcriptomes and some involved players have been
characterized, an integrated view is only slowly emerging, and information on the translational level is missing.
Transfer of low (8 μmol quanta.m-2.s-1) or normal light (80 μmol quanta.m-2.s-1) acclimated 30 d old Arabidopsis
thaliana plants to high light (800 μmol quanta.m-2.s-1) triggers retrograde signals. Using this established approach,
we sought to link transcriptome data with de novo synthesized proteins by in vivo labelling with 35S methionine
and proteome composition.

Results: De novo synthesized protein and proteome patterns could reliably be matched with newly annotated
master gels. Each molecular level could be quantified for a set of 41 proteins. Among the proteins preferentially
synthesized in plants transferred to high light were enzymes including carbonic anhydrase, fructose-1,6-bisphosphate
aldolase, O-acetyl serine thiol lyase, and chaperones, while low rates upon transfer to high light were measured for e.g.
dehydroascorbate reductase, glyceraldehyde-3-phosphate dehydrogenase and CuZn superoxide dismutase, and opposite
responses between 10-fold and 100-fold light increment for e.g. glutamine synthetase and phosphoglycerate kinase.

Conclusions: The results prove the hypothesis that transcript abundance is poorly linked to de novo protein synthesis
due to profound regulation at the level of translation. This vertical systems biology approach enables to quantitatively
and kinetically link the molecular levels for scrutinizing signal processing and response generation.

Background
Fluctuating environmental conditions elicit acclimation
responses that occur at different molecular levels and on
various time scales. For immediate response to light inten-
sity shifts the acclimation includes rapid posttranslational
modifications such as reversible protein phosphorylation
for state transition or photochemical quenching, and thiol-
disulfide transitions of metabolic enzymes [1]. An inter-
mediate response to alter the proteome is mediated by
modification of the transcripts recruited to the ribosomes
and allows for fast adjustment of de novo synthesized pro-
teins [2]. Initiated at the same time scale, transcriptional
activity is adjusted, but due to the multiple subsequent

steps of transcript accumulation, translation and assembly,
the response is somewhat delayed compared to the first
and second mechanism [3]. Each level of molecular re-
sponse is subjected to additional regulation such as RNA
stability [4] and dynamics and assembly of complexes [5].
Since these reactions occur outside the organelles for most
plastidic proteins their initiation and control depends on
retrograde signals from the chloroplast. On a longer time
scale reorganization of cell structures, epigenetic control of
gene activity and changes in morphology realize additional
levels of acclimatory modifications.
This work aims for understanding the different levels of

molecular acclimation to high light (H-light). Arabidopsis
thaliana has been repeatedly used to investigate reactions
to H-light. Retrograde signals released within the chloro-
plast trigger signal transduction pathways that transmit
information to the nucleus to modify gene expression
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necessary for acclimation. The origin and nature of plastid
retrograde signals has been deduced from physiological and
genetic experiments. Oxidation of the plastoquinone (PQ)
pool activates the expression of chlorophyll-a/b-binding
protein genes in the nucleus [6]. Redox changes in the
intersystem electron transport chain as experimentally in-
duced by preferential excitation of either photosystem II or
photosystem I using light quality variation or by addition of
inhibitors affect plastid and nuclear gene expression [7].
The thylakoid-associated protein kinases STN7 and STN8
mediate PQ-dependent regulation in the chloroplast, e.g.
photosystem II protein phosphorylation, and in the long
term response [8]. Signals originating downstream of pho-
tosystem I trigger the acclimation responses in chloroplasts
and extrachloroplast compartments, e.g. regulating the
expression of nuclear encoded 2-Cys peroxiredoxin [9].
Hormonal signals involved in retrograde signalling include
abscisic acid, salicylic acid and 12-oxophytodienoic acid,
the precursor of jasmonic acid [10-12]. In some cases
signalling components such as transcription factors of the
AP2/EREBP family participate in the retrograde signalling
response. Few involved signalling elements could already
tentatively be aligned. Thus, different operational signals
from the chloroplast converge upstream of GUN1 and ini-
tiate ABI4-dependent nuclear gene expression [13]. Using
genetic approaches, singlet oxygen signalling was associ-
ated with FLU and the functional executer isoforms EXE1
and EXE2 [14].
The here employed experimental design uses a differ-

ential light acclimation regime of Arabidopsis thaliana
grown at low light near the light compensation point
(about 8 μmol quanta.m-2.s-1) and normal growth light
(80 μmol quanta.m-2.s-1) with a subsequent transfer to
H-light (800 μmol quanta.m-2.s-1) as introduced before
[11]. In the previous work transcript, protein and metab-
olite levels, as wells as activities of components of the
water-water cycle were compared with untreated control
plants at 6 h and 24 h after the 10- and 100-fold light shift.
In addition the response of marker transcripts described as
suitable indicators for sugar, ABA, plastoquinone, singlet
oxygen, ROS, lipid and overreduction-dependent signalling
was determined in that study, suggesting a major sig-
nalling function for reductive power, metabolites, and
lipids. Strong transcript regulation for water-water cycle en-
zymes, e.g. stromal and thylakoid-bound ascorbate peroxi-
dases, dehydroascorbate reductase and CuZn-superoxide
dismutase, was not reflected at the protein level [11]. This
prompted us to ask whether the transcriptional regulation
translates into increased protein synthesis.
Few methods allow for analysis of the de novo protein

synthesis. Among these are the expression of protein fu-
sions with reporters that are detectable in vivo or ex vivo
using endogenous promoters [15], the use of translation
inhibitors such as cycloheximide to follow the decline in

protein amount and assuming that the difference relative
to the non-inhibited conditions represents the contribu-
tion of de novo protein synthesis [16]. However, the only
direct method aims at labelling the de novo synthesized
protein by incorporation of isotopes which either can be
determined mass spectrometrically [17] or in case of radio-
active elements can be followed by scintillation counting of
immunoprecipitates or autoradiography following 2D sepa-
rations [18]. Increasing sensitivity, dual labelling methods
and quantitative spectral counting in mass spectrometric
analysis also give access to de novo synthesized proteins if
sufficient proportions of the stable isotope are incorpo-
rated [17,19]. At present the sensitivity and broad applic-
ability of radiolabelling to biological samples followed by
2D separation still offers a competitive alternative in a
zero background.
Many studies on retrograde signalling from the chloro-

plast to the nucleus focused on transcript regulation as
easy readout and on genetic approaches to identify distur-
bances. Here we wanted to learn more on retrograde
signalling in response to a strong light intensity shift with
focus on de novo synthesized proteins. Labelling of de novo
synthesized proteins often coupled to immunoprecipitation
has been and is a broadly used method. However, attempts
appear to be missing to use this strong technology in the
systems biology era. Therefore, we aimed for exploring
the potential of using 35S-methionine labelling to assess
the coupling between retrograde signalling-induced changes
in transcript levels to de novo protein synthesis and protein
levels.

Results
Low (L-) and normal (N-) light-acclimated plants were
transferred to the same high (H-) light intensity of 800 μmol
quanta.m-2 s-1 which is equivalent to a 100- and 10-fold
increase over acclimation light, respectively. The experi-
mental design and the response of the plants have been
described in detail by Oelze et al. [11]. Table 1 summarizes
four parameters measured as basic parameters and taken
from Oelze et al. [11]: It can be seen that the L-plants
only had 38% of the fresh weight-related RNA of N-
plants, 48% protein and 61% chlorophyll. Protein and
RNA tented to increase during the H-treatment, how-
ever only in the L→H-light treatment protein content
increased significantly. Effective quantum yield of photosyn-
thesis decreased significantly during the H-light treatment,
albeit less in the N→H-plants than in the L→H-plants. It
should be noted that the photoinhibition was entirely
reversible [11].
H-light triggers the release of retrograde signals which

derive from the chloroplast, modify nuclear gene expression
and initiate acclimation responses. L- and N-plants revealed
2.219 transcripts with ≥2-fold difference. The transcrip-
tional regulation following transfer to H-light was almost
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finished after 6 h, with only 205 transcripts remaining dif-
ferentially expressed between L→H- and N→H-plants [20].
This experimental system has previously been established
in order to follow the acclimation process to H-light in par-
ticular with focus on the antioxidant defence system after
6 h of H-light exposure [11] and to address involved signal-
ling pathways in a time-resolved manner [20]. The setup
appeared suitable to ask the next question concerning the
coupling between transcript regulation and de novo protein
synthesis. To this end leaf proteins were extracted from L-,
N-, L→H- and N→H-light samples after 6 h of treatment
and subjected to 2D gel electrophoresis with silver staining
for sensitive visualization of protein pattern (Figure 1).
Polypeptides were excised from parallel gels and subjected

to mass spectrometric identification (Table 2). Using this
information and 2D analysis software a partially annotated
master gel was assembled (Figure 2).
In the next step, radioactively labelled 35S-methionine

was applied to leaf surfaces of intact plants in the identical
experimental setup at 1 pm, i.e. 4 h after the beginning of
H-treatment, and the plants were further incubated for
two more hours. Thus, harvesting and analysis of de novo
synthesized proteins occurred 6 h after transfer to H-light.
For analysis protein extracts of labelled leaves equivalent
to 106 counts per minute were subjected to 2D PAGE and
analysed by autoradiography (Figure 3). The four condi-
tions resembled each other in the basic pattern of a large
set of proteins, but also revealed significant differences,

Table 1 Basic characterization of plants grown in normal (N) or in low (L) light, or transferred to high (H) light for 6 h
(N→H, L→H)

Parameter Treatment

N N→H L L→H

Chlorophyll [mg/g fw] 1.22 ± 0.10a 1.15 ± 0.10a 0.75 ± 0.08b 0.80 ± 0.10b

ΦPSII [r.U.] 0.76 ± 0.01a 0.62 ± 0.04c 0.72 ± 0.02b 0.49 ± 0.05c

Protein [mg/g fw] 10.19 ± 1.01a 11.49 ± 0.96a 4.94 ± 0.14c 5.58 ± 0.33b

RNA [μg/g fw] 13.92 ± 6.60a 17.27 ± 7.91a 5.31 ± 3.11b 5.89 ± 3.02b

Contents of chlorophyll, protein and RNA were determined in leaf samples (n between 3 and 8 independent experiments, m ± SD; different letters mark
significance groups according to t-test, p ≤ 0.05). Effective quantum yield of photosystem II as measured by pulse amplitude modulated chlorophyll fluorimetry is
shown as m ± SD with n = 30 from 3 independent experiments. Letters mark groups of significant difference according to t-test, with p ≤ 0.01. Data are from [11].
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Figure 1 Two-dimensional electropherograms of leaf proteins from L-, L→H-, N- and N→H-light plants. The youngest fully expanded leaves
were harvested 6 h after light shift or in the control condition and proteins extracted, and 100 μg of total protein amount was separated as described
in M&M. Shown are silver-stained gels representative for three independent experiments.
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Table 2 Compilation of polypeptides identified both in the silver stained gels and in the autoradiogram

Protein name ATG number MM (kDa) Localization Functional role Silver De novo Mascot score

1. 2-Cys Peroxiredoxin AT3G11630 22.4 Chloroplast Defense response + + 66

2. 3-Ketoacyl CoA thiolase 3 AT2G33150 48.6 Peroxisome Fatty acid biosynthesis + + 99

3 Ascorbate peroxidase 1 AT1G07890 27.6 Cytosol Defense response + + 253

4. ATP synthase delta-subunit AT4G09650 22.8 Chloroplast ATP synthesis + + 260

5. ATP synthase subunit beta ATCG00480 47.7 Chloroplast ATP synthesis + + 365

6. Carbonic anhydrase 1 AT3G01500 25.6 Chloroplast Carbon utilization + + 45

7. Carbonic anhydrase 2 AT5G14740 25.1 Chloroplast Carbon utilization + + 72

8. Chaperonin 60 beta AT1G55490 58.1 Chloroplast Protein folding + + 89

9. Chloroplast HSP 70-1 AT4G24280 74.6 Chloroplast Stress response + + 528

10. Chloroplast HSP 70-2 AT5G49910 74.6 Chloroplast Stress response + + 337

11. Cu/Zn Superoxide dismutase AT2G28190 15.7 Chloroplast Defense response + + 81

12. Cyclophilin Cyp 20-3 AT3G62030 19.7 Chloroplast Rotamase + + 207

13. Dehydroascorbate reductase AT1G19570 21.7 Cytosolic Defense response + + 93

14. D-Ribulose-5-P epimerase AT5G61410 28 Chloroplast Calvin cycle + ND 154

15. Fructose-bisphosphate aldolase 1 AT2G21330 41.9 Chloroplast Calvin cycle + + 91

16. Fructose-bisphosphate aldolase 2 AT4G38970 38 Chloroplast Calvin cycle + + 106

17. GAP C2 subunit AT1G13440 36.9 Cytosol Oxidoreductase + + 164

18. Germin 3 oxalate oxidase AT5G20630 19.5 Apoplast Defense response + ND 243

19. Glutamine synthetase 2 AT5G35630 42.5 Chloro/Mito Glutamine biosynthesis + + 141

20. Glutathione S-transferase F8 AT2G47730 23.9 Chloroplast Stress response + ND 71

21. Glutathione S-transferase F9 AT2G30860 24.2 Cytosol Stress response + ND 118

22. Glyceraldehyde-3-P-DH, B subunit AT1G42970 39.3 Chloroplast Calvin cycle + + 70

23. HCF 136 AT5G23120 38.5 Chloroplast Photosynthesis + + 173

24. Lactate/malate dehydrogenase AT1G53240 33.2 Mitochond. TCA-cycle + + 65

25. Malate dehydrogenase AT3G47520 34 Chloroplast Redox metabolism + + 107

26. Manganese SOD AT3G10920 22.2 Mitochond Defence response + ND 78

27. O-Acetyl serine thiol lyase B AT2G43750 35.1 Chloroplast Cysteine biosynthesis + + 85

28. Phosphoglycerate kinase 1 AT1G79550 42.63 Chloroplast Calvin cycle + + 86

29. Phosphoglycerate mutase AT3G08590 60.7 Cytosol Glycolysis -+ + 143

30. Phosphoribulokinase AT1G32060 39.2 Chloroplast Calvin cycle + + 97

31. Plastid-lipid-associated protein 1 AT4G04020 34.9 Chloroplast Stress response + + 113

32. Plastocyanin (DRT 112) AT1G20340 10.5 Chloroplast Electron transport + ND 169

33. PSII oxygen evolving complex AT5G66570 26.5 Chloroplast Photosynthesis + + 114

34. PSII, subunit PSB-O2 AT3G50820 35.0 Chloroplast Photosynthesis + + 304

35. PSII subunit P-1 AT1G06680 20.2 Chloroplast Photosynthesis + + 183

36. Ribose 5-phosphate isomerase AT3G04790 27.1 Chloroplast Calvin cycle + ND 161

37. Ribosomal protein S1 AT5G30510 40.5 Chloroplast RNA binding + + 70

38. RPL12 | ribosomal protein L12-A AT3G27830 14 Chloroplast Translation + + 78

39. Rubisco activase AT2G39730 46.2 Chloroplast Calvin cycle + + 462

40. RubisCO large subunit ATCG00490 53 Chloroplast Calvin cycle + + 304

41. RubisCO small subunit 1A AT1G67090 14.7 Chloroplast Calvin cycle + + 346

42. RubisCO small subunit 1B AT5G38430 14.8 Chloroplast Calvin cycle + + 71

43. RubisCO small subunit 2B AT5G38420 14.8 Chloroplast Calvin cycle + + 308

44. S-Adenosylmethionine synthetase 1 AT1G02500 43.2 Cytoplasm Met adenos.transferase + ND 92
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particularly between L- and L→H-plants on the one hand
and N- and N→H-plants on the other. The most obvious
difference was monitored for RubisCO large subunit which
was synthesized both in N- and N→H-plants at high rates,
but label was almost absent in L-plants and only slightly
induced in L-plants upon transfer to H-light. All gels from
the three independent experiments were matched to gen-
erate a fused master gel image utilizing Delta 2D software
(Figure 4) and analyzed for spot response behaviour. In
total 129 spots could be identified that revealed differences
among the treatments with statistical significance <0.01
(one way ANOVA). The clustered heat map for three
experiments with 12 samples and 129 significantly altered
spots is depicted in Figure 4B. It shows (a) a consistent
regulation for same treatments in the three independent
experiments, (b) the contrasting regulatory state of L-
plants compared to that of all other treatments, and (c)
the efficiency of L→H-plants in adjusting the pattern of
de novo synthesized proteins to that of N→H-plants des-
pite the different starting points. Four major cluster types

of regulation could be identified: Polypeptides of cluster
1 were synthesized at low de novo rates in N→H- and
L→H-plants, polypeptides of cluster 2 were high in
N→H- and L→H-plants. Cluster 3 includes polypep-
tides whose synthesis showed contrasting responses in
H-light, i.e. stimulation in N→H and low synthesis in
L→H-plants, while cluster 4 showed the opposite. Focus-
sing on proteins being synthesized above (‘up-regulated’)
or below average allowed the generation of a Venn-
diagram (Figure 4C), that confirmed the impression from
the heat map, namely that the labelling pattern of
N-plants was most closely related to the average state
with only 26 spots (20%) synthesized above or below aver-
age of all treatments, 9 of which were specific to N-plant,
12 overlapped with L-plants and 5 with N→H-plants.
Radiolabel of 50% (=64) of the spots in L-plants devi-
ated from average; 47 being specific and only 5 were
present in a distinct amount after transfer to H-light.
Levels in 22% (28) spots deviated from average in N→H-
and L→H-plants.

Table 2 Compilation of polypeptides identified both in the silver stained gels and in the autoradiogram (Continued)

45. Sedoheptulose-bisphosphatase AT3G55800 36.1 Chloroplast Calvin cycle + + 229

46. Stromal APx AT4G08390 37.8 Chloroplast Defense response + + 67

47. Thioredoxin m1 AT1G03680 12.4 Chloroplast Defense response + + 105

48. Thioredoxin m2 AT4G03520 12.5 Chloroplast Defense response + + 72

49. Triose phosphate isomerase AT2G21170 27 Chloroplast Calvin cycle + + 133

Shown are the specific details about size, predicted localization, the functional role of the proteins and the MASCOT score. MG #: number in annotated master
gel; +: Unequivocally identified by mass spectrometry with at least two peptides; +-: tentatively identified by one peptide; ND: not detected. Polypeptides #5
and 40 are plastome-encoded.
ND- not detected in autoradiograms.
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Figure 2 Annotated reference gel (‘master gel’) for the light shift experiment. 100 μg of total protein was separated by 2D gel electrophoresis.
Spots were excised and 90 polypeptides were identified by mass spectrometric analysis.
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Figure 4 Analysis of the autoradiograms for changes in reliably detected de novo synthesized proteins. Three autoradiograms for each
condition from independent experiments were analysed with the Delta 2D software. (A) The results from three gels were fused and spots color-coded:
N = blue, N→H = orange, L = green, L→H= red. (B) A heat map was automatically constructed as described above based on the set of 129 reliably
detected changes that were classified as significant with one way ANOVA (p≤ 0.01). The lanes of the three identical conditions were placed next to
each other. The four clusters were categorized according to the automatically generated cluster tree depicted on the left hand side. (C) Venn diagram
of the significantly up-regulated spot intensities representing the overlaps among treatments.
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Autoradiographs were digitalized and the spot landscape
warped to the master gel image. The protein pattern of
de novo synthesized and, thus, radiolabelled polypep-
tides differed considerably from silver- or Coomassie-
stained 2D patterns (Figures 1, 2 and 3). Despite these
differences, both patterns could reliably be matched
since many spots served as unambiguous landmarks. In
the next step all 12 gels from four conditions with three
experiments were matched, the spot volume as well the
greyness quantified and the annotated polypeptides were
confirmed manually. The results of these 49 polypeptides
are given in Table 2 which lists the AT number, molecular
mass, localization, detection in the silver stained gels or
autoradiograms and the MASCOT score. Eight polypep-
tides detected in the annotated gels were not found in the
autoradiograms. The vast majority of polypeptides, namely
80% showed a proven or predicted chloroplast localisa-
tion. De novo protein synthesis of these proteins was in-
vestigated for its response to the treatment and assigned
to the four major response clusters (Table 3). In cluster
1 “change in de novo protein synthesis down in both
H-treatments” appeared polypeptides with function in
photosynthetic electron transport and antioxidant defence.
Chaperones and proteins of redox homeostasis were
found in cluster 2 “up in both H-treatment”. Metabolic
enzymes predominated cluster 3 “up in N→H and down
in L→H-plants”, and cluster 4 “N and N→H low” with
ascorbate peroxidases and redox regulatory elements such
as cyclophilin Cyp20-3 and malate dehydrogenase.
As reported before, RNA was isolated from leaves treated

as above (L-, N-, L→H, N→H) at t = 6 h. ATH1 whole
genome arrays were hybridized from three experiments
[20]. Raw data were processed with ROBIN (MPI Golm,
Germany) and normalized on total intensity of all spots
(RMA normalisation [21]. Means and corrected standard
error (p < 0.005) were calculated [22,23]. Transcripts iden-
tified in the autoradiograms and silver stained gels were
selected from the list of transcripts and ratios of change
were calculated. Figure 5 summarizes the results for the
protein, de novo-synthesized and transcript level by heat
map representation. Total protein was unrelated to tran-
script levels and de novo protein synthesis rates. However,
also changes in transcript levels were unrelated to de novo
synthesis for most genes. The changes upon the 10- and
100-fold light shift in transcript amounts were related to
the changes in de novo protein synthesis and plotted in a
diagram (Figure 6).

Discussion
Reorganization of the leaf proteome in light acclimation
Sun and shade acclimation depends on structural and
functional reorganization of photosynthetic organs [24,25].
Total leaf protein amount related to fresh weight differed
between plants grown under L- or N-light conditions more

than twofold. Two possible reasons might exist, namely
either a similar protein complement at lower level or a
profound qualitative difference that explains the lower
level. Since plasmatic compartments such as cytosol,
matrix and stroma contain about 25% (w/v) protein, e.g.
10 mg protein/40 μl chloroplast volume [26,27], a twofold
difference clearly indicates that the volumes of plasmatic
compartments is strongly decreased after the 10 d L-light
acclimation [11]. But in addition to a general decrease in
volume, polypeptide composition also changes qualita-
tively. The best established example of light acclimation-
dependent differences in protein composition concerns
the increase in D1 protein and the decrease in light har-
vesting complex proteins (LHCII) with increasing growth
light [28]. Changes in the photosynthetic apparatus are
instrumental to adjust energy conversion and growth and
are also important for optimized resource allocation, e.g.
in dependence on light and nitrogen availability [29]. Pro-
tein patterns of silver-stained electropherograms differed
between L- and N-acclimated plants. Many polypeptides
appeared to be less abundant in N-light plants than in
L-plants. This may be explained by normalization of
each spot on total intensities in the gels. Due to the high
RubisCO amount in extracts from N-plants, the inten-
sities of most other bands will appear to be lower. But
considering the low fresh weight-related protein con-
tents of L-plants it becomes clear that the polypeptide
abundance in silver gels would need some correction if
polypeptide abundance should be related to fresh weight.
Abundance of only few proteins changed during the 6 h
period of H-light treatment. RubisCO was among the sig-
nificantly accumulating proteins in the L→H-plants. It
should be noted that the combined evaluation of both
light shift treatments appeared justified despite in some
cases different starting points due to the mostly similar
response of protein abundance (82% similar response) and
transcript regulation (100% similar response). This regula-
tion leads to a highly similar transcriptome state after
6 h H-light [20].

Strengths and drawbacks of in vivo labelling of de novo
synthesized proteins
Acclimation responses to environmental conditions are
most frequently analysed at the level of specific transcripts
or of genome-wide transcriptomes [30]. The matching of
annotated silver-stained or Coomassie-stained 2D gels with
autoradiograms was expected to allow for protein assign-
ments of de novo synthesized polypeptides. But the label-
ling method needs some discussion. Labelling of intact
plant tissue with 35S-methionine requires time for uptake
and incorporation, and in some studies it was achieved by
wounding [31], in others by feeding via the transpiration
stream [18] or by application to tissue surfaces. We
chose the application to the cuticular surface of the
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Table 3 Clustering of de novo synthesized proteins with identified functional assignment

Cluster Response pattern Transcripts/genes Functional role

1 L→H & N→H low DHAR Antioxidant defence

GAPDH B subunit Photosynthesis

PSII subunit O-2 Photosynthesis

PSII subunit P-1 Photosynthesis

Ribose 5-P isomerase A Photosynthesis

RPL12, ribosomal protein Protein synthesis

SOD, Cu/Zn Antioxidant defence

Thioredoxin m2 Redox regulation

2 L→H & N→H high Carbonic anhydrase 2 Photosynthesis

Chaperonin 60 beta Protein folding

FBP aldolase1 Photosynthesis

FBP aldolase 2 Photosynthesis

HCF 136 Photosynthesis

HSP 70-1, cp Stress response

Lactate/malate DH Respiration

O-Acetyl serine thiol lyase B Sulfur metabolism

3 N→H high, L→H low 3-Ketoacyl CoA thiolase 3 Fatty acid metabolism

GAP C2 subunit Photosynthesis

Glutamine synthetase 2 Nitrogen metabolism

Phosphoglycerate kinase 1 Photosynthesis

Phosphoribulo kinase Photosynthesis

Rubisco activase Photosynthesis

Plastid-lipid-associated protein 1 Stress response

RubisCO SU 1A Photosynthesis

SBPase Photosynthesis

SAM synthetase 1 Sulfur metabolism

4 N, N→H-high; L, L→H-low ATP synthase beta Photosynthesis

ATP synthase delta Photosynthesis

APX 1 Antioxidant defence

APx, stromal, cp Antioxidant defence

Carbonic anhydrase 1 Photosynthesis

Cyclophilin Cyp 20-3 Redox regulation

Malate DH cyt Redox regulation

PSII OEC Photosynthesis

No peculiar group pattern 2-Cys Peroxiredoxin Antioxidant defence

Germin 3 oxalate oxidase Stress defence

GST F8 Stress defence

GST F9 Stress defence

HSP 70-2, cp Stress defence

Malate DH, cp Redox regulation

Mn SOD Antioxidant defence

Phosphoglycerate mutase Glycolysis

Plastocyanin (DRT 112) Photosynthesis

Ribosomal protein S1 Protein synthesis
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youngest fully expanded leaves because neither application
to the transpiration stream e.g. by injection or wounding,
appeared suitable for our purpose of undisturbed but sensi-
tive labelling of newly synthesized proteins. Labelling de
novo synthesized leaf proteins by feeding the labelled amino
acid to roots unlikely would allow for sufficiently strong

incorporation within 2 h, but this could be compared in the
future. The experimental design required incubation time
for sufficient incorporation. Nevertheless, radiolabelling still
is the only method at hand that allows for rapid, sensitive
and reliable labelling of the de novo synthesized protein. It
may be expected that with further advancement of mass

Table 3 Clustering of de novo synthesized proteins with identified functional assignment (Continued)

RubisCo large subunit Photosynthesis

Ribulose-5-P epimerase Photosynthesis

Thioredoxin m1 Redox regulation

Triosephosphate isomerase Photosynthesis

The proteins were clustered using the Delta 2D-software package and assigned to four major types of regulation (Clusters 1 to 4) as outlined.

HN/ HLH >-- LH >-- NL / NHN / HLH >-- LH >-- NL / NHN / HLH >-- LH >-- NL / NnoitatonnADI-riaT

AT3G11630 2-Cys peroxiredoxin -1.0 0.6 -0.2 0.2 0.5 0.9 0.1 -1.3 0.7 0.2 0.6 -0.2

AT2G33150 3-Ketoacyl CoA thiolase 3 -1.7 1.7 0.0 0.0 -1.0 -0.4 -1.5 -0.2 -0.3 -0.7 -1.1 -0.2

Silver stained gels segnahc tpircsnartsisehtnys nietorp ovon ed

seitisnetni fo noitalerseitisnetni fo noitalerseitisnetni fo noitaler

*
* *

*
*

*
*

*
*

* *
* *

AT4G09650 ATP synthase, subunit delta -0.7 0.5 -0.3 -0.2 1.9 -0.6 1.1 -0.2 1.9 0.0 1.8 -0.2

ATCG00480 ATP synthase, subunit beta -1.0 -0.7 -0.2 1.5 0.1 0.3 -0.4 -0.9 0.0 0.0 -0.1 -0.1

AT3G01500 Carbonic anhydrase 1 0.4 0.1 0.2 -0.3 0.9 0.1 0.6 -0.4 1.6 0.5 2.0 0.1

AT5G14740 Carbonic anhydrase 2 0.2 0.8 0.0 -1.0 0.4 1.2 1.1 -0.5 0.1 0.4 0.6 0.1

AT1G55490 Chaperonin 60 beta -2.2 1.9 -0.1 0.3 1.7 0.8 3.1 0.6 1.4 1.3 3.0 0.3

AT4G24280 Chloroplast HSP 70-1 -0.5 0.4 -0.2 -0.1 1.1 0.9 0.9 -1.1 -0.7 -1.1 -1.8 0.1

AT5G49910 Chloroplast HSP 70-2 -0.8 1.1 -0.3 -0.5 0.7 0.7 0.0 -1.4 1.9 1.9 4.3 0.5

AT2G28190 Cu/Zn Superoxide dismutase -0.5 -0.3 -0.1 0.6 1.1 -0.7 -0.4 -0.8 0.2 0.1 0.2 0.0

*

*

*

*

*

*
*
*
*

*

*
*
*
*
*

*
*
*
*

*

*

* *
* *
* *

* *
*
*

*
*

*
* *

*
* *

AT3G62030 Cyclophilin Cyp 20-3 -0.2 0.3 0.3 0.2 1.9 -0.4 0.4 -1.0 1.7 0.2 1.6 -0.2

AT1G19570 Dehydroascorbate reductase -0.3 1.0 0.4 -0.3 1.0 -0.8 -1.2 -1.4 0.1 0.5 0.2 -0.3

AT5G61410 D-Ribulose-5-P epimerase -0.3 1.0 0.5 -0.2 ND ND ND ND 0.3 0.2 0.4 0.0

AT2G21330 Fructose-bisphosphate aldolase 1 -0.5 1.0 0.4 -0.1 1.2 0.7 0.2 -1.7 2.0 1.2 3.4 0.2

AT4G38970 Fructose-bisphosphate aldolase 2 -1.0 1.0 0.1 0.1 1.5 1.2 2.7 0.0 1.5 0.5 2.1 0.2

AT1G13440 GAP C2 subunit 0.5 0.9 0.9 -0.5 -0.3 1.0 -1.8 -2.5 0.1 0.2 0.4 0.1

AT5G20630 Germin 3 oxalate oxidase -1.1 -0.3 -0.4 0.9 ND ND ND ND 0.7 0.0 0.8 0.1

AT5G35630 Glutamine synthetase 2 -1.2 1.0 0.0 0.3 0.4 0.4 -0.9 -1.7 1.0 0.3 0.9 -0.3*

*

*

*

*
*

*

*
*

*

*
*
*
*
*
*

*

*

* * * *
* *

*
*

*
* *

*

* * *

* * *y

AT2G47730 Glutathione S-transferase  F8 -0.4 0.9 0.3 -0.2 ND ND ND ND 0.2 -0.7 -0.7 -0.3

AT2G30860 Glutathione S-transferase F9 -0.2 0.7 0.1 -0.4 ND ND ND ND 0.6 0.2 0.9 0.1

AT1G42970 GAPDH B subunit -0.6 1.0 0.3 -0.1 1.1 -1.2 -0.5 -0.4 2.1 0.7 3.0 0.1

AT5G23120 HCF 136 -0.8 0.3 0.3 0.7 1.1 1.3 1.8 -0.7 0.6 -0.1 0.2 -0.2

AT1G53240 Lactate/malate dehydrogenase -0.5 0.5 0.1 0.0 0.4 1.1 1.3 -0.3 1.7 0.8 2.5 0.0

AT3G47520 Malate dehydrogenase, chloro -0.8 0.4 -0.3 0.2 -0.7 -0.1 -0.6 0.2 0.5 0.7 1.3 -0.1

AT3G10920 Manganese SOD -0.7 0.5 0.0 0.2 ND ND ND ND 0.6 0.2 0.4 -0.2

AT2G43750 O-acetyl serine thiol lyase B -1.6 0.4 -0.2 1.0 0.0 0.5 1.4 0.9 0.4 0.0 0.0 -0.4

*
*
*
*
*
*
*

*

*

*
*

*
*
*

*
*
*

*

*
* *
* *

*

* *
* * *

*AT2G43750 O acetyl serine thiol lyase B 1.6 0.4 0.2 1.0 0.0 0.5 1.4 0.9 0.4 0.0 0.0 0.4

AT1G79550 Phosphoglycerate kinase 1 -1.6 -0.7 -0.1 2.2 0.4 0.4 -2.7 -3.5 1.0 0.5 1.6 -0.1

AT3G08590 Phosphoglycerate mutase ND ND ND ND 0.1 0.0 0.7 0.6 1.0 0.9 2.1 0.2

AT1G32060 Phosphoribulo kinase -0.7 0.7 -0.1 -0.1 0.4 0.4 -0.8 -1.5 0.7 0.2 0.8 -0.1

AT1G20340 Plastocyanin  (DRT 112) -1.2 0.7 -0.4 0.1 ND ND ND ND 0.7 0.2 0.5 -0.1

AT5G66570 PSII oxygen evolving complex -0.3 0.1 0.7 0.9 0.2 -0.3 -3.3 -3.1 0.2 -0.4 -0.7 -0.5

AT1G06680 PSII subunit P-1 -0.9 0.5 0.0 0.3 0.0 -0.5 -1.0 -0.5 0.4 -0.2 -0.2 -0.3

AT3G04790 Ribose 5-phosphate isomerase -2.3 1.9 0.0 0.4 0.8 -0.5 -0.1 -0.4 1.9 0.6 2.7 0.0

AT5G30510 Ribosomal protein S1 -1 6 1 2 -0 6 -0 2 0 2 0 1 -0 1 -0 5 ND ND ND ND

*
*
*
*

*
*

*
*

*

*

*
*
*
*
*

*

*

*

*

*
*

* * *

* *

* *

*
* *

AT5G30510 Ribosomal protein S1 1.6 1.2 0.6 0.2 0.2 0.1 0.1 0.5 ND ND ND ND

AT3G27830 RPL12 | ribosomal protein L12-A -3.0 2.4 -0.9 -0.3 0.5 -0.6 -2.1 -1.9 ND ND ND ND

AT2G39730 Rubisco activase -0.3 0.6 0.4 0.1 0.3 0.2 -2.8 -3.3 0.7 0.3 1.0 0.1

ATCG00490 RubisCo large subunit 3.1 0.7 3.9 0.1 1.9 -0.4 -2.0 -3.5 0.6 0.4 1.1 0.1

AT1G67090 RubisCO small subunit 1A ND ND ND ND 1.7 0.2 -2.5 -4.4 0.3 0.2 0.5 0.0

AT1G02500 SAM synthetase 1 0.1 0.8 0.1 -0.9 0.3 -0.9 -0.8 -0.1 -0.2 -0.7 -1.0 -0.1

AT3G55800 Sedoheptulose-bisphosphatase -1.0 0.4 -0.2 0.3 -0.5 0.7 -0.3 -0.5 1.8 0.7 2.4 0.0

AT4G08390 Stromal APx -0.4 1.6 -0.2 -1.4 1.8 -0.3 2.3 0.8 0.9 1.7 3.0 0.2

AT1G03680 Thioredoxin m1 0 8 0 7 0 2 0 2 2 3 1 2 2 1 1 0 ND ND ND ND

*

*

*
*

*

*
*
*

*

*
*
*
*

*

*

* *
*
*

* *
*

*
*

* *
* *

*
*AT1G03680 Thioredoxin m1 -0.8 0.7 -0.2 -0.2 2.3 -1.2 2.1 1.0 ND ND ND ND

AT4G03520 Thioredoxin m2 -0.2 0.0 -0.1 0.1 0.7 -1.8 -1.7 -0.6 0.3 -0.2 0.0 0.0

AT2G21170 Triose phosphate isomerase 0.2 0.3 0.4 -0.1 -0.2 -0.2 -0.3 0.1 0.6 0.2 0.5 -0.2

ND = Not determined

-4.3 1 4.2

* *

*
* * *

*

Figure 5 Comparison of light-dependent changes in spot intensity in silver stained gels, autoradiograms and in transcript levels.
Changes in spot intensities of silver gels and autoradiograms were taken from the three independent experiments similar to Figures 1, 2 and 3.
Transcript data were extracted from three independent sets of array hybridisation [20]. Changes calculated as value at higher light intensity divided by
intensity at lower light intensity were colour-coded as indicated in the colour bar at the bottom (asterisks indicate significant difference of changes,
t-test (p < 0.1 for de novo synthesis, p < 0.05 for transcript).
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spectrometric analysis, stable isotopes will offer alternative
methods to study protein turnover also for eukaryotic
multicellular organisms similar to unicellular organisms
that can easily be labelled in suspension [32]. A recent
review summarizes the strategies to label de novo synthe-
sized proteins by modern proteomics [33]. The here
employed method should be added to the portfolio of
potential options that can be employed. Starting 4 h after
transfer to H-light appeared suitable because many tran-
scriptional changes had been shown to reach a new steady
state at this time, e.g. sAPX [11] or monodehydroascor-
bate reductase, ABA-dependent cold regulated 47 (COR47),
pyruvate kinase related protein (PKRP) [20]. Thus, the label-
ling that starts after translocation of 35S-methionine through
the cuticle to the mesophyll reflects a transcriptional state
similar to 6 h after transfer to H-light for which the
transcript analysis has been performed.

Apparent absence of coupling between transcript
regulation and de novo protein synthesis
The comparison of transcript regulation with differences
in de novo synthesized protein demonstrates the flexible
coupling between transcript regulation and translation
(Figure 6). Piques et al. [34] compared transcript levels,
ribosome occupancy, enzyme protein amount and activ-
ity at different times of day. Their scatter analysis re-
vealed a poor dependency of ribosome loading on total
amount of investigated transcripts. The Pearson’s correl-
ation coefficient was 0.065 in the dark period and 0.102
in the light period [34]. Here, transcript analysis revealed
efficient regulation following transfer to H-light. In sum
27 out of 42 transcripts of identified proteins, i.e. 64%,
had log2-fold differences ≥|0.5| between N- and L-light
grown plants prior to H-light treatment. The size of this
group of differentially regulated transcripts decreased to
only 2 genes after 6 h of H-light. Thus, transcript regula-
tion within this selected set of identified proteins was
entirely in line with the global regulation of the tran-
scriptome after 6 h of H-light [20]. Thus transcriptional
regulation in response to H-light was almost completed
after 6 h H-light.
In most cases regulation of transcript amounts was more

pronounced than regulation of de novo protein synthesis.
Regulation of 6 proteins occurred much stronger at the
level of de novo protein synthesis. Several translation factors
have been identified as target of posttranslational regulation
including thiol-disulfide transitions [35], glutathionylation
[36], phosphorylation [37] and S-nitrosylation [38]. Among
the targets researchers identified several ribosomal proteins
(RPL S1, S6, L13, L30), elongation factors (EF-Tu, EF-G,
EF-2, EF-1α) and enzymes such as nucleoside diphosphate
kinase III and tRNA synthetases which all are involved in
translation. Redox changes, ROS production and activation
of phosphorylation cascades have been implicated in retro-
grade signalling. The protein kinases STN7 and STN8 me-
diate light-dependent reorganization of the photosynthetic
apparatus [39]. ROS waves adjust nuclear gene expression
in excess light acclimation [40]. ROS and redox feed into
the mitogen activated protein kinase pathway [41]. Transla-
tional activity is strongly altered by ROS in yeast [42]. Thus,
translation in plants is a prime but hitherto not sufficiently
explored target of retrograde signalling as underlined by
the data presented in this paper. The reader is also referred
to the metaanalysis by Schwarzländer et al. [43] who
observed that transcripts encoding for proteins involved in
protein synthesis are significantly affected by retrograde
signals released from the mitochondrion.

Functional implications of translational control of
identified targets
Control of posttranscriptional processes accelerates the
speed and versatility of stress acclimation. The high

Figure 6 Correlation of transcript regulation with regulation of
de novo synthesized polypeptides. The figure combines the results
from both experiments the L→H- and N→H-light transfer. The log2-fold
change of each transcript and radiolabelled protein, respectively, was
divided by the highest value of regulation observed. The sum of both
numbers obtained for de novo synthesis was plotted against the sum of
both numbers for transcript regulation. A value of 2 denotes maximal
up-regulation, a value of -2 maximal down-regulation in both treatments.
The shaded area covers all values with regulation below or equal to
0.5-fold up or 0.5-fold down. All spots outside the shaded area show
deviation between transcript regulation and de novo protein synthesis.
Abbreviations: CA: carbonic anhydrase; Cyp20-3: cyclophilin 20-3; DHAR:
dehydroascorbate reductase; FBA: fructosebisphosphate aldolase; GAPDH:
glyceraldehyde-3-phosphate dehydrogenase; KAT: ketoacyl CoA-thiolase;
LSU: RubisCO large subunit; MDH: malate dehydrogenase; OASTL
B: O-acteylserine thiol lyase; PGK: phosphoglycerate kinase; PGM:
phosphoglycerate mutase; RPI: ribose-5-phosphate isomerase; SBPase:
sedoheptulose-1,7-bisphosphatase; SSU: RubisCO small subunit; Trx m2:
thioredoxin m2.
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significance of specific transcript recruitment to ribo-
somes in plants has best been demonstrated for acclima-
tion to hypoxia [44]. The authors showed hypoxia-specific
changes of transcriptome and translatome at the global,
organ- and cell-specific level. Preferential ribosome associ-
ation was observed for sucrose transporters, heat shock
factors and transcription factors [45]. Here, expression of
six genes was more strongly regulated at the level of pro-
tein synthesis than of transcript accumulation. It may be
assumed that the gene product functions are needed after
transfer to H-light. Despite down-regulation at the tran-
script level, 35S-methionine incorporation into HSP70-1
still occurred at high rates. In a converse manner, HSP70-
2 was synthesized at similar rates despite a large increase
in transcript amount. Chloroplast HSP70s facilitate pro-
tein import into the chloroplasts, a function which is of
eminent importance during environmental transition such
as exposure to excess excitation energy [45]. High chloro-
phyll fluorescence HCF136 was identified in a screen for
genes with function in assembly of functional photosystem
II [46]. FBP aldolase as part of the Calvin cycle, O-acetyl
serine thiol lyase with its function in cysteine synthesis,
carbonic anhydrase which facilitates equilibration between
carbonate and CO2 as substrate of the Calvin cycle and
3-ketoacyl CoA thiolase 3 involved in fatty acid synthe-
sis showed stimulated de novo synthesis. This type of
regulation may easily be reconciled with their metabolic
functions which are important for H-light acclimation.
Arguments appear less straight forward when it comes
to explain the low level of de novo protein synthesis ob-
served for 16 genes. They mostly function in metabol-
ism such as seduheptulose-1,7-bisphosphatase which is
suggested to limit Calvin cycle activity [47], large and small
subunits of RubisCO, RubisCO activase, phosphoglycerate
mutase, phosphoglycerate kinase and ribose-5-phosphate
isomerase. Others are involved in redox homeostasis and
antioxidant defence (malate dehydrogenase, dehydroascor-
bate reductase, superoxide dismutase, stromal ascorbate
peroxidase and the regulator of chloroplast cysteine syn-
thase complex cyclophilin Cyp20-3 [12]. It may be hypoth-
esized that these proteins are present at sufficient amounts
prior to H-light treatment and that the low ratio of de novo
synthesis-to-transcript amount merely reflects such mech-
anisms of yet un-understood feedback control. It should be
noted that photoreceptor-dependent signaling might con-
tribute to the transcriptional and translational responses
described in this paper, albeit previous work largely
excluded a major role of photoreceptors in this particular
experimental setup [7,11].

Conclusions
Translational control is still poorly investigated particu-
larly in plants: Initiation, elongation and pausing contrib-
ute to transcript selection and efficiency of translation.

De novo labelling as used here determines the outcome of all
these processes and, therefore is a better readout of pro-
tein synthesis than ribosome loading eventually combined
with ribosome footprinting [48]. The latter technique
allows for profiling of RNA sequences by deep sequencing
that are protected from degradation by associated ribo-
somes. Our study adds a novel method to the portfolio
available to investigate posttranscriptional regulation. The
results show that H-light acclimation involves transla-
tional control as decisive part of retrograde signalling
and concerns a large fraction, namely almost 2/3 in the
set of identified proteins. Furthermore the rate of de
novo protein synthesis cannot directly be predicted from
transcript levels.

Methods
Plant growth and treatment
Arabidopsis thaliana was grown in a growth chamber in
a mix of 50% soil, 25% Perlite and 25% Vermiculite, sup-
plemented with one dose of Lizetan (Bayer, Germany).
Following seed stratification for 2 d at 4°C, plants were
grown for 30 d in 80 μmol quanta.s-1.m-2 (N-light) with
a 14 h light and 10 h dark phase. Subsequently, plants
were transferred to 8 μmol.s-1.m-2 (L-light) for 10 d prior
to the experiment with transfer to 800 μmol.s-1.m-2

(H-light; 100-fold light increase). The L-plants have been
shown to be entirely shade acclimated [11]. Another set
of plants was grown in N-light for the whole period of
40 d and also transferred to 800 μmol.s-1.m-2 (10-fold light
increase). Control plants were kept in L- and N-light, re-
spectively, and harvested in parallel to the H-light rosettes.
Harvest time was always at 3 pm. Chlorophyll, protein
and RNA contents and effective quantum yield of photo-
system II by pulse amplitude modulation (PAM) were
determined as described in Oelze et al. [11].

In vivo labelling of de novo synthesized proteins
L-[35S]-methionine (NEG009T, Perkin Elmer, MA, USA)
was supplemented with 0.1% (v/v) Triton X-100 and
applied to leaf surfaces with a radioactivity of 20 μCi per
leaf. For each treatment 20 μCi were administered to fully
expanded leaves from three different rosettes 4 h after
transfer to H-light. After 6 h, the leaves were excised from
the rosettes, washed first with 0.1% (v/v) Triton X-100
and then with 0.5 mol/L Tris-Cl, pH 6.8.

2D-gel electrophoresis
Leaves were ground with a pestle in 1 mL acetone/
trichloroacetic acid/β-mercaptoethanol (89.93:10:0.07% v/v)
according to Méchin et al. [49]. Following precipitation
at -20°C for at least 1 h and subsequent centrifugation,
the pellet was washed and sedimented thrice with ice-cold
acetone/β-mercaptoethanol, dried and resuspended in
lysis buffer [50]. For radioactive samples, incorporated 35S
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was quantified by precipitating aliquots on Whatman filter
followed by scintillation counting. For silver-stained gels,
protein amounts were quantified at 595 nm with the
BioRad protein assay. Separation in the first dimension was
achieved with Immobiline™ DryStrips (pH range 3-10 NL,
18 cm, GE Healthcare, Uppsala, Sweden). Sample equiva-
lent to 100 μg protein or 106 cpm was dissolved in 340 μL
complete rehydration buffer (8 mol/L urea, 2% (w/v)
CHAPS, 0.002 bromophenolblue, 0.3% ampholyte, 1.4%
(w/v) dithiothreitol) and applied to the Immobiline strips.
The rehydration and isoelectric focusing protocol consisted
of the steps as follows: 1 h 0 V, 12 h 30 V, 2 h 60 V, 1 h
500 V, 1 h 1000 V, 1000-8000 V for variable time to reach
42000 Vh. Separation in the second dimension was
performed on a 12% (w/v) SDS-PAGE of 18 cm length at
40 mA. Silver staining was performed according to Blum
et al. [51] and autoradiography as described in Dietz and
Bogorad [52].

Analysis of 2D-gels and heat map construction
Delta 2D software (Decodon, Greifswald, Germany) with its
SmartVectors Technology was used to align the gel images
to each other to allow for efficient and reliable spot match-
ing. A fusion image was generated containing all spot
positions. Each gel was matched with this master gel. Spot
boundary detection, pixel intensity quantification and stat-
istical analysis (one way ANOVA) were performed with the
built in TIGR MeV tool. Before constructing the heat map,
the data set was standardized to zero mean and unit vari-
ance. Clustering was achieved using the eucledian distance
and complete linkage- default settings of the delta 2D
software (DECODON, Greifswald, Germany).

ATH1-genome array hybridisation and analysis
Isolated total RNA was sent to KFB-company (Compe-
tence Centre for Fluorescence Bioanalytics, Regensburg,
Germany), processed, and derived fluorescent probes hy-
bridized against the 25mer oligonucleotide ATH1-genome
array (Affimetrix, Santa Clara, USA). Glyceraldehyde-3-
phosphate dehydrogenase, actin and ubiquitin were used
as reference transcripts. The raw data were fed into ROBIN
(MPI Golm, Germany). Statistical evaluation of the data
was based on the corrected p-value [22,23].

Protein identification by mass spectrometry
Corresponding areas of interest were excised from the 2D
gels and washed with (a) two times a solution containing
trifluoroacetic acid (0.1% w/v) and acetonitrile (60% v/v),
(b) acetonitrile (50%), (c) acetonitrile (50%)/50 mM NH4

HCO3 for 0.5 h, and (d) acetonitrile (50%)/10 mM NH4

HCO3 at 21°C for 0.5 h each. Dried gel slices were resus-
pended in trypsin solution (0.013 mg sequencing quality
trypsin (Promega, Mannheim, Germany) in 10 mM NH4

HCO3 pH 8.0) at 4°C for 0.5 h and afterwards at 37°C for

about 15 h. Digestion solutions were supplemented with
cyano-4-hydroxy-cinnamic acid at a 60:40% ratio. Mass
spectra were determined using a Biflex III matrix-assisted
laser desorption/ionisation-time of flight mass spectrom-
eter (MALDI-TOF)-MS (Bruker, Bremen, Germany) (pre-
viously described [53]). The peptide mass fingerprints
(PMF) obtained by tryptic digested proteins were ana-
lyzed by MALDI-TOF-MS and proteins were identified by
MASCOT (Multiple-Access Space-Time Coding Testbed)
software and the National Center for Biotechnology Infor-
mation (NCBI) protein database. The program compares
the peptide masses obtained from experimental digestion
to the predicted peptide masses from the theoretical
digestion of proteins.

Correlation of de novo protein synthesis and transcript
regulation during H-light treatment
The obtained values of the spot intensities for the auto-
radiograms by Delta 2D were used to calculate the ratios
between the different treatments (N/L, N→H, L→H,
L→H/N→H). The ratios were recalculated as log2-fold
change values, to be easily comparable to the obtained
log2-fold change values of the microarray experiments
by ROBIN.
For the comparison of de novo protein synthesis and

transcriptional regulation the maximum reactions (up
or down regulation) for both H-light treatments (L→H,
N→H) were used as reference. Each value (FPOI) of the
different targets was divided by the appropriate maximum
reaction (FExt; up-regulation was divided by maximum
positive reaction while down regulated targets were di-
vided by the maximal negative reaction) for each treat-
ment (N→H or L→H) and for both methods (de novo
protein synthesis or transcript regulation). Afterwards the
calculated values for both de novo protein synthesis reac-
tions (N→H or L→H light shift) or for both transcrip-
tional regulations were summed up to give the response
factor R.

R ¼ FL→H POIð Þ
FL→H Extð Þ

þ FN→H POIð Þ
FN→H Extð Þ

Therefore, the maxima of regulation would fit in the
range between -2 and 2. To evaluate the relationship be-
tween de novo synthesis and transcriptional regulation, the
calculated values were plotted in a diagram where deviation
from the diagonal ≤0.5 was set as a cutoff (gray shaded
area) and only larger deviations (outside this area) were
accepted to indicate distinct regulation between transcript
and de novo protein synthesis.

Abbreviations
2D: Two dimensional; ABA: Abscisic acid; ABI: ABA insensitive; GUN: Genome
uncoupled; H: High light; L: Low light; MS: Mass spectrometry; N: Normal
light; PAGE: Polyacrylamide gel electrophoresis; PQ: Plastoquinone;
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ROS: Reactive oxygen species; RubisCO: Ribulose-1,5-bisphosphate
carboxylase oxygenase.
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