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Tumor mutation burden (TMB) is a recognized stratification biomarker for immunotherapy.
Nevertheless, the general TMB-high threshold is unstandardized due to severe clinical
controversies, with the underlying cause being inconsistency between multiple
assessment criteria and imprecision of the TMB value. The existing methods for
determining TMB thresholds all consider only a single dimension of clinical benefit and
ignore the interference of the TMB error. Our research aims to determine the TMB
threshold optimally based on multifaceted clinical efficacies accounting for
measurement errors. We report a multi-endpoint joint model as a generalized method
for inferring the TMB thresholds, facilitating consistent statistical inference using an iterative
numerical estimation procedure considering mis-specified covariates. The model
optimizes the division by combining objective response rate and time-to-event
outcomes, which may be interrelated due to some shared traits. We augment previous
works by enabling subject-specific random effects to govern the communication among
distinct endpoints. Our simulations show that the proposed model has advantages over
the standard model in terms of precision and stability in parameter estimation and
threshold determination. To validate the feasibility of the proposed thresholds, we pool
a cohort of 73 patients with non-small-cell lung cancer and 64 patients with
nasopharyngeal carcinoma who underwent anti-PD-(L)1 treatment, as well as
validation cohorts of 943 patients. Analyses revealed that our approach could grant
clinicians a holistic efficacy assessment, culminating in a robust determination of the TMB
screening threshold for superior patients. Our methodology has the potential to yield
innovative insights into therapeutic selection and support precision immuno-oncology.
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INTRODUCTION

Immune checkpoint inhibitor (ICI) therapy has emerged as a
promising strategy with confirmed efficacy for advanced or
metastatic tumors (Bracarda et al., 2015; Motzer et al., 2015;
Chiang et al., 2020; Kuryk et al., 2020; Wołącewicz et al., 2020;
Majc et al., 2021). Tumor mutation burden (TMB, defined as the
number of somatic mutations per mega-base) is a recognized
biomarker of sensitivity to ICIs (Hellmann et al., 2018a; Cristescu
et al., 2018; Bai et al., 2020; Wang et al., 2020), according to the
underlying connection between the increasing number of somatic
mutations and the neo-antigen that the activated T cells can
recognize (Van Rooij et al., 2013), enhancing the tumor
immunogenicity (Pardoll, 2012; Conway et al., 2018). A high
TMB tends to trigger a favorable prognosis (Yarchoan et al., 2017;
Legrand et al., 2018), which has been observed in urothelial
carcinoma (Rosenberg et al., 2016), small-cell-lung cancer
(Hellmann et al., 2018b), non-small-cell lung cancer (NSCLC)
(Lim et al., 2015; Rizvi et al., 2015; Carbone et al., 2017; Hellmann
et al., 2018c; Singal et al., 2019), and melanoma (Johnson et al.,
2016; Goodman et al., 2017). TMB is a suggested test for patients
undergoing immunotherapy by both NCCN and FDA (Lemery
et al., 2017; Boyiadzis et al., 2018; Subbiah et al., 2020).

In clinical practices, the TMB threshold is a baseline for
identifying patients with potential ICI benefits (Samstein et al.,
2019). TMB thresholds are typically determined in two ways:
either grouped by quartiles, which is obviously imprecise
(Campesato et al., 2015; Colli et al., 2016; Riaz et al., 2017;
Miao et al., 2018; Wood et al., 2020), or numerical thresholds
generated from statistical tests of significance based on efficacy
endpoints (Goodman et al., 2017). Notably, among these previous
statistical studies, retrospective evaluations of efficacy are limited
to a single dimension, most regularly the response. The primary
endpoints for immuno-oncology include objective tumor
response and time-to-event (TTE), where the TMB biomarker
has been observed to be associated with both (Cao et al., 2019).
Such diverse efficacy evaluation metrics have sparked controversy
in the threshold standardization (Goodman et al., 2017). When
assessments base on different endpoints over the same cohort,
inconsistent thresholds arise, and clinicians are left inconclusive
about which one to choose. Furthermore, clinical decisions need a
comprehensive review of the diseased multifaceted efficacy rather
than a single endpoint that exhibits a partial treatment effect.
Therefore, there is an urgent clinical need for inference on
multiple endpoints to derive a comprehensive TMB threshold.
However, it is computationally challenging for two reasons. First,
if several individual endpoints are to be inferred simultaneously,
the intersection cannot be taken directly. Instead, some
adjustment for multiple testing is required to control the
familywise type I error rate (FWER) (Ristl et al., 2019).
Constructing the joint distribution of different endpoints is
preferable to the straightforward application of Bonferroni
inequalities in terms of maximizing the utilization of available
information, providing unbiased results, and allowing for
statistical alpha levels closer to nominal levels while boosting
the statistical power (Phillips et al., 2003; Asar et al., 2015;
Guidance 2017). Secondly, the existing joint modeling studies

have mostly taken a perspective on analyzing longitudinal
biochemical markers within the survival analysis framework.
Whereas the volatility of tumor genomic traits in
immunotherapy trials is quite limited, we are more concerned
with the within-subject dependence between different endpoints.
Binary tumor responses conforming to the Bernoulli distribution
do not satisfy the premise of a normal distribution in linear
regression. The existing models have limited capacity to
comprehend possible shared biologic processes on endpoints
of tumor remission with survival and are not applicable to
scenarios of immune efficacy investigation.

Moreover, the imprecision of TMB values is another source of
threshold controversies (Wood et al., 2020). Despite the different
calculation methods of TMB, the accuracy of variant callings can
never reach 100% due to technical limitations (Xu et al., 2014;
Alioto et al., 2015), and TMB always harbors measurement errors.
Existing models neglect the difference between the actual and
observed values of TMB, which lead to significant bias in
statistical inference (Campesato et al., 2015; Colli et al., 2016;
Goodman et al., 2017; Riaz et al., 2017; Miao et al., 2018; Wood
et al., 2020). Parameter inference for statistical models is
conventionally obtained by maximum likelihood estimation
(MLE), and unbiasedness of the score function for likelihood
(i.e., expectation equal to zero) is a critical criterion for ensuring
estimate consistency. With the accurate TMB values being
unascertainable, the observations TMBp (TMBp � TMB + e)
have to be used for surrogates. The presence of its inherent
random error term e undermines the unbiased nature of the score
expectation, yielding inconsistent regression coefficient estimates.
The biasing effect caused by error term confounds the proper
relationship between TMB and ICI. Furthermore, naïve statistical
inference assesses patient prognosis inaccurately. Thus, the final
determination of TMB thresholds must be flawed, hindering
accurate screening of applicable patients and closely related to
the risk of adverse events to immunotherapy. Although the
corrected-score methodology is associated with a measurement
error (Nakamura, 1990; Novick & Stefanski, 2002; Augustin,
2004), a new algorithm should be re-inferred due to the
complexity of the specific joint model. The challenge lies in
the fact that the complete joint probability is essentially a
complex integration without an exact analytical solution.
Patients’ responses couple with the survival process, based on
the random effects governing both, so that the joint score
function is usually impossible to strip. It is incapable of
eliminating mistakes from this joint likelihood directly. A new
iterative numerical estimation procedure is required by
considering the biasing impacts induced by the mis-specified
TMB covariate.

Therefore, we report a generalized method for optimizing the
identification of TMB-positive thresholds. Our method integrates
binary response and continuous TTE endpoints to provide a
comprehensive efficacy assessment, while, to our best knowledge,
it is among the first statistical approaches accounting for TMB
measurement errors. To verify the viability of the multi-endpoint
joint model, we conducted a series of simulation experiments, and
the results confirmed our superiority in the accuracy of parameter
estimation and fault tolerance of threshold delineation compared
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with the standard separate regression model. Meanwhile, we
gathered a cohort of 73 non-small-cell lung cancer (NSCLC)
patients and 64 nasopharyngeal carcinoma (NPC) patients and
validation cohorts of 943 patients who underwent ICI treatment
to illustrate the applicability of the model across carcinomas. It is
known that different cancer types and TMB calculations often
yield different thresholds, but we provide here a generalized
statistical method applicable for any known scenarios. The
data results show that the proposed model can obtain a more
comprehensive and robust TMB threshold to support therapeutic
refinement for cancer patients. The source code reproduces the
figures, and results can be downloaded from https://github.com/
YixuanWang1120/TMB_JM.

MATERIALS AND METHODS

To comprehensively determine TMB-positivity thresholds from
multifaceted efficacy analyses while considering inevitable
measurement errors, we present a general approach for the
simultaneous joint modeling of multiple endpoints, yielding
approximately consistent statistical inference for mis-specified
covariates by developing an iterative numerical estimation
procedure using the corrected-score method. The observed
sample information contains the patient’s clinically recorded
objective response rate (ORR) and TTE endpoints, other
clinical indicators (correctly specified), and the corresponding
TMB observations with measurement errors. The data consist of
n independent observations of R, T, Δ, Z, and TMBp, denoting the
binary tumor response outcome, continuous survival time, event
indicator, vector of accurately measured covariates, and
mismeasured TMB, respectively. To simplify, the additive
measurement error model relates the true unobserved TMB
index to the observed TMBp: TMBp = TMB + e, where
e ~ N(0,∑e).

A Joint Model Considers Binary and
Continuous Endpoints
For patient i(i � 1, 2, . . . , n), Ri denotes the tumor response
(Ri = 1,0 for complete response (CR) and partial response (PR),
stable disease (SD) and progressive disease (PD))and Zi

denotes a vector of covariates, e.g., age, gender, treatment
indicator, cancer stage. Binary response outcomes are
typically modeled by logistic regression whose standard
form is quite well established for the immunological
effectiveness analysis. Ri depends on Zi and TMBi, then the
mixed-effect logistical regression sub-model for the ORR
endpoint is formulated as:

logit(Ri|Zi,TMBi, bi; θ) � αT
z Zi + αmTMBi + bi

where αz and αm denote the corresponding response regression
coefficients, θ represents all unknown parameters in the joint
model, and bi denotes the random effect. The exponent of the
estimated parameter exp(α) for the logit regression of binary
outcomes can be interpreted intuitively as the multiples of change

in the odds ratio caused by a one-unit increase in the
corresponding variable.

Let Ti denote the observed event time (such as tumor relapses,
progression, death, etc.), which is taken as the minimum of the
true event time Ui and the censoring time Ci, that is,
Ti � min(Ui, Ci). Define the event indicator as Δi � I(Ui ≤Ci),
where I(·) is the indicator function. Here, we adopt the widely
accepted Cox PH model because it focuses more on the
identifying patients’ survival risk classes compared with
alternative accelerated failure (AFT) models, is appropriate to
the scenario of screening immunotherapy-beneficial patients in
this article, and allows for more flexible baseline risk. Ti also
depends on Zi, TMBi, unknown parameters θ, and random effect
bi; then, the mixed-effect Cox PH regression sub-model for the
TTE endpoint is formulated as:

hi(t|Zi,TMBi, bi; θ) � h0(t) exp(βT
z Zi + βmTMBi + bi)

Si(t|Zi,TMBi , bi; θ) � exp
⎧⎪⎨⎪⎩ − ∫t

0
h0(s) exp(βTz Zi + βmTMBi + bi)ds⎫⎪⎬⎪⎭

� exp{ −H0(t) exp(βTz Zi + βmTMBi + bi)}
where h(t) describes the instantaneous risk for an event in the
time interval [t, t + dt) provided survival up to t, while S(t)
represents the survival probability. h0(t) is referred to as baseline
hazard and follows the Weibull distribution h0(t) � λt(λ−1)
because the trend in the baseline cumulative hazard
distribution for progression-free survival in the cohort
receiving immunotherapy is consistent with the Weibull
distribution with a scale parameter equal to 1 (see in
Figure 1). βz is the corresponding vector of covariate effect
and βm quantifies the TMB effect.

The maximum likelihood estimates are derived as the modes of
the log-likelihood function corresponding to the joint distribution of
the observed samples Dn � {Ri, Ti,Δi,Zi, TMBi, i � 1, . . . n}. The
vector b � (b1, b1, . . . , bn)′ is the shared random effect on the

FIGURE 1 | The distribution of baseline cumulative hazard for patients
receiving immunotherapy.
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respective endpoints, accounting for the intra-subject correlation
between event times and individual tumor response and is assumed
to follow a normal distributionN(0, σ2b). Since the random effect bi
accounts for the intra-subject association underlying both response
and survival process, thus the two are conditionally independent
given the random effect. Formally, for patient i, we have that:

p(Ri, Ti,Δi, bi; θ) � p(Ri|bi; θ) · p(Ti,Δi|bi; θ) · p(bi; θ) (1)
where the likelihood of the response is:

p(Ri|bi; θ) � F(αT
zZi + αmTMBi + bi)Ri {1 − F(αTzZi + αmTMBi + bi)}(1−Ri)

F(υ) � (1 + e−υ)−1
while the likelihood of the survival is:

p(Ti,Δi|bi; θ) � hi(Ti|bi; θ)Δi · Si(Ti|bi; θ).
By incorporating random effects (Barbieri et al., 2020), it is

feasible to jointly model the multiple endpoints and regulate
intricate correlations between response probabilities and event
times. Then, the joint logarithmic likelihood can be
formulated as:

ℓ(θ) �∑
i

logp(Ri, Ti,Δi; θ)

�∑
i

log∫p(Ri|bi; θ)p(Ti,Δi|bi; θ)p(bi; θ)dbi
(2)

Inference about parameters θ is typically based on the
maximization of Eq. 2, while integrals about random effects
apparently have no analytical solution. Here, we approximate
ℓ(θ) based on the Laplace method, which has the advantage over
other numerical integration techniques, including Gaussian
Hermite quadrature and Monte Carlo (Lin et al., 2008;
Rizopoulos et al., 2014), since the multiplicative form of the
series can be easily unfolded by adopting the logarithmic trick,
facilitating our correction of the measurement errors of the
covariates later. The Laplace approximation is as follows:

∫b
a

ef (x)dx ≈

�������
2π∣∣∣∣f ″(x0)∣∣∣∣√

ef (x0)

where the function f(x) has a unique global maximum at x0. So,
the first-order Laplace approximation to the observed-data joint
log-likelihood is:

~ℓi(θ, b̂i) � 1
2
log 2 π + logp(Ri|b̂i; θ) + logp(Ti,Δi|b̂i; θ)
+ logp(b̂i; θ) − 1

2
log
∣∣∣∣∣k″(b̂i; θ)∣∣∣∣∣ (3)

where

k(bi; θ) � log p(Ri|bi; θ) + log p(Ti,Δi|bi; θ) + log p(bi; θ)
� Ri(αTzZi + αmTMBi + bi) − log{1 + exp(αT

zZi + αmTMBi + bi)}
+ Δi{log h0(Ti) + βTzZi + βmTMBi + bi}
−H0(Ti) exp(βTzZi + βmTMBi + bi)
+ log(2π)/2 + log(σb) − b21/2σ2b

(4)

and the mode b̂i is obtained for each patient by solving k′(bi) � 0
with a fixed θ,

k′(bi; θ) � zlogp(Ri|bi; θ)
zbi

+ zlogp(Ti,Δi|bi; θ)
zbi

+ zlogp(bi; θ)
zbi

� Ri − F(αTzZi + αmTMBi + bi) + Δi −H0(Ti) exp(βTzZi

+βmTMBi + bi) − biσ
−2
b (5)∣∣∣∣k″(bi; θ)∣∣∣∣ � F(αT

zZi + αmTMBi + bi){1 − F(αTzZi + αmTMBi + bi)}
+H0(Ti) exp(βTzZi + βmTMBi + bi) − σ−2

b

(6)

The difference of Eq. 3 from the previous independent standard
regressions lies in that the joint assessment entails examining the
endpoint correlations, where logp(Ri|b̂i; θ) represents the
likelihood of ORR, while logp(Ti,Δi|b̂i; θ) represents the
information on survival endpoint, and logp(b̂i; θ) −
1
2 log|k″(b̂i; θ)| incorporates the within-subject dependence
between two endpoints. When b̂i � 0, i.e., there is no correlation
between the two clinical endpoints, the joint model degenerates to
standard separate logistic regression and Cox PH regression.

Estimates obtained by maximizing ~ℓ(θ) � ∑
i

~ℓi(θ, b̂i) are thus
approximate maximum likelihood estimates (MLEs). The
maximization is accomplished by solving the equation
Ψ(θ) � z~ℓ(θ)

zθT
� 0, Ψ(θ) is score function. According to the

negative of the inverse Hessian matrix at MLE θ̂, we obtain the
standard errors for the parameter estimates vâr(θ̂) � {−H(θ̂)}−1,
withH(θ̂) � {−zΨ(θ)

zθT
|θ̂}−1, and the asymptotic confidence interval is

θ̂ ± 1.96ŝe(θ̂). It is typically easier to employ a numerical derivative
routine for the calculation of Hessian matrix, such as the forward or
the central difference approximation.

Based on θ̂, we obtain approximately consistent and unbiased
estimates of the fixed effects for TMB and the random effects
symbolizing intra-subject correlations between both endpoints.
With the mutually moderating random effects, the joint likelihood
that a patient has a favorable prognosis can be determined. This joint
probability characterizes the positive prognosis of patients with both
remission of tumor lesions and prolonged survival time, which can be
utilized to analyze the patient’s treatment outcome more completely.
The joint probability for patient i is:

p(Ri � 1, Ti >T0; θ̂)
�

�����������������������������������������������
2π∣∣∣∣∣∣⎧⎨⎩z2 log(p(Ri � 1|bi; θ̂)p(Ti >T0 |bi ; θ̂)p(bi ; θ̂))/zb2i⎫⎬⎭ b̂i

∣∣∣∣∣∣
√√√ p(Ri � 1|b̂i; θ̂)p(Ti >T0|b̂i; θ̂)p(b̂i; θ̂)

(7)

where T0 is a pre-specified survival time.
Based on the joint probabilities that characterized the positive

prognosis of the patients, we rank them and then label the
populations to be analyzed according to the proportion of
patients who would potentially benefit for ICI. Ultimately, the
proposed joint model can stratify patients into two subgroups
according to their TMB levels and the positive prognosis labels
using the receiver operating characteristic curve (ROC) to balance
the classification performance. Thresholds for the low- and high-
TMB groups are selected from the local optima across a range of
clinically meaningful values by Yoden Index.
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The complete TMB threshold identification procedure based
on the aforementioned joint model solved by Laplace
approximation is given in Algorithm 1.

Algorithm 1. Identifying TMB threshold without measurement
errors

Bias Arising From Measurement Error
Here, we further investigate the negative impact of measurement
errors in TMB. The score function in Section 2.1 is unbiased.
Base on Eqs. 3, 6, θT � [θTR, θTT, θb], θR � [αTz , αm]T,
θT � [λ, βTz , βm]T, θb � σb, we have:

Ψ i(Ri, Ti,Δi , Zi, TMBi;Θ) �
z~ℓi(θ, b̂i)

zθT

� ΨR,i(θ) + ΨT,i(θ) + Ψb,i(θ)

Ψ i(θR) � ΨR,i(θR) + Ψb,i(θR) �
⎧⎨⎩Ri − F(αT

zZi + αmTMBi + b̂i)
− 1
2

exp(αT
zZi + αmTMBi + b̂i){1 − exp(αT

zZi + αmTMBi + b̂i)}∣∣∣∣∣k″(b̂i; θ)∣∣∣∣∣{1 + exp(αT
zZi + αmTMBi + b̂i)}3 ⎫⎬⎭( Zi

TMBi

)
Ψ i(λ) � ΨT,i(λ) + Ψb,i(λ)
� Δi(λ−1 + logTi) − Tλ

i logTi exp(βTzZi + βmTMBi + b̂i)
+ 1
2

Tλ
i logTi exp(βTzZi + βmTMBi + b̂i)∣∣∣∣∣k″(b̂i; θ)∣∣∣∣∣

Ψ i(βTz , βm) � ΨT,i(βTz , βm) + Ψb,i(βTz , βm) � ⎧⎨⎩Δi − Tλ
i exp(βTzZi + βmTMBi + b̂i)

+ 1
2

Tλ
i exp(βTzZi + βmTMBi + b̂i)∣∣∣∣∣k″(b̂i; θ)∣∣∣∣∣ ⎫⎬⎭( Zi

TMBi

)
Ψ i(σb) � Ψb,i(σb) � −σ−1

b + b̂
2

1 · σ−3
b + (σb

∣∣∣∣∣k″(b̂i; θ)∣∣∣∣∣)−1
(8)

where ΨRi(θ) represents the score of ORR, ΨTi(θ) represents the
score on the survival endpoint, and Ψbi(θ) represents the score of
random effect.

The parameter θ̂ relating R, T, Δ, Z, and TMB is approximately
consistent by satisfying ∑n

i�1Ψ(Ri, Ti,Δi,Zi, TMBi; θ̂) � 0, where
the score function Ψ is conditionally unbiased for the
approximate likelihood:

E{Ψ(Ri, Ti,Δi,Zi, TMBi;Θ)} � 0 i � 1, . . . , n. (9)

What will happen when measurement error exists? We
assume the observed TMBp is subject to the measurement
error model: TMBp

i � TMBi + ei, i � 1, . . . , n. The error term ei
is independent and identically normal distributed with mean
zero and known variance σ2e , and is independent of Ri, Ti, Δi,
and Zi. Because true TMB is not observed and hence the true-
data score function cannot be used for parameter estimation
from the perspective of inconsistency E{Ψ(TMBp;Θ)} �
E{Ψ(TMB + e;Θ)} ≠ 0.

As a more specific illustration, we consult the part of survival
function:

E{ΔiZi − Tλ
i exp(βTzZi + βmTMBp

i + b̂i)Zi}
� ΔiZi − Tλ

i E{exp(βTzZi + βmTMBi + βmei + b̂i)}Zi

� ΔiZi − Tλ
i exp(βTzZi + βmTMBi + b̂i)ZiE{exp(βmei)}

≠ 0

(10)

The additional term E{exp(βmei)} on the scoring function is
generated by the measurement error, leading the naïve
estimator to be biased apparently. As for the response score
and distribution of random effects, F(αTzZi + αmTMBi +
αmei + b̂i) and 1

2 log|(k″(b̂i, TMBi, ei; θ))| are also subject to
the negative impact of the error term with non-zero
expectations:

E{F(αTzZi + αmTMBi + αmei + b̂i)}
� ∫+∞

−∞
F(αT

zZi + αmTMBi + αmei + b̂i)p(ei)dei
due to the function F(·) is not axisymmetric about the origin. The
presence of the inevitable random error term e undermines the
unbiased nature of the score expectation.

Correction of TMB Measurement Error for
Threshold Optimization
To reduce the biasing effect caused by measurement errors and
obtain a more robust TMB threshold, we integrated the widely
applicable corrected score with the joint model, resulting in
approximately consistent estimators based on the observed
data. A corrected score is a function Ψp

c of the observed data
having the important property that

E{Ψp
c(Ri, Ti,Δi,Zi, TMBp

i ;Θ)∣∣∣∣Ri, Ti,Δi,Zi, TMBi}
� Ψ(Ri, Ti,Δi,Zi, TMBi;Θ) (11)

which is conditionally unbiased for the true-data score
function according to the property of conditional
expectation, E{Ψp

c(Ri, Ti,Δi,Zi, TMBp
i ;Θ)} � 0. The corrected

scores provide an approach to reducing bias incurred by a
covariate measurement error. Thus, Ψp

c possesses a consistent,
asymptotically normally sequence of solutions for∑n

i�1Ψ
p
c(Ri, Ti,Δi,Zi, TMBp

i ;Θ) � 0 (Nakamura, 1990; Carroll
et al., 2006).

Based on Eqs. 4 and 8 and the property of corrected score, we
derive a correct k′c(bi) for the random effect estimator, and a
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corrected score Ψp
c for the ideal likelihood score Ψ . The corrected

scores are defined as follows.
Let

k′c(bi) � Ri − J−1∑J
j−1
Re{F(αT

zZi + αm, T̃MB
p

j,i + bi)} + Δi

− Tλ
i m(βm)−1 exp(βTzZi + βmTMBp

i + bi) − bi
σ2
b

(12)

where the complex variate T̃MB
p

j,i � TMBp
i +

���−1√
ξj,i, and ξj,i is

a normal random vector with zero mean and variance σe. Then,
k′(bi) is the corrected-score function for k′(bi). The proof can be
found in the Supplementary Material.

Furthermore, we obtain the joint corrected-score
Ψp

c(R,T,Δ,Z,TMBp;Θ) � [Ψp
c(θTR),Ψp

c(θTT),Ψp
c(θb)]T, where

Ψp
c(θR) � Ψp

R c(θR) + Ψp
b c(θR),

Ψp
c(θT) � Ψp

T c(θT) + Ψp
b c(θT), Ψp

c(θb) � Ψp
b c(θb),

Ψp
R c,i(θR) � Ri

⎛⎝ Zi

TMBp
i

⎞⎠ − J−1∑J
j�1
Re
⎧⎪⎨⎪⎩F⎛⎝αT

zZi + αm
˜TMBp

j,i + b̂i⎞⎠⎛⎜⎜⎜⎝ Zi

T̃MBp
i

⎞⎟⎟⎟⎠⎫⎪⎬⎪⎭
Ψp

T c,i(λ) � Δi(λ−1 + logTi) − Tλ
i logTi exp(βTzZi + βmTMBp

i + b̂i)m(βm)−1
Ψp

T c,i(βTz ) � [Δi − Tλ
i exp(βTzZi + βmTMBp

i + b̂i)m(βm)−1]Zi

Ψp
T c,i(βm) � ΔiTMBp

i − Tλ
i exp(βTzZi + βmTMBp

i + b̂i)m(βm)−1[TMBp
i −m(βm)−1{zm(βm)zβm

}]
(13)

Ψb c,i(θR) � − 1

2
∣∣∣∣∣k″c(b̂i; θ)∣∣∣∣∣J−1∑Jj�1

Re

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp(αTzZi + αm

˜TMBp
j,i + b̂i⎞⎠⎧⎨⎩1 − exp⎛⎝αT

zZi + αm ˜TMBp
j,i + b̂i⎞⎠⎫⎬⎭⎧⎨⎩1 + exp⎛⎝αTzZi + αm

˜TMBp
j,i + b̂i⎞⎠⎫⎬⎭3

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭⎛⎝
Zi

T̃MB
p

j,i

⎞⎠
Ψb c,i(λ) �

Tλ
i logTi exp(βTzZi + βmTMBp

i + b̂i)m(βm)−1
2
∣∣∣∣∣k″c(b̂i; θ)∣∣∣∣∣

Ψb c,i(βTz ) � Tλ
i exp(βTzZi + βmTMBp

i + b̂i)m(βm)−1
2
∣∣∣∣∣k″c(b̂i; θ)∣∣∣∣∣ Zi

Ψb c,i(βm) � Tλ
i exp(βTzZi + βmTMBp

i + b̂i)m(βm)−1
2
∣∣∣∣∣k″c(b̂i; θ)∣∣∣∣∣ [TMBp

i −m(βm)−1{zm(βm)zβm
}]

Ψb c,i(σb) � −σ−1b + b̂
2

i · σ−3b + σ−1
b

∣∣∣∣∣k″c(b̂i; θ)∣∣∣∣∣−1
(14)

We present the joint corrected scores based on the complex
variable simulation extrapolation and the property of Eq. 11. Eq.
13 contains Ψp

R c(θ) representing the corrected score for ORR,
which follows the complex variable simulation extrapolation for
logistic regression (see Lemma 3 in the Supplementary
Material), while Ψp

T c(θ) represents the corrected score for
TTE satisfying the property of Eq. 11 (see Lemma 2 in the
Supplementary Material). Then, based on the specificity of joint
modeling, additional Ψp

b c(θ) needs to be considered, which
represents the difference between the standard correction and
the joint model correction. Then, Ψp

c is the corrected-score
function with the proof in the Supplementary Material.
Consistency is achieved by virtue of the fact that the

estimators are M-estimators whose score functions are
unbiased in the presence of measurement error. The critical
challenges of inferring the joint model are the random effects
that characterize within-subject correlations. In the presence of
measurement error, we need to correct the score functions of the
random effects k′(b̂i) to ensure the unbiasedness of their
estimates before dealing with complex joint score functions
without exact solutions by k″c(b̂i) as well as Monte Carlo
extrapolation, which is the gap in the existing literature
addressed in this article. Solving the equations k′c(b̂i) � 0 and∑n

i�1Ψ
p
c(Ri, Ti,Δi,Zi, TMBp

i ;Θ) � 0 by the Newton–Raphson
iteration, it is ultimately possible to yield the approximately
consistent estimators ~θ for mis-specified covariates and ~b for
random effects.

The complete TMB threshold identification procedure
based on the aforementioned Laplace approximation and
corrected score is given in Algorithm 2.

Algorithm 2. Identifying TMB threshold with measurement
errors

EXPERIMENTS AND RESULTS

Simulation Study
In order to assess the performance of the proposed joint model
with the corrected-score function, we conducted a series of
simulation studies whose primary objective was to assess the
fixed effect coefficient estimates and the variance of the random
effects. Data are simulated in an oncology trial context, with
random effects correlated among patients’multiple endpoints. In
the simulations, we assume 200 patients, i.e., i � 1, . . . , 200. For
each patient i, we generate the random effects bi from a normal
distribution with zero mean, variance σb. We consider three distinct
tumor response states CR&PR (Ri = 1), SD & PD (Ri = 0). The
response data are generated based on the logistic probability,
π1 � F(αTzZi + αmTMBi + bi), π0 � 1 − π1. The event time for
the patient is generated from the probability density function
h0(t) exp(βTzZi + βmTMBi + bi)S0ε(t)exp(βTzZi+βmTMBi+bi), where
the baseline hazard is assumed to follow the Weibull distribution
with the shape parameter equal to 1.0. Censoring timeC is generated
from the uniform distribution U (0, 8).
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Furthermore, we set αz � −1.8, αm � −0.3,
λ � −1.0, βz � −2.2, and βm � −0.4, σb � −1.0. The variance
for the error term is set to be 0.5, 0.75, and 1.0,

respectively, in order to evaluate the performance of the
estimators with different measurement error levels. With
the specified parameters, for each dataset, based on the

TABLE 1 | Comparisons of bias and standard errors of estimators between joint model with standard model with varying measurement errors.

Model and estimator Coef Fitted value Average Bias SD SE

Joint Model True-data estimator α −1.857 0.057 0.547 0.508
αm 0.277 0.023 0.099 0.093
λ 0.995 0.005 0.084 0.066
β 2.109 0.091 0.315 0.302
βm −0.427 0.027 0.068 0.060
σb 0.981 0.019 0.167 0.064

Joint Model Correct-score estimator σerr = 0.5 α −1.854 0.054 0.495 0.503
αm 0.278 0.022 0.091 0.092
λ 0.989 0.011 0.083 0.066
β 2.117 0.083 0.373 0.296
βm −0.425 0.025 0.081 0.060
σb 0.956 0.044 0.148 0.064

Joint Model Correct-score estimator σerr = 0.75 α −1.798 0.002 0.477 0.502
αm 0.271 0.029 0.090 0.091
λ 0.979 0.021 0.075 0.066
β 2.108 0.092 0.370 0.293
βm −0.418 0.018 0.076 0.059
σb 0.922 0.078 0.124 0.062

Joint Model Correct-score estimator σerr = 1.0 α −1.790 0.010 0.444 0.498
αm 0.274 0.026 0.081 0.090
λ 0.972 0.028 0.074 0.065
β 2.027 0.173 0.362 0.288
βm −0.390 0.010 0.074 0.058
σb 0.893 0.107 0.106 0.061

Joint Model Naive estimator σerr = 0.5 α −1.685 0.115 0.409 0.482
αm 0.257 0.043 0.069 0.087
λ 0.947 0.053 0.072 0.064
β 1.757 0.443 0.326 0.281
βm −0.344 0.056 0.060 0.056
σb 0.854 0.146 0.105 0.059

Joint Model Naive estimator σerr = 0.75 α −1.591 0.209 0.403 0.465
αm 0.246 0.054 0.066 0.082
λ 0.924 0.076 0.064 0.063
β 1.436 0.764 0.296 0.264
βm −0.268 0.132 0.047 0.051
σb 0.788 0.212 0.070 0.056

Joint Model Naive estimator σerr = 1.0 α −1.585 0.215 0.483 0.456
αm 0.224 0.076 0.078 0.079
λ 0.947 0.053 0.078 0.064
β 1.335 0.865 0.376 0.255
βm −0.260 0.140 0.082 0.048
σb 0.885 0.115 0.165 0.060

Logistic regression true data α −1.072 0.728
αm 0.188 0.112

Cox regression true data β 1.996 0.204
βm −0.329 0.071

Logistic regression σerr = 0.5 α −1.047 0.75253
αm 0.180 0.120

Cox regression σerr = 0.5 β 2.019 0.181
βm −0.297 0.103

Logistic regression σerr = 0.75 α −0.965 0.835
αm 0.166 0.134

Cox regression σerr = 0.75 β 1.992 0.208
βm −0.221 0.179

Logistic regression σerr = 1.0 α −0.926 0.874
αm 0.150 0.150

Cox regression σerr = 1.0 β 1.973 0.227
βm −0.177 0.223

Bold value represents the TMB effect.

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 9158397

Wang et al. Optimal TMB Threshold Determination

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


joint model, the true-data estimator, the naive estimator and
the correct-score estimator with Monte Carlo approximation
J = 10 were computed 1,000 replications. As a comparison, we
also based the standard regression models; the true-data
estimator and the naive estimator were computed. Results
of the simulations are presented in Table 1. We report the
fitted value, average bias, SD, and SE for each parameter, where
SD and SE are defined as the standard error of the estimates
over 1,000 simulations and the average of the standard error of
the estimates, respectively.

According to Table 1, the regression parameter estimates for
the two function components perform reasonably well for a
variety of measurement error conditions. In the absence of

measurement errors, the joint model outperforms ordinary
regression models in calculating regression coefficients because
it more precisely reflects the potential connections between
several endpoints. When considering different levels of
measurement errors, the performance of the estimator based
on corrected score was significantly superior to that of the
naive estimator and only marginally poorer than that of the
true-data estimator. Clearly, the performance of the naive
estimator deteriorates with increasing error magnitude, which
further suggests that the measurement error introduces a more
significant bias effect on the parameter estimates. Overall, the
results of the simulation experiments support the proposed joint
multi-endpoint model and the iterative numerical estimation

FIGURE 2 | Efficacy comparison of patients grouped based on different TMB thresholds. (A) (B) Comparison of ORR and survival curves based on the threshold
derived from the joint statistical inference with TMB actual values. (C) (D) Comparison of ORR and survival curves based on median TMB observations. (E) (F)
Comparison of ORR and survival curves based on the threshold derived from the joint-correction statistical inference with TMB observed values.
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procedure, as well as the applicability of the associated random
effects. Additionally, comparing SE and SD, the precision of the
stated standard errors is generally satisfactory. The biases of the
joint assessments compared to the standard separate regressions
emphasize that the dependence among clinical endpoints could
be an important and non-negligible confounder in analyzing the
factors determining the treatment effect.

To further exhibit the disturbance of measurement errors on
TMB thresholds and the stability of our proposed joint model, we
additionally simulated the comparison of efficacy grouped by
different TMB thresholds. We simulated the prognosis of a cohort

of patients based on the assumption that there is a positive
correlation between actual TMB levels and a favorable
immunotherapy prognosis, with coefficients set exactly as
above. The variance fluctuation of TMB measurement error
was set to 1.0. We derive the different thresholds for
classifying patients and comparing their efficacy based on the
joint statistical inference with the TMB actual values, the quantile
method with TMB observations, and the joint-correction
statistical inference with TMB observations. The outcomes of
the comparison are depicted in Figure 2. We can clearly observe
that the discrepancies between the efficacies of different groups

FIGURE 3 | Patient samples included in the final analysis. (A) Flowchart for NSCLC sample inclusions. Among the 95 patients who underwent anti-PD-(L)
1 therapies and had available FFPE and/or biopsy tumor samples, we performedWES on samples from 73 patients. (B) Flowchart for NPC sample inclusions. Among the
128 patients who underwent anti-PD-(L) 1 or anti-CTLA-4 therapies, we performed targeted NGS on samples from 64 patients.
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are minimized or even reversed (Figure 2C,D) when the patients
were classified directly using quartiles in the presence of
measurement errors. Contrary to the clinical theory that the
higher TMB, the more antitumor immunogenic the patient,
patients in the TMB-low subgroup demonstrated greater
therapeutic benefit in terms of tumor remission and
progression-free survival than those in the TMB-high
subgroup. The confounding effect of the measurement errors
would dilute the actual link between TMB levels and
immunotherapy clinical efficacy (Figures 2A,B), preventing
appropriate screening for superior patient populations. In
contrast, the bias effect due to measurement errors is reduced
when we use the joint model as well as the correction estimation
procedure. As shown in Figure 2E,F, the TMB threshold

determination based on our proposed method ensures both
the validity and a certain degree of error tolerance.

Patient Cohort Characteristics
Sun Yat-sen University Cancer Center recruited 95 NSCLC
patients who received anti-PD-(L)1 monotherapy between
December 2015 and August 2017, with data collected until
January 2019. The study design has already been published
(Fang et al., 2019). Between March 2016 and January 2018,
R/M NPC patients have enrolled in two single-arm phase I trials
(NCT02721589 and NCT02593786), where 128 patients were
screened for eligibility. The dose escalation and expansion
phases of the study were previously reported (Fang et al.,
2018; Ma et al., 2019). Eligible patients aged from 18 to
70 years had histologically or cytologically confirmed locally
advanced or metastatic NSCLC or NPC, had an Eastern
Cooperative Oncology Group (ECOG) performance-status
score of 0 or 1 (on a 5-point scale, with higher numbers
indicating greater disability), had at least one measurable
lesion according to the Response Evaluation Criteria in Solid
Tumors (RECIST version 1.1 (Eisenhauer et al., 2009)), and had
failed at least one prior line of systemic therapy. Figure 3 and
Supplementary Table S1 depict the distribution of patients’
treatments. Radiographic tumor assessments were taken at the
start of the study and every 6 weeks thereafter. The proportion of
patients with complete response (CR) and partial response (PR)
was known as the ORR. The time from the initial dose until PD
or any-cause death was referred to as progression-free survival
(PFS). Censored data documented the last radiographic
assessment before cut-off, follow-up loss, or treatment
change. Overall survival (OS) was defined as the time from
the first dosage to death, and patients who remained alive were
censored at the date of their last follow-up. The Sun Yat-sen
University Cancer Center’s Ethical Review Committee approved
this study, which was carried out in conformity with the
Declaration of Helsinki. Each patient signed the written
informed consent.

At Sun Yat-sen University Cancer Center, 95 Chinese patients
with NSCLCwere treated with anti-PD-(L)1 monotherapies, with
73 patients being included in the final analysis with evaluable
radiological results. Concurrently, 128 patients with R/M NPC
who had received anti-PD-(L)1 monotherapies were
retrospectively investigated, of whom 64 patients were being
screened for the final analysis based on sequencing quality and
follow-up completeness. When both FFPE and biopsy samples
were available for the patient, the FFPE sample was used in the
analysis, given the limited intra-tumoral heterogeneity
represented by a single biopsy sample. The study design and
clinical characteristics of this cohort are summarized in Figure 3
and Table 2 with details in Supplementary Table S1. For lung
cancer, 60% of the patients had adenocarcinoma, followed by
squamous carcinoma (32%). Almost all patients (99%) were stage
IV at diagnosis; the median age of patients with NSCLC and NPC
at the treatment initiation was 55 and 46 years, respectively. 49%
of the NSCLC patients and 25% NPC patients had a smoking
history and more males in both cohorts (70% vs. 30% for NSCLC,
80% vs. 20% for NPC). ORR of the study cohorts was 19% and

TABLE 2 | Baseline clinical characteristics for NSCLC patients and NPC patients.

Characteristic for NSCLC
patients

All patients (N = 73)

Median age (range) 55 (28–73)
Sex—No. (%)
Male 51 (70%)
Female 22 (30%)

ORR—No. (%)
CR/PR 14 (19%)
SD 20 (27%)
PD 39 (54%)

Stage—No. (%)
III 1 (1%)
IV 72 (99%)

Immunotherapy—No. (%)
Anti-PD-1 68 (93%)
Anti-PD-L1 5 (7%)

Smoking status—No. (%)
Current or former smoker 36 (49%)
Never smoker 47 (51%)

Pathological type—No. (%)
Adenocarcinoma 44 (60%)
Squamous carcinoma 23 (32%)
Others 6 (8%)

Characteristic for NPC patients All patients (N = 64)

Median age (range) 46 (23–73)
Sex—No. (%)
Male 51 (80%)
Female 13 (20%)

ORR—No. (%)
CR/PR 8 (12%)
SD 19 (30%)
PD 37 (58%)

Stage—No. (%)
IV 64 (100%)

Immunotherapy—No. (%)
Camrelizumab 42 (66%)
Nivolumab 18 (28%)
Ipilimumab 4 (6%)

Smoking status—No. (%)
Current or former smoker 16 (25%)
Never smoker 48 (75%)

Therapy line—No. (%)
2 15 (23%)
>2 42 (66%)
NA 7 (11%)
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12%, and the median progression-free survival (mPFS) was
91 days for lung cancer and 67.5 days for NPC. No difference
in PFS was observed among the different immune agents.

In addition to the SYSUCC NSCLC cohort and NPC cohort
described above, external cohorts of 943 patients from the
public literatures treated with ICI are compiled in

TABLE 3 | Patient cohorts from the published literatures.

Cancer type Num. Sequencing platform TMB threshold Case

NSCLC 35 F1CDx ≥20 mut/Mb Goodman et al. (2017)
57 WES No definition Miao et al. (2018)
75 WES Median Hellmann et al. (2018a)
240 MSK-IMPACT Median Rizvi et al. (2018)

Melanoma 37 WES Top third Hugo et al. (2016)
52 F1CDx ≥20 mut/Mb Goodman et al. (2017)
64 WES ≥100 mut/Mb Snyder et al. (2014)
105 WES ≥100 mut/Mb Van Allen et al. (2015)

195 (58)a WES(MC3) 75th percentiles Wood et al. (2020)

RCC 56 WES(MC3) 75th percentiles Wood et al. (2020)

Bladder 27 WES No definition Miao et al. (2018)

aWood2020 study is a pooling meta-analysis on several existing datasets, where 58 patients of the 195 were patients not included in the above studies.

FIGURE 4 | Receiver operating characteristic curves of the predictive capacity of prognosis label for two experiment cohorts and validation cohorts, depicting the
true-positive rate (sensitivity, y-axis) and false-positive rate (1-specificity, x-axis) for the metric across all possible TMB thresholds. The corresponding area under the
curve (AUC) is illustrated in the figure legends. (A) ROC curves for NPC (panel) experiment cohort, bladder cohort, and RCC cohort based on ORR labels alone. (B) ROC
curves for NSCLC (WES) experiment cohort, NSCLC_35 cohort, NSCLC_57 cohort, and NSCLC_240 cohort based on ORR labels alone. (C) ROC curves for
Mel_37 cohort, Mel_52 cohort, Mel_64 cohort, andMel_105 cohort based on ORR labels alone. (D)ROC curves for NPC (panel) experiment cohort, bladder cohort, and
RCC cohort based on themixed-endpoint labels. (E) ROC curves for NSCLC (WES) experiment cohort, NSCLC_35 cohort, NSCLC_57 cohort, and NSCLC_240 cohort
based on the mixed-endpoint labels. (F) ROC curves for Mel_37 cohort, Mel_52 cohort, Mel_64 cohort, and Mel_105 cohort based on the mixed-endpoint labels.
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Supplementary Table S2, encompassing 453 melanoma
patients (Snyder et al., 2014; Van Allen et al., 2015; Hugo
et al., 2016; Goodman et al., 2017), 407 NSCLC patients
(Goodman et al., 2017; Hellmann et al., 2018a; Miao et al.,
2018; Rizvi et al., 2018), 56 RCC (Wood et al., 2020), and
27 bladder (Miao et al., 2018), along with treatment modality
and outcome analyzed. The mutation callings are derived from
three sequencing platforms (WES, F1CDx, and MSK-
IMPACT). F1CDx and MSK-IMPACT are NGS targeted
panel being authorized by the FDA as practical diagnostic
assays. Table 3 summarizes the sequencing methodology and
varied TMB thresholds employed in the gathered research.

Joint Model Prompts a Comprehensive and
Robust TMB Subgrouping
The multi-endpoint joint analysis used to locate TMB thresholds
is superior to the previous studies as it provides a more
comprehensive analysis of patient clinical information. Based
on the co-analyzed labels, it can give an overall picture of disease
efficacy. Based on these compound indices to establish ROC
curves to handle true- and false-positive rates in the classification,
we selected a TMB threshold from clinically meaningful values to
group patients in the experiment and validation sets.

As shown in Figure 4 and Table 4, we can discern that the ROC
curves based on the mixed-endpoint joint labels generally had higher
AUCs in either the experiment or validation groups, with an average
improvement of about 0.2 over those based on ORR labels alone, and
the range of confidence intervals likewise supports this conclusion.
More importantly, all the AUCs established on the proposed indices
exceeded 0.6, ranges from 0.663 to 0.972, reflecting our model’s more
robust discrimination capabilities. For comparison, as for the ROCs
based on original ORR labels, despite the classification ability varying
among cancer types, the ROCs inmost cases showedmore inferiority,
with half of the cases only marginally exceeding 0.5 not reaching 0.6,
even equivalent to random chance. The results in Figure 4 and
Table 4 fully demonstrate that the subgrouping of TMB under the
joint modeling of multiple endpoints is significantly improved
compared to the existing subgrouping based on the ORR single

label. We attribute this phenomenon to a proportion of the patients
with opposing effects on the two rubrics present in these cases.
Although high TMB was reported associated with ICI treatment
improvement in terms of overall trends, the status of a single indicator
alone is not fully representative of the patient’s actual matter. This is
why the ROC curves established based on only a single endpoint have
such poor performance. Integrating patients’ multi-dimensional
information and joint modeling mixed-endpoints can prompt a
more comprehensive stratification of TMB. Our approach could
provide clinicians with a full assessment of efficacy, resulting in a
comprehensive determination of the TMB screening threshold for
superior patients.

To verify that our proposed threshold delineation method for
TMB remains valid and robust under the perturbation of
measurement errors, we added 10%–20% artificial noise
according to the actual TMB level. Given the small number of
patients in some cases, which are over-sensitive to data noise, we
selected several groups of cases with more patients for analysis. The
results are shown in Figure 5 andTable 5. Under the perturbation of
artificial noise, the AUC of each group showed mostly a slight
decrease compared to the error-free cases. However, the ROC curves
based on our proposed joint labels still maintain a high AUC, which
is about 0.3 higher on average than the ROC curves based on ORR
labels only. These results demonstrate the high error tolerance of our
proposed joint model.

Joint Analysis Prompts a Significant and
Error-Tolerant Patient Subgrouping
In addition to the strengths shown in the ROC curves, based on the
derived TMB thresholds, we can classify experimental NSCLC
patients into two groups with apparently stratified efficacy. The
effect of the dichotomy is shown in Figure 6, where we can notice
a significant difference between patients inTMB_Low andTMB_High
in terms of immunotherapy benefit (p-values = 0.017 and 0.089). The
grouping results on the other cohorts can be seen in Supplementary
Figures.

To demonstrate that the TMB thresholds derived from our
proposed joint model can significantly separate the treatment

TABLE 4 | AUC comparison. The table reports the area under the curve (AUC), as well as the corresponding 0.95 confidence interval, for each metric (columns) applied to a
different cancer cohort (rows). Bold-faced values indicate the best value for each cancer cohort.

Experiment cohort AUC based on ORR 0.95 CI AUC based on joint model 0.95 CI

NPC 0.546 0.321–0.77 0.902 0.793–1.000
NSCLC 0.564 0.398–0.730 0.895 0.826–0.964

Validation cohort AUC based on ORR 0.95 CI AUC based on joint model 0.95 CI

Bladder 0.750 0.554–0.946 0.921 0.807–1.000
RCC 0.527 0.370–0.684 0.756 0.594–0.918
NSCLC_35 0.819 0.668–0.970 0.833 0.683–0.983
NSCLC_57 0.857 0.756–0.959 0.972 0.928–1.000
NSCLC_240 0.609 0.517–0.701 0.947 0.922–0.973
Mel_37 0.576 0.389–0.764 0.663 0.467–0.859
Mel_52 0.726 0.585–0.866 0.777 0.646–0.909
Mel_64 0.523 0.375–0.671 0.851 0.757–0.943
Mel_105 0.596 0.466–0.726 0.863 0.789–0.937
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FIGURE 5 | Receiver operating characteristic curves of the predictive capacity of prognosis label for two experiment cohorts and validation cohorts, depicting the
true-positive rate (sensitivity, y-axis) and false-positive rate (1-specificity, x-axis) for the metric across all possible TMB thresholds considering measurement errors. The
corresponding area under the curve (AUC) is illustrated in the figure legends. (A) ROC curves for NPC (Panel), NSCLC (WES) experiment cohort, Mel_64 cohort,
Mel_105 cohort, and NSCLC_240 cohort based on ORR labels considering TMBmeasurement errors. (B) ROC curves for NPC (panel), NSCLC (WES) experiment
cohort, Mel_64 cohort, Mel_105 cohort, and NSCLC_240 cohort based on the mixed-endpoint labels considering TMB measurement errors.

TABLE 5 | AUC comparison. The table reports the area under the curve (AUC), as well as the corresponding 0.95 confidence interval, for each metric (columns) applied to a
different cancer cohort (rows). Bold-faced values indicate the best value for each cancer cohort.

Experiment cohort AUC based on ORR 0.95 CI AUC based on joint model 0.95 CI

NPC 0.558 0.341–0.775 0.873 0.783–0.963
NSCLC 0.579 0.421–0.737 0.778 0.665–0.890

Validation cohort AUC based on ORR 0.95 CI AUC based on joint model 0.95 CI

NSCLC_240 0.582 0.487–0.677 0.886 0.845–0.928
Mel_64 0.462 0.307–0.617 0.898 0.817–0.979
Mel_105 0.578 0.436–0.720 0.798 0.712–0.884

FIGURE 6 | Survival curves and ORR comparison between experimental NSCLC patients (n = 73) with low and high TMB. Improved progression-free survival (PFS)
and a trend toward increased objective response rate (ORR) are observed in patients with high TMB.
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TABLE 6 | Immunotherapy mPFS or mOS and response probability based on different tumor mutation burden (TMB) thresholds for non-small-cell lung cancer (NSCLC),
nasopharyngeal carcinoma (NPC), bladder, renal cell carcinoma (RCC), and melanoma. p values are reported by log-rank test and the two-sided Mann–Whitney U test.

Case Threshold mPFS or mOS
(months) for TMB_L

mPFS or mOS
for (months) TMB_H

p-value Response Prob for TMB_L
(%)

Response Prob for TMB_H
(%)

p-value

NSCLC Joint model 2.03 4.33 0.017 11.43 23.68 0.089
Median 2.03 4.33 0.028 11.11 24.32 0.073
Top third 2.17 5.37 0.023 16.33 20.83 0.323
75th 2.27 4.33 0.713 20.75 10.00 0.146

NPC Joint model 1.77 2.57 0.791 7.40 16.22 0.151
Median 1.77 2.57 0.791 7.40 16.22 0.151
Top third 1.93 2.57 0.755 12.20 13.04 0.466
75th 1.93 2.57 0.755 12.20 13.04 0.466

Bladder Joint model 16.71 16.55 0.243 36.36 100.00 0.009
Median 16.71 16.55 0.535 23.08 71.43 0.012
Top third 16.71 16.12 0.806 33.33 77.78 0.038
75th 16.71 16.12 0.437 35.00 85.71 0.023

RCC Joint model 5.70 2.70 0.335 62.79 76.92 0.178
Median 6.80 3.60 0.955 67.86 64.29 0.394
Top third 5.77 3.97 0.982 62.16 73.68 0.199
75th 5.60 4.30 0.808 64.29 71.43 0.318

NSCLC_35 Joint model 1.80 4.00 0.040 4.35 41.67 0.003
Median 2.00 3.20 0.137 0.00 28.57 0.016
Top third 1.80 4.00 0.024 4.35 41.67 0.003
75th 1.80 4.00 0.015 7.69 44.44 0.007

NSCLC_57 Joint model 10.39 14.61 <0.001 12.50 70.59 <0.001
Median 10.39 14.61 0.001 32.14 41.38 <0.001
Top third 10.39 14.61 <0.001 44.74 21.05 <0.001
75th 10.39 14.61 0.002 40.47 26.67 <0.001

NSCLC_75 Joint model 3.78 22.14 0.006 12.20 55.90 <0.001
Median 3.78 8.12 0.012 13.51 50.00 0.002
Top third 3.94 22.14 0.003 20.00 56.00 0.001
75th 5.10 23.0 0.019 23.21 57.89 0.004

NSCLC_240 Joint model 3.10 4.17 0.062 14.29 26.45 0.052
Median 3.10 4.17 0.062 14.29 26.45 0.052
Top third 3.03 4.20 0.235 17.83 25.30 0.108
75th 2.73 5.47 0.030 17.22 30.00 0.002

Mel_37 Joint model 27.40 32.10 0.055 40.00 63.64 0.084
Median 27.40 31.2 0.044 50.00 57.89 0.324
Top third 31.00 32.10 0.151 48.00 66.67 0.151
75th 31.00 32.10 0.561 48.15 70.00 0.125

Mel_52 Joint model 5.80 40.000 0.121 32.26 76.19 <0.001
Median 6.80 15.20 0.250 30.77 69.23 0.003
Top third 7.90 15.20 0.554 40.00 70.59 0.021
75th 9.20 40.00 0.927 43.59 69.23 0.058

Mel_64 Joint model 18.51 94.60 0.037 22.22 26.09 0.379
Median 19.79 inf 0.933 21.88 28.12 0.286
Top third 32.4 44.40 0.868 25.58 23.81 0.443
75th 32.84 inf 0.636 25.00 25.00 0.500

Mel_105 Joint model 2.80 3.00 0.200 12.90 20.93 0.083
Median 2.80 3.00 0.622 11.54 20.75 0.129
Top third 2.80 3.00 0.851 17.14 14.29 0.484
75th 2.80 3.30 0.606 15.39 18.52 0.237

Mel_195 Joint model 3.73 6.06 0.607 29.07 38.89 0.077
Median 3.73 4.90 0.640 28.87 40.21 0.049
Top third 4.63 3.80 0.730 34.88 33.85 0.444
75th 5.10 3.33 0.090 35.86 30.61 0.253

Bold values represent the results of the proposed joint model.
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effects of patients receiving immunotherapy, we statistically
compared the patient outcomes obtained based on our
thresholds with those obtained from different quartiles
(median, upper tertile, upper quartile) using the log-rank
test and the two-sided Mann–Whitney U test. As shown by
the results in Table 6, our model-derived TMB thresholds
performed satisfactorily and consistently for cohort patient
segmentation. This predominance is mainly reflected in the
p-values of the statistical tests, which are essentially the lowest
among all division scenarios under the threshold division
based on the joint model, indicating that the proposed
model is predominate. NSCLC_35 and NSCLC_240 were
the only two situations in which the p-values performed
marginally worse than the quantile divisions. Similarly, five
groups of patients were selected to validate the stability of the
proposed model in the face of the TMB measurement error. As
shown by the results in Table 7, our proposed threshold
delineation method for TMB remained efficient and robust
under perturbation of measurement error.

DISCUSSION

Tumor mutation burden has recently become an area of interest,
as high TMB is associated with improved response to ICI
therapies. However, the threshold defining the TMB-high/
TMB-positive patients is controversial in clinical, which is
exacerbated by the presence of multiple evaluation metrics
and TMB calculation errors. The existing TMB threshold-
identifying approaches are merely based on a single

endpoint, which may suffer from excessive information loss.
TMB metric, as a predictive marker, is closely associated with
both of the two types of clinical endpoints (ORR and TTE),
where the effect in two endpoints may be of different magnitude
or even point in different directions. Herein, we report a
generalized framework for comprehensively determining the
positivity TMB thresholds based on a mixed-endpoint joint
model and an iterative numerical estimation procedure
considering measurement errors. In our joint model, we
choose the Weibull–Cox proportional hazard model for the
TTE endpoint. Although the baseline risk h0(t) in standard
survival analysis usually be left unspecified, such as the
advantageous partial likelihood method. However, within the
joint modeling framework, it turns out that following such a
route may lead to an underestimation of the standard errors of
the parameter estimates (Hsieh et al., 2006). Thus, we
recommend choosing an explicit definition of h0(t) based on
the dataset characteristics, corresponding to a parametric
distribution. The Weibull, the log–normal, and the Gamma
distributions are typically employed in the survival analysis
context. By analyzing the progression-free survival of patients
receiving immunotherapy, we found that the trend of their
baseline cumulative hazard distribution was consistent with
the Weibull distribution with a scale parameter equal to 1
(see in Figure 1), so the Weibull–Cox proportional hazard
model was employed in this article. Our joint model sheds
new light on the tumor mutation burden stratification based on
a multi-endpoint assessment of immunotherapy benefits,
suggesting more comprehensive and robust TMB-positive
thresholds for clinical physicians. Attending physicians

TABLE 7 | Immunotherapy mPFS or mOS and response probability based on different tumor mutation burden (TMB) thresholds with measurement errors for non-small-cell
lung cancer (NSCLC), nasopharyngeal carcinoma (NPC), bladder, renal cell carcinoma (RCC), and melanoma. p values are reported by log-rank test and the two-sided
Mann–Whitney U test.

Case Threshold mPFS or mOS
(months) for TMB_L

mPFS or mOS
for (months) TMB_H

p-value Response Prob for TMB_L
(%)

Response Prob for TMB_H
(%)

p-value

NSCLC Joint model 2.03 4.33 0.022 9.375 24.39 0.100
Median 2.13 4.33 0.046 11.11 24.31 0.145
Top third 2.17 4.43 0.023 14.12 22.95 0.171
75th 2.17 4.43 0.010 16.55 20.00 0.522

NPC Joint model 1.77 2.57 0.543 6.25 18.75 0.137
Median 1.77 2.57 0.543 6.25 18.75 0.137
Top third 1.93 2.57 0.970 9.33 16.98 0.200
75th 1.93 2.57 0.927 10.57 15.94 0.282

NSCLC_240 Joint model 2.9 4.2 0.016 13.39 26.56 0.011
Median 3.1 3.77 0.264 17.5 23.33 0.140
Top third 3.07 4.17 0.061 17.5 24.5 0.094
75th 3.07 4.27 0.013 17.61 25.38 0.023

Mel_64 Joint model 18.51 inf 0.204 16.13 33.33 0.12
Median 18.51 inf 0.259 18.75 31.25 0.257
Top third 31.2 inf 0.297 22.67 28.30 0.472
75th 32.4 inf 0.262 23.58 27.54 0.546

Mel_105 Joint model 2.7 3.3 0.019 4.65 24.19 0.007
Median 2.8 3.27 0.835 15.38 16.98 0.829
Top third 2.8 3.27 0.693 15.57 17.05 0.777
75th 2.8 3.27 0.584 15.5 17.39 0.662
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should make treatment recommendations based on patients’
multi-dimensional information.

CONCLUSION

The existing statistical methods for determining TMB thresholds
are based on a single clinical endpoint while ignoring the
difference between the true and observed TMB values. Our
study considers TMB measurement error and integrates
multifaceted clinical efficacy to optimize TMB thresholds. We
report a multi-endpoint joint model as a generalized method for
inferring TMB thresholds that facilitates consistent statistical
inference using an iterative numerical estimation procedure
considering mis-specified TMB. Our simulation results show
that the proposed model maintains higher accuracy and
stability than standard regressions, in terms of both parameter
estimation and threshold determination. To validate the
feasibility of the proposed thresholds, we pooled a cohort of
73 patients with non-small-cell lung cancer and 64 patients with
nasopharyngeal carcinoma treated with anti-PD-(L)1, as well as a
validation cohort of 943 patients for retrospective analysis. From
the simulation and experimental results, we reasonably conclude
that 1) our proposed joint model with the parameter estimation
procedure can more robustly assess patient efficacy even under
the interference of measurement error in TMB. 2) Integrating
patients’ multi-dimensional information to employ multi-
endpoint efficacy analysis can prompt a more comprehensive
TMB subgrouping. 3) The TMB-positive threshold derived from
multi-endpoint joint analysis can classify patients into two groups
with more apparently stratified efficacy. Our model is applicable
to clinical multiple endpoint data and can better assist physicians
in their clinical decisions.
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