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Modeling Variability in the Progression of Huntington’s
Disease A Novel Modeling Approach Applied to
Structural Imaging Markers from TRACK-HD

JH Warner*and C Sampaio

We present a novel, general class of disease progression models for Huntington’s disease (HD), a neurodegenerative disease
caused by a cytosine-adenine-guanine (CAG) triplet repeat expansion on the huntingtin gene. Models are fit to a selection of
structural imaging markers from the TRACK 36-month database. The models are of mixed effects type and should be useful in
predicting any continuous marker of HD state as a function of age and CAG length (the genetic factor that drives HD
pathology). The effects of age and CAG length are modeled using flexible regression splines. Variability not accounted for by
age, CAG length, or covariates is modeled using terms that represent measurement error, population variability (random
slopes/intercepts), and variability due to the dynamics of the disease process (random walk terms). A Kalman filter is used to
estimate variances of the random walk terms.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Pathology in HD develops very slowly over many

years. Considerable effort has been expended in col-

lecting prospective data on subjects in various stages

of HD. However, few (if any) subjects have been

observed over the complete time course of the

disease.
WHAT QUESTION DID THIS STUDY ADDRESS?
� There is a need to simulate a range of complete

time courses by “patching together” shorter time

courses obtained from many different individuals. The
current study proposes a solution to this problem.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This study demonstrates the feasibility of the pro-
posed solution and takes a first step toward developing
a more global view of disease progression in HD.
HOW THIS MIGHT CHANGE CLINICAL PHARMA-
COLOGY AND THERAPEUTICS
� The models presented here could be used to inform
clinical trial simulations and to help in the search for nat-
urally occurring factors that affect disease progression.

Huntington’s disease (HD) is a neurodegenerative disease

with autosomal dominant inheritance. HD is caused by a

cytosine-adenine-guanine (CAG) triplet repeat expansion

on the huntingtin gene that enters the pathological range

when it reaches 36 repeats with longer CAG lengths asso-

ciated with earlier onset.1 Two recent studies have also

found that longer CAG length is associated with faster pro-

gression of the disease, an effect which may decrease as

the disease progresses.2,3 Ref. 4 found that the interval

between motor onset and death is independent of CAG

length but does not dispute the claim that CAG-related pro-

gression of signs and symptoms occurs after disease

onset. Ref. 5 documents CAG length and age-dependent

effects in mouse models for HD.
In the present study, we present a general class of dis-

ease progression models for HD and fit them to a high
quality dataset consisting of magnetic resonance imaging-
based structural imaging markers from the TRACK 36-
month database.2 The models are of mixed effects type
and should be useful in predicting any continuous marker
of HD state as a function of age and CAG length controlling
for the effects of normal aging. The models use natural

regression splines to model the effects attributable to aging
in healthy individuals and the effects of CAP score (short
for CAG age product) in subjects who are gene-positive for
HD.

The CAP score has been used extensively in the HD lit-
erature to model the effects of age and CAG length on vari-
ous measures of HD state.1,2,6–9 In what follows, we make
use of the general form of the CAP score, as defined in
Ref 1.

CAP5AGE3ðCAG2LÞ=K (1)

where L and K are constants. L is an estimate of the low-
er limit of the CAG expansion at which phenotypic
expression of the effects of mutant huntingtin could be
observed, and K is a normalizing constant. When L 5 30
and K 5 6.27, CAP will be equal to 100 at the subject’s
expected age of onset of motor symptoms. CAP might be
thought of as a measure of a subject’s cumulative expo-
sure to the toxic effects of mutant huntingtin. We have
found that other values for L and K in the CAP score for-
mula are preferable when modeling specific imaging
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variables. In what follows, we use CAP scores with
L 5 30 and K 5 6.27 in global descriptive plots in which
comparisons with each subject’s expected age at motor
onset is important. “Optimized” values of L and K are
used when simulating trajectories and constructing scat-
ter visual predictive checks.

We distinguish between the Base model, the Random
Slope (RS) model, the Random Walk (RW) model, and the
Full model. The Base model uses natural regression splines
to model the effects attributable to aging in healthy individu-
als and the effects of the CAP score in subjects who are
gene-positive for HD. The Base model also includes random
intercepts, to account for between-subject variability, and tra-
ditional error terms designed to model measurement error.
The RS model extends the Base model by adding random
slopes to account for between-subject variability in the rate
of progression. The RW model extends the Base model by
adding an error term based on Brownian motion (or more
formally the Weiner process) to provide an alternative model
for variable progression rates. The Full model extends the
Base model by adding both RS and RW error terms.

The RS and RW mechanisms are two ways of account-
ing for the observation that signs and symptoms from indi-
viduals with identical ages and CAG lengths often seem to
progress at different rates. The RS model assumes that
each subject possesses a unique deviation from the popu-
lation average disease trajectory that persists throughout a
significant portion of the patient’s adult life. Such a model
might hold if differences in disease progression were deter-
mined by the diversity of the patient population with respect
to genetic, environmental, or life-style related factors. By
contrast, the RW model assumes that the diversity of
patient outcomes is the result of a random process acting
over time in a uniform manner for all patients. The RW
model might hold if progression was driven by a succession
of environmental or life-style related shocks to which all
patients are subject in the same manner. The RW model
allows diverse patient outcomes to be obtained even in the
absence of genetic, environmental, or life-style diversity.
Keeping this in mind may protect one against embracing
false causal conclusions.

The text book example of a RW generating diversity in
an otherwise homogeneous population of individuals, is to
consider the set of fortunes of N gamblers all starting with
identical initial stakes and all playing identical games of
chance (e.g., successive coin flips). It is well known that
very substantial variability in the gambler’s fortunes will be
generated by such a process, even if the random process-
es affecting all gamblers are identical. We suggest that
something similar might be occurring in slowly progressing
diseases, such as HD.

The RW models required the development of the NON-
MEM code that implements a version of the Kalman filter
similar to that introduced in ref. 4 and further developed in
NONMEM 7.311 for the fitting of stochastic differential
equation-based nonlinear mixed effect models. Our
approach is novel to the HD field and, to the best of our
knowledge, within the larger field of disease progression
modeling. We adopt it because of our belief that RW mech-
anisms are plausible and underrecognized.

METHODS
General form of the model
For each imaging marker, separate Base, RS, RW, and Full
models were fit to the population of HD participants and the
population of healthy controls (both from TRACK-HD).
Here, HD participants are defined as subjects who have
tested positively for the HD gene expansion. HD partici-
pants may be divided into two groups: participants who
have not yet been diagnosed with HD based on character-
istic motor symptoms of the disease (called premanifest)
and participants who have been so diagnosed (called
manifest).

For healthy controls the Full model has the following
form:

YCij 5SCðAGEij ; bCÞ1dCi1

gC1i 1gC2iðAGEij 2AGE0Þ1cCijðtÞ1�Cij :
(2)

The corresponding Full model for HD participants (including
both manifest and premanifest participants) has the follow-
ing form:

YHDij 5SCðAGEij ;bCÞ1SHDðCAPij ;bHDÞ1dHDi 1

gHD1i 1gHD2i ðAGEij 2AGE0Þ1cHDijðtÞ1�HDij
(3)

Where YCij5logitðZCij Þ is the logit transformation of the
observation ZCij of the volume of a brain region from
healthy control i at visit j. YHDij5logitðZHDij Þ is a similar
observation made on an HD participant. Both ZCij and ZHDij

are expressed as percentages of the subject’s intracranial
volume. The logit transformation is defined as logitðxÞ5
logðp=ð12pÞÞ, where p 5 x=100. Inverse logit transforma-
tions are applied to results from the models when estimates
of ZCij and ZHDij are needed. This procedure is guaranteed
to produce estimates of ZCij and ZHDij that are positive and
bounded above by intracranial volume 3 100. AGEij and
CAPij are the age and CAP score of subject i at visit j1 (i.e.,
CAPij 5AGEij ðCAGi2LÞ=K ). Where CAGi is the CAG length
of subject i. L and K are constants. For each imaging bio-
marker, separate models are fit with CAP scores defined
with L 5 30 and K56.27 and with values of L and K that
have been optimized for each biomarker. When L 5 30 and
K 5 6.27 the CAP score will be equal to 100 at the
expected age of onset of motor symptoms. The above con-
nection with expected age at motor onset will hold only
approximately for optimized choices of L and K. Details on
the methods used to choose “optimal” values of L and K
are given below.

• SC and SHD are natural cubic spline functions (as described in
ref. 12) that estimate normal aging effects and the toxic effect of
mutant huntingtin, respectively. SC and SHD are linear functions of
the five dimensional parameter vectors bC and bHD but may be
highly nonlinear functions of Age and CAP. Following recommenda-
tions on knot placement in ref. 12, the knots in SC and SHD are
placed at the 5th, 27.5th, 50th, 72.5th, and 95th percentiles of the
AGE and CAP score distributions, respectively. bC is estimated in
the population of healthy controls but held constant at its Base mod-
el value when ref. 3 is fit.
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• dCi and dHDi represent additive fixed effects in the control and HD
populations. The present models include site effects (three dummy
variables) and a gender effect.

• gC1, gHD1 are random intercept terms (for healthy controls HD par-
ticipants) gC2 and gHD2 are corresponding random slope terms. The
gHD 5 (gHD1, gHD2) and gC 5 (gC1, gC2) are two-dimensional normal
random variables with mean zero and covariance matrices RHD and
RC. In tables, the SDs and correlations of these random variables
will be designated by r(INT), r(SLOPE), and cor(INT, SLOPE). The
baseline constant AGE0 is taken to be 18.

• The �C and �HD are a normal residual error terms for the control
and HD populations: they are assumed to have mean zero and SDs
sdð�CÞ and sdð�HDÞ, respectively. These SDs will be designated as
r(ERROR) in the tables.

• The cC(t) and cHD(t) are realizations of continuous time RWs (tech-
nically Wiener processes). These processes are assumed to be ini-
tialized to zero when subjects are 18 years of age. Their SDs are
designated by r(WC) and r(WHD) (or simply r(W) if the context
makes the reference population clear. Following the definition of a
Wiener process, t years after initialization cC(t) will have an SD offfiffiffiffiffiffi
ðtÞ

p
rðWCÞ and cHD(t) will have an SD of

ffiffiffiffiffiffi
ðtÞ

p
rðWHDÞ.

• The g, �, and c terms are assumed to be mutually independent.
Note that the spline functions affect only the overall population
trend. Random intercepts, RSs, and RWs are simply added on to
this overall trend.

We refer to the model of Eq. 2 as the Full model for

healthy controls. The submodel in which gC2 and cC(t)

both vanish is called the Base model. The submodel in

which cC(t) vanishes is called the RS model and the

submodel in which gC2 vanishes is called the RW model.

Similar naming conventions apply to the model of Eq. 3

and its submodels.

Model fitting
Final models were fit in NONMEM 7.3 using the first order

conditional estimation method with interaction. Graphics,

data analysis, and data management were performed in R

version 3.2.0.13 The Base and RS models are random

effects models of the kind that NONMEM was designed to

fit and their fitting is straightforward. The RW and Full mod-

els, however, require special attention in order to estimate

the SDs of the random walks (cs). Inspection of Eqs. (2) and

(3) above reveals them to be special cases of the Eqs. (1)

and (2) from ref. 10. In particular, using the notation of ref.

10, the models of the current article reduce to a set of sto-

chastic differential equations in which the measurement

model is trivial (i.e., f ðxit ;/i Þ5xij ) and system’s dynamics are

of a particularly simple form (i.e., the integral of gðxit ;di ;/i Þ
is given, depends on t, but does not depend on xit). This

leads to a simple Kalman filter algorithm, which is iterated at

each step of the NONMEM optimization process and imple-

mented through a user-defined $PRED script (see the online

Supplementary Material for details) and NONMEM code.

Estimating optimal constants for the CAP score
In order to facilitate the estimation of nonlinear trends, the

CAP score enters into the model of ref. 3 as an argument

to the spline function SHD. This complicates the process of

fitting models that will optimize the choice of L for each

imaging biomarker. Note that K is a normalizing constant

that is useful in providing a consistent interpretation for the

CAP score models but which does not affect the model fit.
To find optimal values of L, we set K 5 1 and fit Base

models to ref. 3 for each integer value of L between 21 and

40 inclusive. The Akaike information criterion (AIC) values

for these models (subtracting off their minimum value) are

plotted in Figure 1 for each of the 10 imaging biomarkers.

Optimal values of L (called Lopt) can be read from this

graph. An appropriate normalizing constant Kopt can be

computed from the formula:

Kopt 56:273
432Lopt

13
(4)

The number 43 is a (somewhat arbitrary) centering con-

stant, chosen because it is a very common value in the

TRACK dataset and in data from other observational stud-

ies. Note that Lopt 5 30 implies kopt 5 6.27, which agrees

with the values used in ref. 1 and produces a CAP score

that is equal to 100 at the expected age of motor onset.

For any value of Lopt we may define a corresponding ver-

sion of the CAP score as:

CAPðLopt Þ5AGE3ðCAG2LÞ=Kopt (5)

We have the following:

CAPðLoptÞ5r3CAPð30Þ (6)

Where

r5
11 CAG243

432Lopt

11 CAG243
43230

(7)

and CAP(30) is the version of the CAP score with L 5 30

and K 5 6.27. If follows that CAP(L) 5 100 3 r at the

expected age of onset of motor symptoms.
Model fitting in this section was done using version 3.1 of

the NLME package in R.14 Additional details are in the

online Supplementary Material.

Track 36-month imaging data
All models were fit to 10 structural magnetic resonance

imaging markers from the 36-month cutoff of the TRACK

data.2 The 36-month TRACK dataset contains annual

observations on 366 subjects (45% men) equally distributed

between four sites in Europe and North America. One third

of the sample consisted of healthy controls. Of the HD par-

ticipants, half were premanifest and half were in early

stages of manifest disease. There are usually four observa-

tions for each subject for a total of 1,382. All markers repre-

sent volumes of anatomic features of the brain expressed

as fractions of the total intracranial volume. The markers

selected for this analysis include five markers processed by

the Iowa center representing volumes of the thalamus, stri-

atum, caudate nucleus, putamen, and whole brain. In addi-

tion, we consider five markers processed by the London

center representing volumes of the caudate nucleus, whole

brain, ventricle, cortical gray matter, and cortical white
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matter. All 10 measures are expressed as percentages of

the participant’s intracranial volume. The distinction

between Iowa and London markers is important because

the London markers were obtained using either the bound-

ary shift integral or voxel-based morphometry (procedures

that quantify annual changes in different locations of the

brain within each individual). By contrast, the Iowa variables

are simple snapshots of each brain at each time point.

RESULTS

Table 1 presents AIC statistics for comparing model fits

of the Base model to the RS, RW, and Full models in the

population of healthy controls. Table 2 provides similar

information for model fits in the HD population using opti-

mal values of L from Figure 1. In both tables, lower val-

ues of AIC indicate better fit. AICs are normalized to

equal zero for the Base model. Table 3 compares models

based on CAP(30) with models based on the CAP(Lopt):

here, values of AIC less than zero indicate the superiority

of the models based on CAP(Lopt). The AIC statistic,15 is

defined as 22log ðlikÞ12k , where 22log ðlikÞ is the objec-

tive function minimized by NONMEM and k is the number

of model parameters. It seems from these tables that the

Base model generally provides a better fit to the data for

healthy controls than it does to the data for HD subjects.

The largest improvements on the Base model, in both the

healthy control and the HD populations, are for the corti-

cal grey and cortical white matter variables: these

improvements seem, most likely, to be accounted for by

RS mechanisms particularly in the HD population. By

contrast, in the HD population, RW mechanisms seem to

be more important than RS mechanisms in explaining the

volumes of the striatum, caudate (Iowa only), putamen,

whole brain (London only), and the ventricle. Even in

cases in which RS mechanisms outperform RW mecha-

nisms (under the AIC criterion), the RW mechanisms
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Figure 1 Plots of Akaike information criterion (AIC) for the Base model fitted with fixed values of L between 21 and 40 for all imaging
biomarkers.
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tend to show substantial improvement over the Base
model and the Full model tends to show an improvement
over the RS model.

For the remainder of this section we focus on models for
the Striatum (Iowa), which is regarded as the focal point for
HD pathology. Complete details on all variables appear in
the online Supplementary Material.

Figure 2 provides what we will call global descriptive
plots for the striatum. Global descriptive plots are side-by-
side plots with information on healthy controls on the left
and information on HD subjects in the center and right. The
left-hand panel plots the logit transformation of each marker
controlling for covariates (Y C – dC) against AGE for healthy
controls. The center and right-hand panels plot the logit
transformation of the striatum controlling for covariates and
normal aging (YHD2SCðAGEÞ2dHD) against CAP(30) and
CAP(Lopt). The center and right-hand panels are very simi-
lar in appearance. However, the connection with age-at-
motor onset is more direct in the center panel which is,
therefore, recommended for routine use. Each subject’s ini-
tial status (control, premanifest, and manifest) is indicated
by color coding. The solid trend lines provide visual repre-
sentations of SC(AGE) (left panel) and SHD(CAP) (center
and right panels). In particular, SC(AGE) represents the
effects of normal aging (controlling for covariates) and
SHD(CAP) represents disease-related effects (controlling for
covariates and normal aging). “Spaghetti” plots show indi-
vidual observations. The spaghetti plots show that observa-
tions on each subject span a very limited portion of the
complete time course of the disease. The solid lines are
central to our approach to estimating the complete time
courses. Both normal aging and HD pathology show a pro-
nounced and well-known negative correlation with striatal
volume. The plots in Figure 2 are based on the Full model.
Plots based on Base, RS, and RW models are very similar.

Figure 3 shows the results of 50 simulated trajectories of
striatal volumes under the Base, RS, RW, and Full models.
The simulations assume CAG lengths of 42 and plot trajec-
tories for ages between 18 and 70 years. The simulated
trajectories do not include measurement error. Trajectories
for the Base models appear as smooth parallel curves.

Table 2 AIC statistics for model comparisons in gene-positive HD

participants

Marker Lopt RS RW Full

Thalamus

(Iowa)

35.0000 3.2200 1.7730 4.3400

Striatum

(Iowa)

33.0000 27.9300 236.8360 233.2960

Caudate

(Iowa)

33.0000 2.2410 217.2990 213.4510

Putamen

(Iowa)

33.0000 21.8020 235.9590 235.2970

Whole brain

(Iowa)

36.0000 3.9890 22.6570 20.6560

Caudate

(London)

34.0000 2108.3630 292.1840 2121.5310

Whole brain

(London)

34.0000 228.0700 255.6440 253.8610

Ventricle

(London)

33.0000 277.0380 2117.9070 2114.2830

Grey matter

(London)

28.0000 2258.0050 2195.1760 2261.3640

White matter

(London)

31.0000 2360.7740 2266.8660 2361.5040

AIC, Akaike information criterion; HD, Huntington’s disease; Lopt, optimal L;

RS, Random Slope; RW, Random Walk.

All model fits use Lopt. Entries in rows 3–5 represent the AIC for the given

model minus the AIC for the Base model. Positive values suggest the supe-

riority of the Base model.

Table 3 AIC statistics for paired comparisons between models with optimal

L and L 5 30

Marker Lopt Base RS RW Full

Thalamus

(Iowa)

35.0000 212.0110 210.9660 210.9930 211.1560

Striatum

(Iowa)

33.0000 229.5850 224.9830 230.0490 230.0750

Caudate

(Iowa)

33.0000 219.7540 218.8480 218.3180 218.4100

Putamen

(Iowa)

33.0000 233.2110 221.8700 235.0190 230.5340

Whole brain

(Iowa)

36.0000 255.3470 245.9320 250.3270 250.2510

Caudate

(London)

34.0000 273.0850 241.4110 254.9780 245.5380

Whole brain

(London)

34.0000 226.6410 29.5470 223.7830 219.7720

Ventricle

(London)

33.0000 28.0800 5.4280 26.6800 23.6350

Grey matter

(London)

28.0000 29.4930 0.0930 24.9570 20.6880

White matter

(London)

31.0000 21.0510 3.9570 22.2870 3.5070

AIC, Akaike information criterion; Lopt, optimal L; RS, Random Slope; RW,

Random Walk.

Negative values indicate superiority of the model with optimal L.

Table 1 AIC statistics for model comparisons in healthy controls

Marker RS RW Full

Thalamus

(Iowa)

0.4510 2.0000 22.1320

Striatum

(Iowa)

1.0030 28.3020 24.6940

Caudate

(Iowa)

0.3450 26.5080 24.2410

Putamen

(Iowa)

3.9810 27.7520 211.3690

Whole brain

(Iowa)

29.7910 2.0000 29.0710

Caudate

(London)

3.9050 25.0190 22.1610

Whole brain

(London)

213.5100 25.2790 221.5490

Ventricle

(London)

28.2620 27.7760 26.4010

Grey matter

(London)

2116.2970 2107.6350 2118.0770

White matter

(London)

255.1570 257.2220 255.6260

AIC, Akaike information criterion; RS, Random Slope; RW, Random Walk.

Entries in rows 2–4 represent the AIC for the given model minus the AIC for

the Base model. Positive values suggest the superiority of the Base model.
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Trajectories for RS models are nonparallel but smooth. Tra-
jectories for RW and Full models are nonparallel and non-
smooth. AIC values from Table 2 indicate that the RW
model has the best fit. Visually, Figure 3 shows that the
RW model displays the smallest deviation about the trend
line. The RW model is also lacking in signs of age-related
heteroscedasticity that are particularly apparent in the Base
model.

Figure 4 presents scatter visual predictive checks for the
Full models of striatal volume. Simulations were performed
for healthy controls and gene-positive HD subjects with
CAG lengths of 39, 40, 41, 42, 45, 48, 50, and 59. These
CAG lengths account for about half of all HD participants.
The restriction to subjects with the above CAG lengths was
made so that all results for each imaging marker could be
presented on a single graph. Results for excluded CAG
lengths are similar. In addition, to facilitate plotting on a sin-
gle graph, all plotted data values include corrections for
each subject’s covariates. Simulations are based on 1,000
replicates for healthy controls and 1,000 replicates for HD
subjects at each CAG length. Solid lines represent 5%,
50%, and 95% quantiles of the distribution of predicted
observations from the RW model. The implied 90% predic-
tive interval completely captures all observations from 75%
of healthy controls and 80% of gene-positive HD partici-
pants and captures some observations from 90% of healthy
controls and 91% of gene-positive HD participants. Details
for all 10 biomarkers are outlined in the online Supplemen-
tary Material.

DISCUSSION

Pathology in HD develops very slowly over many years. In
the interest of understanding the dynamics of HD, consider-
able effort has been expended in collecting prospective
data on individuals at various stages of the disease. At pre-
sent, however, few subjects have been observed for the
whole time course of the disease. As a consequence, if a
complete disease progression model is wanted, there is a
need to construct one by “patching together” many short
time courses obtained from many different individuals and

to adjust the resulting long time course estimate for covari-

ates and changes that would be expected to occur in unaf-

fected individuals. The current article aims to improve our

understanding of HD by proposing a solution to this

problem.
Our approach involves two novel methodological fea-

tures: the use of RW error terms to model random aspects

of disease dynamics and the use of the CAP score to

account for effects related to the length of the mutant CAG

expansion that lies at the root of HD.
Regarding the use of RW error terms, the framework is

similar to that used in the stochastic differential equation-

based approaches to the modeling of pharmacokinetic and

pharmacodynamic.10,16–21 In the present study, the above

framework is applied to the modeling of disease progres-

sion. In the case of HD, and perhaps more generally in the

study of disease progression, our mechanistic understand-

ing is not sufficiently developed to determine a specific dif-

ferential equation that drives the pathological process. For

this reason, we replace the differential equations used in

pharmacokinetic/pharmacodynamic modeling with flexible

regression splines. The regression splines are applied to

the subject’s age at the time of observation for healthy con-

trols and to the CAP score in gene-positive HD subjects.

This has the effect of simplifying and streamlining the Kal-

man filter algorithm of ref. 10. Our Kalman filter algorithm is

summarized in the online Supplementary Material.
Regression splines were used because: (1) some clear

nonlinear trends appear to be present in the data; (2) the

dynamics leading from excess CAG length and/or aging to

observed pathology are too complex to be modeled mecha-

nistically at the present time; and (3) we did not want to

develop ad hoc empirical models for each of the dependent

variables in our dataset. Regression splines have been pre-

viously used to model HD progression data in ref. 8.
The introduction of RW error terms into disease progres-

sion modeling reflects a shift from a paradigm in which

each subject’s disease progression is represented by a

regression curve in two-dimensional space, to a paradigm

in which each subject’s progression is represented as a

continuous time stochastic process measured with error at
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a discrete set of time points. Stochastic processes of this

sort are commonly used in the modeling of many natural

and manmade phenomena from the trajectories of space

vehicles to the movement of stock prices. A readable

account of relevant applications and theory is given in ref.

22. We feel that the stochastic process paradigm will, in

time, demonstrate significant improvements over the sim-

pler regression curve approach to disease progression

modeling.
Future work will: (1) reproduce the work reported here on

datasets that include longer time series of data for each

subject. Longer time series should improve our ability to

distinguish between RS and RW errors. (2) Apply the

models developed here to other, noisier markers of the HD

disease state. (3) Extend the models developed here to

multivariate contexts where two or more markers are ana-

lyzed simultaneously. (4) Apply the modeling principles

developed here to other neurodegenerative or trinucleotide

repeat diseases. (5) Investigate alternatives to the AIC for

models involving RW terms.
Although the use of RW error terms may be a general

innovation that applies to a wide class of disease progres-

sion models, the CAP score encapsulates many of the fea-

tures that are specific to HD. As the name implies, the CAP

score is just a way of parameterizing the interactions

between age and CAG length that figure in our prediction
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Figure 3 Simulated trajectories for striatum (Iowa): Huntington’s disease (HD) participants trajectories are simulated under the Base,
Random Slope (RS), Random Walk (RW), and Full models in the population of HD participants. The simulations are based on 50 repli-
cates and assume cytosine-adenine-guanine (CAG) lengths of 42. Trajectories are simulated and plotted for ages starting at 18 years
and ending at 70 years. Simulated trajectories are for a male equally likely to be selected from any of the four sites.
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formula. Identical predictions could be obtained using more
traditional parameterizations of the models in terms of main

effects and interactions. From an interpretive point of view,
however, the CAP score (1) suggests a connection with

mechanistic models based on the cumulative toxicity of
mutant huntingtin; (2) models the process by which increas-
ing CAG length accelerates the progression of pathology in

HD; (3) provides a connection with models that predict age
at motor onset in HD; and (4) allows for easier comparison
between progression models for different imaging

biomarkers.
Point 2 above calls out for some additional discussion.

Although the role of CAG length in accelerating the

pathological process in HD is well established prior to
motor onset, there remains some controversy regarding its
role after motor onset. In particular, ref. 4 found that the

interval between motor onset and death is independent of
CAG length. Two interpretations of this finding are
advanced by the authors. The first interpretation suggests
that the role of CAG length as a driver of HD pathology
diminishes as the disease progresses. The second interpre-
tation posits two distinct CAG length dependent processes

one leading to motor onset and another leading to death.
Neither interpretation suggests that the role of CAG length
terminates at motor onset. Indeed, there is evidence that
the role of CAG length in disease progression is not so
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Figure 4 Scatter visual predictive checks for striatum (Iowa): full model simulations use 1,000 replicates for healthy controls and gene-
positive Huntington’s disease (HD) subjects with cytosine-adenine-guanine (CAG) lengths of 39, 40, 41, 42, 45, 48, 50, and 59. Simu-
lated observations are for men from site 4. All observed data points are adjusted for site and gender. Solid black lines represent 5%,
50%, and 95% quantiles of the distribution of predicted observations. Solid green lines indicate model population predictions.
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terminated.2,3 We are interested in understanding how the
effect of CAG length on disease progression changes over
time. This issue is of more than academic interest as it
may have implications for the efficacy of gene silencing
therapies in the later stages of the disease. This, and other
issues, will be addressed in forthcoming articles.
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