
PHOTORECEPTOR INNER SEGMENT
MORPHOLOGY IN BEST VITELLIFORM
MACULAR DYSTROPHY
DREW SCOLES, MD, PHD,* YUSUFU N. SULAI, PHD,† ROBERT F. COOPER, PHD,‡
BRIAN P. HIGGINS, BS,† RYAN D. JOHNSON, BS,† JOSEPH CARROLL, PHD,†‡§¶
ALFREDO DUBRA, PHD,†‡§¶ KIMBERLY E. STEPIEN, MD†

Purpose: To characterize outer retina structure in best vitelliform macular dystrophy
(BVMD) and to determine the effect of macular lesions on overlying and adjacent
photoreceptors.

Methods: Five individuals with BVMD were followed prospectively with spectral domain
optical coherence tomography and confocal and nonconfocal split-detector adaptive
optics scanning light ophthalmoscopy (AOSLO). The AOSLO cone photoreceptor mosaic
images were obtained within and around retinal lesions. Cone density was measured inside
and outside lesions. In 2 subjects, densities were compared with published measurements
acquired �2.5 years before. One subject was imaged 3 times over a 5-month period.

Results: The AOSLO imaging demonstrated that photoreceptor morphology within BVMD
retinal lesions was highly variable depending on the disease stage, with photoreceptor
structure present even in advanced disease. The AOSLO imaging was repeatable even in
severe disease over short-time and long-time intervals. Photoreceptor density was normal in
retinal areas immediately adjacent to lesions and stable over �2.5 years. Mobile disk-like
structures possibly representing subretinal macrophages were also observed.

Conclusion: Combined confocal and nonconfocal split-detector AOSLO imaging reveals
substantial variability within clinical lesions in all stages of BVMD. Longitudinal cellular
photoreceptor imaging could prove a powerful tool for understanding disease progression and
monitoring emerging therapeutic treatment response in inherited degenerations such as BVMD.
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Best vitelliform macular dystrophy (BVMD), also
known as Best disease (OMIM 607854; BEST1),

is an autosomal dominant macular degeneration of vari-
able penetrance. The disorder is characterized by vary-
ing accumulation of yellowish vitelliform material that
can evolve into atrophic, fibrotic appearing lesions.1,2

Clinical vitelliform lesions of BVMD are usually
restricted to the macula, although lesions have been
reported at more eccentric locations.3

Mutations in the BEST1 gene located on chromo-
some 11q13 encoding the protein bestophin-1 are
known to cause BVMD and several other retinal
degenerative diseases.4,5 Bestrophin-1 has been local-
ized to the basolateral membrane of the retinal pigment
epithelium (RPE)6 and is thought to function as a cal-
cium-sensitive chloride channel while also influencing
other channel functions.7–9 Dysfunction of this chan-
nel can lead to the hallmark findings of BVMD,
including an abnormal electrooculogram, an electro-

physiological test that measures changes in the trans-
epithelial potential across the RPE throughout the
retina.10 Electrooculogram often shows diminished
light peak response in individuals with BVMD, even
when no clinical features are evident.11

Limited histological studies of BVMD have found
an abnormal accumulation of lipofuscin granules in the
RPE of some donor eyes12–14 with photoreceptor loss
over areas of intact RPE.12,15 These findings are in
agreement with a knock-in mouse model of BVMD
that also demonstrated subretinal deposits of unphago-
cystosed photoreceptor outer segments and lipofuscin
granules.16 Some authors have hypothesized that dys-
function of the RPE leads to accumulation of toxic
materials, which in turn leads to degeneration of the
overlying photoreceptors in BVMD.12,15 Some studies
have found structurally normal RPE in BVMD lesions,
with the primary impact of BVMD appearing to be
subretinal to photoreceptors themselves.17
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Advanced retinal imaging techniques have given
insight into the effects of BEST1 mutations on outer
retinal structures in BVMD. Optical coherence tomog-
raphy (OCT) studies have localized the vitelliform mate-
rial in BVMD to the subretinal space,17–21 and some
have shown increased thickening of the reflective band
corresponding to photoreceptor outer segments.17,18

Recently, Abramoff et al22 demonstrated what appears
to be outer segment photoreceptor elongation with light
adaptation in areas of the macula outside retinal lesions
in BVMD, which suggests photoreceptor dysfunction
beyond clinically apparent lesions. However, multifocal
electroretinogram irregularities correspond to involved
lesion areas,23 and quantitative fundus autofluorescence
on patients with BVMD showed normal quantitative
fundus autofluorescence in nonlesion areas, suggesting
no increased lipofuscin levels outside observed retinal
lesions.24 Previously, confocal adaptive optics scanning
light ophthalmoscopy (AOSLO) indicated that some
photoreceptor structure persists over areas of Best
lesions, and photoreceptor density is normal in areas
adjacent to clinical lesions in BVMD.21 This study uses

a new imaging technique, nonconfocal split-detector
AOSLO, to better delineate photoreceptor structure in
BVMD. Additionally, we sought to analyze changes in
the photoreceptor mosaic over time.

Methods

Subjects

Research procedures followed the tenets of the
Declaration of Helsinki and were approved by the
institutional review board at the Children’s Hospital
of WI (CHW 07/77); 4 previously described family
members21 and 1 unrelated subject, all with identified
mutation (p.Arg218Cys c.652C/T) in BEST125 and
clinical findings consistent with BVMD, participated
in this study after giving written consent. See Table 1
for further information about each subject. Axial
length measurement (Zeiss IOL Master; Carl Zeiss
Meditec, Dublin, CA), visual acuity testing, and fun-
dus photography were performed at the time of
research imaging in all subjects.

Spectral domain optical coherence tomography

Spectral domain optical coherence tomography line
and volumetric scans were performed using the Cirrus
HD-OCT (Carl Zeiss Meditec). The location of the
fovea was determined using the fovea-finder function of
the Cirrus HD-OCT, and marked on the line scan
ophthalmoscope image. Additional high-density volu-
metric scans acquired using the Bioptigen spectral
domain optical coherence tomography (Bioptigen Inc,
Morrisville, NC) nominally covering 7 · 7 mm (1000
A-scans/B-scan, 250 B-scans) were used to create
en-face OCT sections with custom software (Java,
Oracle; Redwood City, CA).26 En-face projections of
the ellipsoid zone were generated to display the extent
of BVMD lesions (Figures 1 and 2). Multiple horizontal
and vertical macular B-scans nominally covering 7 mm
(1000 A-scans/B-scan; Bioptigen) were registered and
averaged to increase the signal-to-noise ratio. All OCT
images are displayed on logarithmic intensity scale.

Table 1. Subject Demographics

Subject
Age,
years Sex Lesion Type

Acuity,
Snellen

KS_0325 53 M Atrophic OS, 20/80
KS_0589 61 F Atrophic OS, 20/50
KS_0599 53 F Late vitelliruptive OD, 20/30
KS_0600 18 M Early vitelliform OS, 20/20
KS_0601 20 F Vitelliform with early

vitelliruptive
OS, 20/20

F, female; M, male; OD, right eye; OS, left eye.
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Adaptive optics scanning light ophthalmoscopy

The AOSLO imaging was performed with a custom
instrument, modified to capture light multiply scattered
by the retina.27 The multiply scattered light is divided
spatially to two separate detectors, and the resulting im-
ages are then subtracted to form the nonconfocal split-
detector image, which reveals the photoreceptor inner
segment mosaic.27 Confocal and split-detector images
are recorded simultaneously in perfect spatial register.
Photoreceptor image sequences were recorded at the
fovea as well as in the periphery to approximately 10°
superior and temporal to fixation. In subject KS_0589, an
overlying epiretinal membrane in temporal macula obli-
gated imaging to 10° nasal from fixation. Image sequen-
ces were corrected for sinusoidal distortion caused by the

resonant scanner, then registered and averaged as previ-
ously described.27 Using a simplified Gullstrand 2 sche-
matic eye, the predicted 291 mm per degree of visual
angle was scaled linearly by the subject’s axial length
to determine the scale of AOSLO images. Averaged AO-
SLO images were aligned manually in Adobe Photoshop
(Adobe Systems Inc, San Jose, CA) to create a large
montage. This montage was manually aligned to the color
fundus, line scan ophthalmoscope, en-face OCT, and to
previously acquired AOSLO images21 (where available)
using blood vessel shadows as landmarks. The location
of the fovea was marked on the AOSLO montage, based
on the subject’s fixation recorded in the Cirrus HD-OCT
line scan ophthalmoscope image. All AOSLO images are
displayed on the linear intensity scale.

Fig. 1. Imaging results from subject KS_0601. A. En-face OCT at the level of the ellipsoid zone reveals a large ovoid retinal detachment at the location of the
lesion. The area of AOSLO imaging shown below is indicated by the white square, dashed lines indicate the locations of the B-scans. B and C. Horizontal and
vertical B-scan OCT reveals a large vitelliform lesion just nasal to the center of the fovea. D. Confocal AOSLO imaging reveals sparse photoreceptor re-
flectivity. E. The split-detector AOSLO imaging reveals a near-complete mosaic of cone photoreceptors. Cells identified in (E) show 1:1 correspondence to the
sparse reflections seen in (D) with the exception of the large reflective clusters. Scale bars (B and C) 200 mm, (D and E) 50 mm.

PHOTORECEPTOR MORPHOLOGY IN BVMD � SCOLES ET AL 743



To examine longitudinal changes (approximately 2
years elapsed) in the cone mosaic, previously identi-
fied areas of normal cone density were reanalyzed in
subjects KS_0600 and KS_0601. At 3 locations in
each subject, confocal AOSLO images from both time
points were first aligned manually and then registered
with rigid translations, using the Stackreg plugin from
ImageJ (National Institutes of Health, Bethesda, MA)
and finally cropped to the region of overlap. Cones
were identified with a previously described semi-
automated algorithm.28 Cone density was calculated
within 80 · 80 mm regions of interest (ROI).
To determine the effect of retinal lesions on the

photoreceptor mosaic, the cone density was measured

inside and outside macular lesions in all subjects.
Because nonwaveguiding or misaligned photoreceptors
are not visualized by confocal AOSLO,27,29 split-
detector AOSLO images were chosen for analysis
instead. 80 · 80 mm ROIs were identified and analyzed
for cone density across the entire span of AOSLO imag-
ing in each subject. An ROI was characterized as intra-
lesional if any of the ROI fell within the limits of the
lesion as visualized by en-face OCT segmented at the
level of the ellipsoid zone; then each lesion was sampled
with 5 to 7 ROI to evaluate for local density variations.
Cell locations within the split-detector images were
identified manually. The distance between each ROI
and the fovea was estimated, and cone densities were

Fig. 2. Imaging results from subject KS_0325. A. En-face OCT at the level of the ellipsoid zone reveals a very large BVMD lesion with irregular
borders, approximately 2.3 mm in diameter. The area of AOSLO imaging shown in (B and C) is indicated by the white square, dashed lines indicate
the locations of the B-scans, and dotted rectangle indicates location of Figure 5, A and B. B and C. Horizontal and vertical B-scan OCT reveals
a large atrophic lesion including the entire perifovea centered just inferior to the fovea. D. Confocal AOSLO imaging reveals clusters of photoreceptor
reflectivity. E. Split-detector AOSLO reveals numerous photoreceptors in an incomplete mosaic. Most photoreceptors have abnormal morphology,
and some appear to be oriented horizontally, with corresponding areas in the confocal images darker than the background (arrows). Scale bars (B and C)
200 mm, (D and E) 50 mm.
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compared with published normative in vivo values.30

Normative data were linearly interpolated to cover the
range of measurement locations. Patient data were
pooled across eccentricity for comparison, because there
is no measured difference between temporal and nasal
meridians across the eccentricities studied,31–33 and
superior and inferior retinal loci are likely to underesti-
mate cone photoreceptor density.31,32 Density data were
evaluated using z-scores, calculated as the difference
between the subject measurement and the normative
mean divided by the standard deviation at that eccen-
tricity. Z-scores of magnitude ,2.0 were considered
normal, P values , 0.05 were considered significant.

Results

The subjects included in this study had the same
disease causing mutation in BEST1 and demonstrated
different stages of BVMD, with split-detector AOSLO
providing unprecedented views of the photoreceptor
pathology (Figures 1–3). Early in the disease, the
photoreceptor mosaic remains contiguous but with
substantially decreased density (Figures 1 and 3A).
Later, after further cell loss has taken place, the pho-
toreceptor packing no longer appears contiguous
(Figures 2, 3, B and C). Figure 3 shows the span of
photoreceptor mosaic changes across the clinically

Fig. 3. Parafoveal photoreceptor imaging in remaining subjects. A–C. B-scan OCT, (D–F), confocal AOSLO imaging, and (G–I), split-detector
AOSLO. The earliest lesion of this cohort, from KS_0600, manifests as scattered loss of waveguiding in the confocal image. The split-detector image
shows a complete and normally dense mosaic of photoreceptors. The B-scan from subject KS_0589 reveals a large late vitelliruptive lesion with
significant subretinal debris. The confocal AOSLO image reveals scattered waveguiding photoreceptors, with a cluster of small reflective dots on top of
the large debris (E). The split-detector image reveals abnormal photoreceptor morphology and widely varying photoreceptor size over this small area.
The bottom left corner of the image contains enlarged photoreceptors with local clearings. With this modality, it does not appear that the debris is
covered by photoreceptors as the confocal image suggests. Despite the obvious retinal atrophy and little ellipsoid zone reflectivity in subject KS_0599,
the split-detector AOSLO image reveals a near-complete mosaic of photoreceptors at the fovea. The confocal AOSLO image fails to identify many of
the photoreceptors, likely due to their abnormal waveguiding. Scale bars 100 mm.
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described pathology1 of subjects in this study from
early vitelliform lesion to late-stage atrophy and
fibrosis.
In all subjects, the effect of the BVMD lesion on

overlying photoreceptors was assessed by comparing
photoreceptor density within and outside lesions
(Figure 4). Intralesion cone density was significantly
reduced in subjects KS_0325, KS_0589, and
KS_0601 (z-scores: 25.0 to 22.5). Near the fovea,
KS_0599 exhibited reduced density (z-scores: 25.0
to 23.6), but returned to normal at the edges of the
lesion (z-scores: 21.5 to 20.6). Intralesion density
in subject KS_0600 was preserved (z-scores: 0.1–
0.7). Extralesion cone density was near normal in
all subjects (z-scores: 21.6 to 1.6) with the excep-
tion of one measurement in KS_0589 (z-score:
22.0). Within a lesion, the cone density and cone
appearance varied considerably over short distances,
with some regions having almost no photoreceptors,
as shown in Figure 2.
Only KS_0600 and KS_0601 showed clear disease

progression in OCT B-scan over 32 months and 30
months, respectively (See Figure, Supplemental Dig-
ital Content 1 http://links.lww.com/IAE/A496, which
shows longitudinal OCTs for all subjects). To deter-
mine the effect of lesion enlargement on photoreceptor
number, previously analyzed areas were recounted.
Three extralesional locations were analyzed in 2 sub-
jects, at approximately 1° from the fovea and just nasal
to the BVMD lesion, where cone density was previ-
ously determined to be normal.21 In KS_0601, the
cone density was found to change 22.4%, 21.7%,

Fig. 4. Cone photoreceptor density inside and outside lesions. Density
was sampled in all subjects within (filled symbols) and outside their
BVMD lesion (open symbols). Cone density is significantly reduced
within the lesions, but returns to normal outside lesions. Normative
data30 are shown as mean (solid line) ± two SD (shaded region).

Fig. 5. Short-term and long-term variability in photoreceptor layer
imaging with split-detector AOSLO in KS_0325 near the fovea center.
Circles indicate photoreceptor landmarks identified in both time points.
Arrows indicate features that changed over long (A and B) or short (C1–2,
D1–2) time scales. Images (C1–2, D1–2) depict mobile features of size
consistent with cells (arrows). Note how feature moves away from the
stationary arrow between (C1 and C2) and toward the arrow between (D1
and D2). The cell in (C1–2) is visible at the top edge of (A) (arrow), the
cell in (D1–2) is located approximately 200 mm temporal from (A). A and
B. Scale bar 100 mm. C1–2 and D1–2. Scale bar 25 mm.
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and 1.2% over a period of 30 months. In KS_0600, the
cone density was found to change 0.0%, 0.5%, and
22.6% over a period of 32 months. These small var-
iations in cone density are within the 95% confidence
interval for the repeatability of the method of parafo-
veal density measurements (2.6%–2.8%)28 and are,
therefore, consistent with no significant changes.
Split-detector AOSLO imaging within BVMD le-

sions is repeatable, even in subjects with advanced
retinal degeneration as illustrated by the ability to track
individual cells, shown in Figure 5. Here, the same
clusters of photoreceptors were visualized over 4
months follow-up. There were, however, structures
that appeared and disappeared from the images over
this time scale (arrows, Figure 5). These round features
had a lumpy appearance, were on average 20 mm in
diameter, and appeared in areas that previously con-
tained isolated photoreceptors or apparently empty
space. Structures of similar size and appearance were
also found to change in appearance on much shorter
time scales, as short as an hour. These features were
only noted in KS_0325, the subject with the most
advanced disease.

Conclusions

Accurate assessment of cellular structure in inherited
retinal degenerations in vivo can provide invaluable
information about the pathology of these degenerations.
In this study, we used newly developed split-detector
AOSLO to further assess photoreceptor structure asso-
ciated with BVMD in 5 individuals with the same
previously reported BEST1 mutation (p.Arg218Cys).
Compared with confocal imaging, nonconfocal split-
detector AOSLO allows for a more accurate assessment
of photoreceptor structure in BVMD, especially in areas
of the photoreceptor mosaic overlying subretinal
pathology (Figures 1–3 and see Figure, Supplemental
Digital Content 2, http://links.lww.com/IAE/A497,
which shows split-detector and OCT imaging within
and outside vitelliform lesions).
Cone photoreceptor packing within vitelliform lesions

can range from normal appearing mosaic (Figure 3, D
and G) to significant disruption (Figure 2). As high-
lighted in patients KS_0589 and KS_0599 (Figure 3),
significant intralesional variability also exists with focal
areas of near-normal density present next to areas with
severe disruption. In the fibrotic stages of BVMD as seen
in KS_0325, cone photoreceptors remain, although
sparsely packed and with focal areas entirely devoid of
photoreceptors (Figures 2 and 5). We hypothesize that
this loose packing allows some photoreceptors to freely
pivot so that they are oriented horizontally, allowing

visualization of both inner and outer segments of the
photoreceptors (Figure 2—teardrop shaped structures in
split-detector image). This irregular packing underscores
the need for caution when reporting cone photoreceptor
densities within areas of pathology as visualized by
AOSLO, as these can vary dramatically, even if meas-
urements are taken within 100 mm of each other.
It has been long debated whether BVMD has only

focal clinically apparent fundus effects or is a true
panretinal photoreceptor disorder. The results presented
here show that within clinically apparent lesions, cone
photoreceptor inner segments are enlarged and cone
density is reduced. In agreement with previous AOSLO
studies,21 immediately adjacent to the lesions, both den-
sity and appearance of cone inner segments return to
normal (Figure 4 and see Figure, Supplemental Digi-
tal Content 2, http://links.lww.com/IAE/A497, which
shows split-detector and OCT imaging within and out-
side vitelliform lesions), lending support to BVMD
causing focal photoreceptor lesions. Interestingly,
patient KS_0325 has been followed clinically for 5
years with the imaged lesion exhibiting detachment of
the retina from the RPE over this span. Despite this
change, split-detector AOSLO confirms photoreceptors
overlying these lesions still exist, and combined with
stable fixation within the lesions, suggests an alternate
pathway for maintenance of the photoreceptors viability
than from the RPE alone.
Split-detector imaging also revealed mobile disk-

like structures consistent in size with cells (Figure 5,
C and D). Previous histological studies have hypoth-
esized that these cells represent subretinal macro-
phages,14,34 but their lineages were not rigorously
confirmed. Alternative explanations for these cells
include migratory microglia35 and RPE.36 The sig-
nificance of this finding is unknown, but these may
represent the first in vivo images of reactive subre-
tinal cells in a human eye.
Recent work by Milenkovic et al37 suggests that the

shared mutation identified in all participants in this
study may affect volume-regulated anion channels in
the RPE differently than other BEST1 mutations.
Although the individuals imaged represent the spec-
trum of stages of BVMD, the clinical and subclinical
phenotypes described here cannot necessarily be
extended to other mutations in BEST1. Conversely,
the diverse findings displayed above are more likely
related to the stage of the disease rather than differen-
tial pathophysiology.
In summary, the improved resolution possible with

split-detector AOSLO allows for increased understand-
ing of cellular disease processes and could potentially
be useful in monitoring therapeutic response on a cellu-
lar level in diseases such as BVMD. Future studies
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should be expanded to include high-resolution imaging
in individuals with other mutations in BEST1 to further
explore the genotype–phenotype correlations in photo-
receptor morphology in BVMD.

Key words: adaptive optics, genetics, imaging,
photoreceptor, retina.
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