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Abstract

We report here identification and validation of the first papillomavirus encoded microRNAs expressed in human cervical
lesions and cell lines. We established small RNA libraries from ten human papillomavirus associated cervical lesions
including cancer and two human papillomavirus harboring cell lines. These libraries were sequenced using SOLiD 4
technology. We used the sequencing data to predict putative viral microRNAs and discovered nine putative papillomavirus
encoded microRNAs. Validation was performed for five candidates, four of which were successfully validated by qPCR from
cervical tissue samples and cell lines: two were encoded by HPV 16, one by HPV 38 and one by HPV 68. The expression of
HPV 16 microRNAs was further confirmed by in situ hybridization, and colocalization with p16INK4A was established.
Prediction of cellular target genes of HPV 16 encoded microRNAs suggests that they may play a role in cell cycle, immune
functions, cell adhesion and migration, development, and cancer. Two putative viral target sites for the two validated HPV
16 miRNAs were mapped to the E5 gene, one in the E1 gene, two in the L1 gene and one in the LCR region. This is the first
report to show that papillomaviruses encode their own microRNA species. Importantly, microRNAs were found in libraries
established from human cervical disease and carcinoma cell lines, and their expression was confirmed in additional tissue
samples. To our knowledge, this is also the first paper to use in situ hybridization to show the expression of a viral microRNA
in human tissue.
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Introduction

Human papillomaviruses (HPV) preferentially infect keratino-

cytes of mucous membranes or skin and cause numerous benign

and malignant lesions at different anatomical locations. HPV

infection is the necessary cause of cervical cancer [1] and is

associated with varying proportions of other cancers of the

anogenital tract, head and neck region, and skin [2]. High-risk

human papillomavirus types 16 and 18 are known to be associated

with more than 70% of cervical cancers [3,4]. Squamous cell

carcinoma of the cervix develops through cervical intraepithelial

neoplasia (CIN) grades 1–3. A proportion of all CIN grades may

regress, but CIN3 is considered a precancer with potential to

progress to cervical cancer. High-risk HPVs are also associated

with adenocarcinoma in situ and adenocarcinoma of columnar

epithelium.

Establishment of HPV infection requires the host cell to pass

early cell cycle progression and enter M phase in the undifferen-

tiated proliferating basal cell layer [5]. Progeny virus production

occurs exclusively in differentiated suprabasal layers of the

epithelium, and cannot take place if epithelial differentiation is

disturbed. Regulation of papillomavirus replication and successful

progeny virus production, or pathogenesis of HPV associated

diseases is not completely understood. The environment of

epithelial cells committed to differentiate is crucial and essentially

involves regulatory changes in mRNA and microRNA expression.

MicroRNAs (miRNAs) are small, 19–24 nucleotide long

noncoding RNAs that post-transcriptionally regulate messenger

RNA (mRNA) expression. We have previously identified a number

of cellular microRNAs regulated by the HPV 16 E5 oncogene [6].

Importantly, up-regulation of human miR-146a and down-

regulation of human miR-203 and miR-324-5p, with subsequent

regulation of their known and predicted target genes, was shown.

Those results suggested that microRNAs play key roles in

regulating adhesion and differentiation of epithelial cells, as well

as attenuation of host immune response, which are crucial events

involved in carcinogenesis [6].

The human genome encodes 1600 miRNAs listed in the

miRBase [7]. A number of DNA viruses encode their own

miRNAs as well. Most of the known viral miRNAs are found in

herpesviruses [8], but also polyomaviruses [9], adenoviruses [10]

and ascoviruses [11] encode their own miRNAs. Viral miRNAs

are mostly generated from precursor miRNA (pre-miRNA) by
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Dicer cleavage and incorporated into the RNA-induced silencing

complex (RISC), similar to host miRNAs [8]. Pre-miRNA can be

generated by Drosha/Dicer cleavage of primary miRNAs (pri-

miRNAs), mirtron, tRNase Z cleavage of tRNA-like pri-miRNA,

or alternative folding of transfer RNAs [12] or small nucleolar

RNAs [13]. Each pre-miRNA forms a hairpin structure, which

encodes two products, one mature and one star miRNA

(miRNA*). Typically star miRNA is expressed at lower level and

is usually degraded [7]. Mature miRNAs almost always have

variants, named isomiRs, which can also be functional miRNAs

[14].

Viral miRNAs can target both viral and cellular mRNAs for

down-regulation [15]. They contribute to cellular reprogramming

by regulating the switch from latent to lytic viral infection, and by

modulating the immune responses of the infected host [13].

Polyomavirus miRNAs target viral early transcripts to negatively

regulate T antigen expression, and they also promote immune

evasion by targeting cellular genes involved in host immune

response, which subsequently leads to enhance viral replication

[16–19]. The functional and molecular similarities among these

double-stranded DNA (dsDNA) viruses causing long-term latent

infections, especially simian virus 40 (SV40) [9], human poly-

omaviruses BKV and JCV [16], and BPCV [20], suggest that

HPV could also encode viral miRNAs. To date, no studies have

been able to validate viral miRNAs in papillomavirus infected cells

using standard sequencing [21] or next generation sequencing

techniques [22]. However, Gu et al. [23] recently presented a

careful prediction of several microRNAs in mucosal and cutaneous

HPVs from papillomavirus sequence data using well-established

algorithms, and proposed putative HPV microRNAs with

similarity to known human microRNAs. Despite considerable

efforts by several authors, no validated papillomavirus miRNAs

have been established so far. The lack of an efficient cell culture

system to study viral replication in the context of epithelial

differentiation and maturation has hindered miRNA discovery in

HPV.

To study whether HPV replication and pathogenesis might be

regulated by virally encoded miRNAs, we sequenced small RNA

(sRNA) libraries derived from two HPV 16 immortalized cell lines,

HPK IA and HPK II [24], and from ten formalin fixed paraffin

embedded (FFPE) tissue samples from HPV infected cervical

epithelium using SOLiD 4 technology. We used these data and

miRSeqNovel software [25] to predict novel miRNAs and their

likely pre-miRNAs. We further validated the candidate miRNAs

in a number of tissue samples from HPV associated cervical

disease and also in HPV 16 positive cell lines CaSki [26] and SiHa

[27] by qPCR, and showed miRNA expression in cervical tissue

by in situ hybridization. Biological functions of the predicted

cellular and viral targets of HPV encoded microRNAs suggest

similar activities to those of polyomavirus miRNAs, and propose a

potentially important role in the progression of HPV infections.

Materials and Methods

Ethics Statement
The use of anonymized archival human samples in this study,

without written informed consent from the donor or the next of

kin, was approved by the Coordinating Ethical Committee of the

Helsinki and Uusimaa Hospital District (69/E0/07) and the

National Authority for Medicolegal affairs (2461/04/044/07).

Cell Culture and Nucleic Acid Extraction from Cells
HPK IA and HPK II cells were established and provided by Dr.

Matthias Dürst (German Cancer Research Center, Heidelberg,

Germany; present address: University Clinic Jena, Germany) [24].

The cells were established by transfection of primary human

foreskin keratinocytes with HPV 16. CaSki epidermoid cervical

carcinoma cells and SiHa human cervical tumor cells were

purchased from the American Type Culture Collection ATCC

(Manassas, VA). All cells were cultured in DMEM (Sigma-Aldrich

Inc., Saint Louis, MO) supplemented with 10% fetal bovine serum

and penicillin/streptomycin at 37uC and 5% CO2 in a humidified

incubator. Total RNA from cultured cells was isolated using the

mirVana RNA isolation kit (Ambion, Austin, TX). RNA

concentrations were measured in NanoDrop instrument (Thermo

Scientific, Wilmington, DE). DNA was isolated from cells using the

QIAamp DNA kit (Qiagen, Hilden, Germany).

Paraffin-embedded Clinical Samples and Nucleic Acid
Extraction

Altogether 27 anonymized FFPE cervical tissue samples

representing normal squamous and columnar epithelium, CIN1-

3, squamous cell carcinoma, adenocarcinoma in situ, and

adenocarcinoma were obtained from the Department of Pathol-

ogy, Helsinki University Hospital Laboratory. At the time of

selection the HPV infection status of the samples was unknown.

Total RNA and total DNA from altogether four 20-micrometer

sections from FFPE tissue samples were harvested using the

RecoverAll total RNA isolation kit (Ambion). RNA and DNA

concentrations were measured in NanoDrop.

SOLiD Sequencing Library Generation and RNA
Sequencing

Small RNA fragments of ,18–25 nt were enriched from total

RNA preparations (ca. 6 micrograms) from HPK IA cells, HPK II

cells and ten tissue samples by flashPAGE system (Ambion). All of

the enriched small RNA fractions (30–60 ng) were used for

preparing the libraries and subsequently ligated to adaptors in the

SOLiDTM Total RNA-Seq kit (Ambion). The chemistry prefer-

entially includes mature miRNA molecules and excludes RNA

degradation products, double-stranded DNA, and single-stranded

DNA molecules. Target RNA has to have intact phosphorus and

hydroxyl groups at the ends. The adapter consists of DNA, which

is partially single-stranded and this part hybridizes to target RNA.

Ligation is performed with a specific RNA-DNA enzyme mixture.

Next, small RNAs were reverse transcribed into cDNA libraries,

size selected using PAGE gel, and amplified with PCR primers

introducing barcode sequences. The libraries were prepared for

emulsion PCR (emPCR) according to SOLiD sequencing

instructions followed by sequencing using the SOLiD 4 instrument

(Life Technologies, Carlsbad, CA).

HPV Genotyping
HPV genotypes present in the tissue samples were determined

using the universal ligation detection reaction (LDR) method

which we recently applied for HPV genotyping in our laboratory,

with slight modifications [28]. The method is based on type-

specific multiplex PCR amplification followed by LDR and

detection of fluorescent products on microarray platform. Human

beta-globin was co-amplified in the assay to control for sample

quality. The signals were detected using a GenePix Autoloader

4200AL laser scanning system (Axon Instruments, Foster City,

CA) and GenePix program version 6.1 (Axon Instruments).

Scanning data were analyzed as described previously [28]. For

comparison, the presence of high-risk HPV DNA in the samples

was analysed using the well-established Hybrid Capture 2 assay

(Qiagen, Gaithersburg, MD). HPV genotyping was additionally

Identification and Validation of HPV microRNAs
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performed by a Luminex based assay at Quattromed HTI (Tartu,

Estonia), except for two samples which were inadequate for this

analysis.

PCR Confirmation of the miRNA-encoding Region
The presence of the miRNA-encoding region in human samples

and in cell lines was confirmed by DNA PCR with specific primers

(Table S1). A representative set of PCR products was sequenced

using BigDyeH Terminator v3.1 Cycle Sequencing Kit (Applied

Biosystems, Foster City, CA), Mag-BindTM SeqDTRTM kit

(OMEGA bio-tek, Norcross, GA), and ABI3130XL Genetic

Analyzer (Applied Biosystems).

Validation of Candidate Viral miRNAs by TaqMan RT-
qPCR

TaqMan quantitative PCR assays were custom designed for

seven candidate viral mature miRNAs (Life Technologies), two out

of which failed in the design process. Reverse transcriptase

reactions contained 13.3 ng/ml total RNA, 16 stem-loop RT

primer, 16 RT buffer, 0.25 mM of each dNTP, 3.33 U/ml

MultiScribe reverse transcriptase and 0.25 U/ml RNase inhibitor.

The 15-ml or 7.5-ml reactions were incubated in thermocycler for

30 min at 16uC, 30 min at 42uC, 5 min at 85uC, and then held at

4uC.

Real-time PCR was performed using TaqMan Universal PCR

Master Mix (No AmpErase UNG) kit protocol on a LightCycler

480 System (Roche Applied Science, Mannheim, Germany). The

10-ml PCR reactions included 2 ml RT product, 16 TaqMan

Universal PCR Master Mix, 16 miRNA specific TaqMan small

RNA Assay. The reactions were pipetted with Corbett CAS-1200

biorobot (Qiagen). The reactions were incubated in a 384-well

plate at 95uC for 10 min, followed by 50 cycles of 95uC for 15 s

and 60uC for 1 min, and then cooled at 40uC for 30 s. All

reactions were run in triplicates. The size and the quality of RT-

PCR products were defined in Bioanalyzer using DNA 1000 kit

(Agilent, Waldbronn, Germany).

In situ Hybridization
In situ hybridization was performed as described previously, with

modifications [29]. Single (59) or double (59 and 39) digoxigenin

labeled miRCURY LNA detection probes (Exiqon) are described

in Table S1. Specific probes for mature HPV16-miR-H1 and

HPV16-miR-H2, together with a probe for hsa-miR-205 ex-

pressed in cervical tissue [30], snRNA U6 positive control probe,

and a scramble negative control probe were used. An oligonucle-

otide probe for HPV 16 E1 mRNA, not hybridizing to the putative

miRNA sequence, was used to confirm that in situ hybridization

signal for HPV16-miR-H1 is obtained specifically from micro-

RNA, not from mRNA, in our experimental conditions.

Briefly, FFPE tissues adhered to positively charged glass slides

were deparaffinized, digested with 10–20 mg/ml proteinase K,

treated with 0.2% glycine, and fixed in 4% PFA. After acetylation

the slides were prehybridized in microRNA ISH Buffer (Exiqon)

for 10–15 min at Tm-30uC and hybridized with 40 nM probe

(1 nM for U6 probe) at Tm-30uC overnight. Hybridization signals

were detected using alkaline phosphatase conjugated anti-DIG-Ab

and NBT/BCIP color substrate.

Immunohistochemical Staining
Hematoxylin-eosin staining to reveal tissue morphology, as well

as immunohistochemical staining for p16INK4a were performed

according to routine protocols for diagnostic samples.

Bioinformatic Analysis of SOLiD Sequencing Data
The reads in SOLiD colorspace format were mapped to

papillomavirus genomes and human genome using SOLiD small

RNA pipeline (RNA2MAP) with default parameters. The human

miRNA annotation was from miRBase V17 [7]. The viral

reference genome was constructed by concatenating 393 complete

papillomavirus genomes retrieved from NCBI, including known

subtypes and isolates of HPV and papillomaviruses in other species

(Table S2). The mapped results were converted to GFF files using

MaToGff (Applied Biosystems). The SOLiD csfasta and QV_qual

format raw data of mapped reads are publicly available at GEO,

series record GSE42380.

Prediction of Candidate Viral miRNAs
We predicted novel virus-encoded miRNA candidates from the

small RNA sequencing data using our recently developed

miRSeqNovel software [25]. The software provides convenience

in adjusting the prediction parameters. Because of lacking HPV

encoded miRNA annotation, we performed the prediction in two

sets of parameters. In the first round, reads with counts less or

equal to three in each library were not used in the next step. The

remaining reads within 40 nt gap to other reads were combined to

be considered as pre-miRNA candidates. Also, the regions 100 nt

upstream or downstream of mapped reads were blasted to search

for candidate pre-miRNA sequences (Figure S1). Candidates

shown at least in two libraries were further studied for their

structures. We selected the candidate miRNAs for further

validation based on the first round of predictions.

In the second round, reads from all twelve libraries were pooled

together. Reads with counts less or equal to two were discarded.

Subsequent steps were performed as in the first run, except that

pre-miRNAs were extended to cover the reads overlapping with

the predicted region. R codes used for prediction are available on

request.

Prediction of Novel Viral miRNA Targets
Human target genes of novel viral miRNAs were predicted

using TargetScan custom miRNA prediction methods [31].

Putative targets within the viral genome were predicted using

TargetScan Perl script.

Results

Mapping SOLiD Sequencing Reads to Virus Genomes
In this work we have applied deep sequencing technology to

profile small RNA expression from the HPV genome in HPV

containing cell lines and human cervical tissues. Libraries from

small RNA fractions of two cell lines HPK IA and HPK II [24] as

well as ten tissue samples were sequenced using SOLiD 4 platform.

The number of total reads in the different libraries varied from 4.5

million to 97 million (Table 1). The viral reference genome for

mapping the sequencing reads was constructed by concatenating

together all available nucleotide sequences of papillomavirus types

and isolates in the NCBI database (Jan 2011, 393 complete

genomes, Table S2). Obtained reads were mapped to the

papillomavirus reference genome to specifically find reads aligned

to papillomavirus sequences. No similarities with known human

microRNA sequences were found. Full-length sequences of the

predicted mature viral miRNAs, except for HPV16-miR-H6-1

which we did not attempt to validate, did not map to the official

human genome GRC37. IsomiRs of HPV16-miR-H6-1 or other

reads in HPV16-miR-H6 did not match to the human genome.

We are thus convinced that our proposed miRNA sequences

represent virally encoded microRNAs. The number of total reads
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mapped to the papillomavirus reference genome ranged from

61473 to 1.4 million, roughly 1,2% in each library. Mapping of

reads to the human genome show that around 50% of total reads

mapped to known human miRNA, and around 10% mapped to

the human genome (Table 1). Although a somewhat lower

proportion of reads mapped to known miRNAs in Lib11 and

Lib12 than in other libraries, the sequencing library preparation

and mapping were considered successful.

Prediction of Novel Viral miRNA Candidates
The mapping data from SOLiD sequencing were used to

predict novel viral candidate miRNAs. Prediction of novel viral

microRNAs was performed by mirSeqNovel [25] which revealed

several candidate sequences (Table S3–S6). The pre-miRNA

sequences were named following the annotation instructions in

miRBase [7], such as HPV16-miR-H1 for pre-miRNA and

HPV16-miR-H1-1 for mature miRNA. We performed two rounds

of predictions regarding whether the pre-miRNA should be

extended to cover low count reads (see Materials and Methods).

Comparison of the results from the first and secondary prediction

rounds revealed advantages and disadvantages in both rounds.

When star miRNA, which was estimated by second highest counts,

is not fully covered by the pre-miRNA in the first round, the

second round will give a better prediction of pre-miRNA.

However, in the second round, some low expression reads with

counts less than three, which would possibly represent noise, may

add additional nucleotides to pre-miRNA, leading to suboptimal

RNA secondary structure. We thus considered both results but

focused on the first round for validation of candidate miRNAs.

Putative HPV miRNAs for further studies were selected based

on: (1) clinical relevance of HPV types, particularly HPV 16

encoded candidates; (2) Candidates encoded by high risk and low

risk mucosal HPV types; (3) Candidates encoded by skin HPV

types.

Sequencing results showed strong evidence of six novel HPV

encoded microRNA candidates in the first prediction round

(Table 2). However, given the high background and low

expression possibly leading to false-positive predictions, in the

second prediction round we combined all the libraries together to

obtain a library containing all sequenced reads, which enabled

more reasonable prediction and easier finding of isomiRs. By

further diminishing background we were able to identify

additional HPV 16 encoded putative miRNAs, but, using this

approach, HPV16-miR-H2 found in the first round was excluded

due to suboptimal structure of extended pre-miRNA to cover the

background reads. HPV16-miR-H1 was shown using both

strategies. We finally combined the results and established a total

of nine novel putative HPV encoded miRNAs (Table 2, Table S7,

Figure S2, Figure S3). None of these putative miRNA sequences

had similarity to known human microRNAs.

Five of the selected candidates were encoded by the clinically

most relevant HPV type, HPV 16. Two of the candidates were

studied in more detail: HPV16-miR-H1, encoded by a region

within the E1 gene on the positive DNA strand, and HPV16-miR-

H2, encoded by the negative strand complementary to the long

control region (LCR) (Figure 1). Interestingly, HPV16-miR-H2

coding sequence was found in HPV 16 isolates, but there is a one-

nucleotide deletion in the mature miRNA sequence in the

prototype HPV 16 genome (NC_001526.2). We compared

HPV16-miR-H2 against all HPV 16 sequences in the NCBI

database (April 26, 2013), and altogether 267 out of 329 sequences

gave a perfect match to HPV16-miR-H2, suggesting that this

sequence represents the major form in HPV 16.

HPV16-miR-H3 is localized in the LCR, HPV16-miR-H5 in

E1 coding region and HPV16-miR-H6 in the antisense strand

complementary to L1. HPV6-miR-H1 is localized in the antisense

strand of HPV 6 E1 region. HPV38-miR-H1 coding sequence

resides in E7 region. The coding sequences for HPV45-miR-H1

and HPV68-miR-H1 are localized in the corresponding L1 coding

regions.

The mature HPV16-miR-H1-1 miRNA is located in the loop

region of HPV16-miR-H1 pre-miRNA as suggested by miRSeq-

Novel prediction (Table S7 and Figure S4). Other isomiRs in

HPV16-miR-H1 are also found in the loop region. Because of low

Table 1. Mapped results of the twelve small RNA sequencing libraries.

Library Total reads number
Mapped reads number
(% of total reads) Library description

% of total reads
mapped to
human miRNAs

% of total
reads
mapped to
human
genome

Lib1 7120921 136685 (1.92%) HPK IA 56.38% 7.43%

Lib2 63395143 552214 (0.87%) HPK II 47.61% 9.91%

Lib3 4511000 61473 (1.36%) normal cervical squamous epithelium 41.64% 8.28%

Lib4 35760385 950230 (2.66%) adenocarcinoma in situ 51.81% 7.99%

Lib5 18188245 275672 (1.52%) squamous cell carcinoma 43.34% 7.67%

Lib6 36598210 922368 (2.52%) adenocarcinoma in situ 53.66% 9.87%

Lib7 50597264 637917 (1.26%) CIN1/condyloma 51.07% 10.60%

Lib8 91674354 1187602 (1.30%) CIN1/condyloma 42.20% 7.80%

Lib9 21433903 330383 (1.54%) CIN2 51.40% 6.82%

Lib10 21310108 411991 (1.93%) CIN2 53.19% 9.43%

Lib11 62194515 1084089 (1.74%) CIN2 33.69% 9.54%

Lib12 97534820 1446426 (1.48%) normal cervical columnar epithelium 16.38% 16.76%

For each library, total reads from SOLiD small RNA sequencing and reads mapped to the papillomavirus reference genome are presented. Names of cell lines or
histology of tissue samples are given in library description. Percentage of reads mapped to human miRNAs and to the human genome, respectively, are given. CIN,
cervical intraepithelial neoplasia.
doi:10.1371/journal.pone.0070202.t001
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read counts in sequencing data, it was difficult to distinguish

mature miRNA and star miRNA from RNA degradation

background. Because of the background, we further checked

whether the predicted miRNA is correct by screening this with

VMir [9], and found that the mature HPV16-miR-H1-1 miRNA,

not the isomiRs, is located in the arm region of a shorter precursor

sequence (Figure S4).

Validation of Putative HPV Encoded miRNAs by TaqMan
qPCR

We selected altogether seven HPV miRNA candidates from

both prediction rounds for validation based on clinical relevance,

quality of the reads and computer assisted structural features

(Figure S2). Validation was performed using tailored TaqMan

MicroRNA Assays for putative mature miRNAs (Table 3, Table

S8). Two of the seven selected miRNAs (HPV45-miR-H1-1, and

HPV16-miR-H6-1) failed at assay design and thus validation was

performed for five putative miRNAs.

We were able to validate the expression of four out of five

miRNAs in cell lines or cervical tissues. Altogether, the presence of

miRNAs was analyzed in SiHa, CaSki, HPK IA, HPK II cell lines

and 19 tissue samples (Table 3). All microRNAs were detected at

high cycle counts in TaqMan qPCR, suggesting fairly low

expression levels in RNA preparations prepared from tissue

samples where only a subset of cells represent tumor tissue. The

size and the quality of representative qPCR products were

additionally confirmed in Bioanalyzer. HPV16-miR-H1-1 was

detected in all cell lines and 16 tissue samples (Table 3, Table S8).

Weak signals for HPV16-miR-H2-1 were shown by TaqMan

qRT-PCR in HPK IA cells and in ten tissue samples. High cycle of

threshold (Ct) values were obtained for HPV68-miR-H1-1 in

tissue samples and in cell lines. However, Bioanalyzer analysis

showed some background, suggesting additional primer binding.

Similar results were obtained for HPV38-miR-H1. Finally,

although sequencing results suggested high level expression of

HPV6-miR-H1 (Table S7, Figure S2A), it could not be validated

Table 2. Predicted viral miRNA candidate.

miRNA name Reference genome Location Read counts Annotation Strand Mature sequence

HPV6-miR-H1 NC_001355.1 1828–1716 1828 E1 – TGGTTTTCAGGTATATTTAA

HPV16-miR-H1 NC_001526.2 2635–2716 45 E1 + AGTGTATGAGCTTAATGATAA

HPV16-miR-H2 FJ610147.1 56-1/7906–7851 1203 LCR – ATGTGTAACCCAAAACGGTTTG

HPV16-miR-H31 NC_001526.2 518–642 39 LCR + CAACTGATCTCTACTGTTA

HPV16-miR-H51 NC_001526.2 2471–2556 46 E1 + GTAAAGCATAGACCATTG

HPV16-miR-H61 NC_001526.2 6684–6584 6161 L1 – ATCAACAACAGTAACAAA

HPV38-miR-H1 U31787.1 724–621 67 E7 – ATCACGAAGAGTAGCTTG

HPV45-miR-H1 EF202157.1 6676–6790 282 L1 + AGTATAGTAGACATGTGGAGGA

HPV68-miR-H1 GQ472851.1 6210–6305 274 L1 + ACAAATGTCTGCAGATGTCTA

Each row presents one candidate miRNA with name, reference genome, pre-miRNA location in the genome, total read counts of pre-miRNA, viral gene annotation in
corresponding region, strand information and mature miRNA sequence. Some miRNAs were shown in more than one isolate/subtype papillomavirus genomes. 1

Prediction results from second round.
doi:10.1371/journal.pone.0070202.t002

Figure 1. Locations and putative target sites of HPV 16 encoded microRNAs. Locations of HPV16-miR-H1-1 and HPV16-miR-H2-1 in the viral
genome are shown as black bars and the predicted secondary structures are given next to the bars. For each miRNA, the seed sequences and
predicted target sequences in the HPV genome are shown.
doi:10.1371/journal.pone.0070202.g001
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in qRT-PCR. The U6 positive control showed strong signals in all

the runs confirming good technical performance and good quality

of the samples.

Typically, different methods to study miRNA expression may

produce different results, and they are not quantitatively

comparable. In the present study, miRNA sequencing data

showed hundred-fold higher read counts for HPV16-miR-H2

than for HPV16-miR-H1. However, in qRT-PCR validation the

signal for HPV16-miR-H2-1 was weaker than for HPV16-miR-

H1-1. Similarly, HPV6-miR-H1 showed high read counts in

sequencing but could not be validated by qRT-PCR (Table 3,

Table S7, Table S8). The most likely explanation for these

discrepancies is that the RNA ligase used in the library

construction has different preferences for the different nucleotides,

as has been suggested earlier [12,32]. The method of library

construction should strongly prefer microRNA to RNA degrada-

tion products or DNA [33]. Further analysis will be required to

validate whether HPV6-miR-H1-1 is indeed a functional micro-

RNA.

Presence of miRNA Encoding Regions and Genotyping of
HPV

We further confirmed the presence of the predicted HPV16-

miR-H1-1 and HPV16-miR-H2-1 coding regions by PCR

amplification of the relevant HPV genomic regions followed by

Sanger sequencing for a representative set of samples in cell lines

and several tissue samples (Table 3). No amplification products

were obtained for HPV 6, HPV 38 and HPV 68 pre-miRNA

coding regions.

HPV genotypes in the clinical samples were determined using

an assay recently developed by us [28]. As expected, HPV types 16

and 18 were the most frequently occurring genotypes, and several

samples harbored two HPV types (Table 3). HPV 16 was found in

all cervical lesions, which was somewhat surprising even though it

is expected to be the most prevalent HPV type in cervical

neoplasia. All negative controls included in the assay remained

negative. We have shown that the LDR assay developed

previously by us and used for genotyping in this work may be

Table 3. Summary of TaqMan miRNA qPCR, DNA PCR and p16 staining results, as well HPV detection and/or genotyping results by
LDR, Luminex and Hybrid Capture 2.

TaqMan qPCR positive results/total reactions
performed DNA PCR

Sample

HPV6-
miR-
H1

HPV16-
miR-
H1

HPV16-
miR-
H2

HPV38-
miR-
H1

HPV68-
miR-
H1 U6

HPV16-
miR-
H1

HPV16-
miR-
H2 p16

LDR
genotyping*

Luminex
genotyping* HC2

SiHa 0/9 4/6 0/6 3/6 3/6 6/6 + + NA NA NA NA

CaSki 0/9 4/6 0/6 3/6 1/6 6/6 + + NA NA NA NA

HPK IA 0/9 3/6 3/6 3/6 6/6 6/6 + + NA NA NA NA

HPK II 0/9 3/6 0/6 2/6 2/6 6/6 + + NA NA NA NA

89 CIN1/Cond pl 0/9 0/9 0/9 4/9 2/9 6/6 – – + 16, 18 33, 58 +

79 CIN1/Cond pl 0/9 1/9 0/9 5/9 3/9 6/6 – – + 16, 58 16, 33, 58 +

100 CIN2 0/9 0/9 0/9 1/9 1/9 6/6 – – + – – –

98 CIN2 0/9 1/9 0/9 2/9 3/9 6/6 – – + 16 16 –

99 CIN2 0/9 1/9 0/9 4/9 2/9 6/6 – – + 16, 52 16, 35, 52, 56 +

53 CIN3 0/9 2/9 0/9 4/9 1/9 6/6 – – + 16, 18, 33 ND +

49 CIN3 0/9 2/9 1/9 4/9 6/9 6/6 + – + 16 16, 31, 35 –

18 CIN3 0/9 2/9 1/9 5/9 5/9 6/6 – – + 6, 16 ND –

41 CIN3 0/9 6/9 1/9 7/9 4/9 9/9 + + + 16, 18 16 –

48 SCC 0/9 3/9 2/9 5/9 3/9 6/6 + + + 16, 18 16 +

8 SCC 0/9 5/9 1/9 2/9 5/9 6/6 + + + 16, 18 16 +

102 SCC 0/9 9/9 4/9 5/9 4/9 9/9 + + + 16 16 +

87 AIS 0/9 1/9 0/9 2/9 2/9 6/6 – – + 16, 58 16, 18, 58 –

97 AIS 0/9 1/9 1/9 1/9 3/9 6/6 + + + 16, 18 16 +

76 AIS 0/9 2/9 0/9 2/9 4/9 6/6 – – + 16 45 –

27 AIS 0/9 6/9 4/9 2/9 3/9 6/6 + + + 16, 18 16 +

47 AC 0/9 2/9 1/9 3/9 6/9 6/6 – – + 16 – +

103 Normal SE 0/9 3/9 2/9 3/9 1/9 6/6 – – – 16 – –

101 Normal CE 0/9 0/9 0/9 1/9 1/9 9/9 – – – 16, 18 16 –

Obtained positive results in TaqMan qPCR out of performed runs are given. HPV6-miR-H1 did not give any positive results. Positive signals were obtained for HPV16-
miR-H1, HPV16-miR-H2, HPV38-miR-H1 and HPV68-miR-H1 from cell lines and patient samples. Positive control U6 gives positive result in every reaction. The presence
of pre-miRNA coding regions for HPV16-miR-H1 and HPV16-miR-H2 was confirmed by DNA PCR in all cell lines and many tissue samples. Results of p16 tissue staining,
as well as results of HPV genotyping by LDR or Luminex, and high risk HPV detection by Hybrid Capture 2 are given. NA, not analyzed. ND, not done (inadequate
sample). CIN1-3, cervical intraepithelial neoplasia 1–3; Cond pl, condyloma planum; SCC, squamous cell carcinoma; AIS, adenocarcinoma in situ; AC, adenocarcinoma; SE,
squamous epithelium; CE, columnar epithelium; LDR, ligase detection reaction based HPV genotyping assay; Luminex, Luminex based HPV genotyping assay; HC2,
Hybrid Capture 2 HPV detection assay; *, numbers are HPV types; NA, not analyzed; ND, no data (not enough material for testing).
doi:10.1371/journal.pone.0070202.t003
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more sensitive than commercial HPV assays [28], which may

explain the high detection rate. HPV 38 was not included in the

genotyping assay because the assay was originally designed for

mucosal HPV types. All except two samples were further studied

using a Luminex based genotyping assay. Similar results were

obtained, although different genotypes were found in two samples,

and two LDR positive samples remained negative in the Luminex

assay. Altogether eight LDR positive samples remained negative in

Hybrid Capture 2 liquid hybridization assay for high-risk HPV,

which suggests higher sensitivity of our LDR assay as compared to

Hybrid Capture 2, as we have proposed earlier [28].

Expression of HPV miRNAs in Cell Lines and Tissue
Samples

We studied the expression of HPV16-miR-H1-1 and HPV16-

miR-H2-1 in cell lines and tissue samples. Typically HPV infected

cell populations are not seen throughout tissue samples but in

restricted areas. We conducted in situ hybridization for HPV16-

miR-H1-1 and HPV16-miR-H2-1 in those samples which had

been used for sequencing libraries, as well as 14 additional samples

including one sample containing normal columnar and squamous

tissue. Interpretation of in situ hybridization results is presented in

Table 4.

Strong cytoplasmic signals for HPV16-miR-H1-1 were detected

in several tissue samples, often colocalizing with p16INK4A (p16)

immunohistochemical staining (Figure 2, fields 2, 9, 16 for p16;

fields 6, 13, 20 for HPV16-miR-H1). p16 is a surrogate marker for

high risk HPV. The encoding region for HPV16-miR-H1 is

located within the E1 gene. MicroRNA specificity of HPV16-miR-

H1 signals in our experimental conditions was confirmed by the

absence of signal with a probe specific for E1 mRNA in altogether

10 tissue samples (an example is shown in Figure S5). Samples

used for in situ hybridization had been fixed and paraffin

embedded according to established routine protocols. Similar

samples have been widely used for in situ hybridization for mRNA

by us and by others [34–36]. Although some mRNA degradation

in FFPE samples may take place, oligonucleotide probes can be

expected to detect mRNA equally well as microRNA in conditions

used in in situ hybridization. Further, the signal for HPV16-miR-

H1-1 was seen in the cytoplasm, whereas strong nuclear signal for

E1 mRNA has been reported previously [36]. Specificity of our

hybridization conditions and our hybridization probe for HPV16-

miR-H1-1 was thus confirmed by both negative signals with the

E1 mRNA probe in these conditions, and by different localization

of miRNA signal from previously published localization for E1

mRNA [36]. Low level expression of HPV16-miR-H2-1 was

detected in one squamous cell carcinoma tissue (Figure 2, field 21).

U6, the positive control for hybridization, was detected in all

samples. It also served as a control for localization accuracy as it

resides in the nucleus, whereas HPV miRNAs are expressed in the

cytoplasm. For negative control, we used a scramble probe that

did not give any signal in HPV positive or HPV negative tissues.

Human miR-205 was used as a positive control for miRNA

expressed in cervical epithelium. Interestingly, the expression of

human miR-205 was more intense and more broadly distributed

in disease tissues as compared to healthy tissues (Figure 2, fields 5,

12, 19).

Prediction of Viral miRNA Targets
We searched for the targets of HPV16-miR-H1-1 and HPV16-

miR-H2-1 by TargetScan. Both of these miRNAs have a unique

target fingerprint of 137 and 176 genes, respectively, in the human

genome (Figure S6, Table S9). Interestingly they share 15

predicted targets: CDC2L6, EIF2C1, IMPAD1, BNC2, SNX27,

TNRC6B, BACH2, CYP26B1, DDX19B, FGF7, PBRM1,

PHACTR2, RBM3, RGS7BP, TEAD1.

Prediction of target sequences in the HPV 16 genome identified

four target sequences for HPV16-miR-H1-1, two of which in the

Table 4. Summary of miRNA in situ hybridization (ISH), DNA PCR and p16 staining results.

Sample HPV16-miR-H1-1 ISH HPV16-miR-H2-1 ISH DNA PCR HPV16-miRs H1/H2 p16

9 CIN1 + – NA +

10 CIN1 + – NA +

28 CIN1 + – NA +

39 CIN1 + – NA +

40 CIN1 + – NA +

95 CIN2 + – NA +

96 CIN2 + – NA +

100 CIN2 + – – +

41 CIN3 + – + +

49 CIN3 + – – +

8 SCC + – + +

48 SCC + – + +

102 SCC + + + +

27 AIS + – + +

97 AIS + – + +

47 AC + – – +

104 Normal SE/CE – – NA –

Expression of HPV16-miR-H1-1 was shown in all disease tissues. Expression of HPV16-miR-H2-1 was shown in only one carcinoma sample 102. CIN1-3, cervical
intraepithelial neoplasia 1-3; SCC, squamous cell carcinoma; AIS, adenocarcinoma in situ; AC, adenocarcinoma; SE, squamous epithelium; CE, columnar epithelium. NA,
not analyzed.
doi:10.1371/journal.pone.0070202.t004
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E5 gene and two in the L1 gene. HPV16-miR-H2-1 had two

targets in the viral genome, one in the LCR region and another

located in the L1 gene (Figure 1).

Discussion

The association between human papillomavirus infection and

the development of epithelial lesions is complex. Close to 200

HPV types have been characterized, and particularly the alpha

HPV types are classified into high risk or low risk types according

to their association with anogenital malignancies [37]. An

individual can be infected with multiple HPV types, which may

also increase the risk of developing a cervical lesion [38].

Moreover, many HPVs have been identified from healthy

individuals without any clinical symptoms. The rare path from

initial infection to severe epithelial lesion is still not understood in

detail. We have previously shown that the viral E5 oncogene

regulates the expression of a number of cellular mRNAs and

microRNAs with key functions in cell adhesion and motility,

epithelial differentiation, and immune response [6,39], and we

were able to confirm some of these regulations in cervical disease

[40]. Our recent results suggest that microRNAs play a key role in

the manifestation of HPV infections in epithelial target cells [6].

Many dsDNA viruses, such as polyomaviruses, encode miRNAs

[9,16,20]. Papillomaviruses have initially been suspected to encode

their own microRNAs because they have dsDNA genomes, they

replicate mainly in the nucleus, and they have the ability to

establish persistent infection and latency, but until now no

papillomavirus miRNAs have been validated. Gu et al. previously

presented a prediction of virally encoded microRNAs with

homology to known human microRNAs based on bioinformatics

analysis of papillomavirus sequences [23]. Here we present the first

report on identification and validation of putative papillomavirus

encoded microRNAs based on small RNA sequencing approach

using libraries constructed from cultured cells and tissue samples.

Using SOLiD deep sequencing of small RNA libraries, we were

able to identify altogether nine putative HPV encoded miRNAs in

human cervical lesions and in HPV 16 transfected cell lines.

Importantly, our strategy mainly identifies miRNAs that are

expressed in persistent infection and may thus be associated with

the development or maintenance of epithelial lesions. In contrast,

putative viral miRNAs needed for productive replication of

papillomaviruses may remain undiscovered, although two of the

libraries used for small RNA sequencing were established from

CIN1/condyloma, where productive viral infection may be

ongoing. Conventional experimental infection to specifically

search for microRNAs expressed in productive infection is not

feasible with papillomaviruses, which do not replicate in labora-

tory in vitro conditions. In experimental settings allowing differen-

tiation of epithelial cells, complete HPV life cycle with virion

Figure 2. In situ hybridization for HPV16-miR-H1-1 and HPV16-miR-H2-1. (A) Hematoxylin-eoxin (HE) staining, immunohistochemical
staining for p16, and in situ (italics) hybridization for scramble (negative control), U6 (positive control), human miR-205 (positive control for cervical
tissue), HPV16-miR-H1-1 (16-miR-H1-1) and HPV16-miR-H2-1 (16-miR-H2-1). Shown are two cervical intraepithelial neoplasia grade 1 (CIN 1) samples
(samples 10 and 28), one squamous cell carcinoma (SCC) (sample 102), as well as normal squamous epithelium (SE) (sample 104) and normal
columnar epithelium (CE) (sample 104). Arrows point to positive signals. (B) Areas of selected picture fields shown in higher magnification to depict
localization and positive hybridization signal. Same numbering is used as in (A).
doi:10.1371/journal.pone.0070202.g002
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production has been reproduced [41,42]. Such settings would

provide a valuable tool to study the expression and role of

microRNAs in virus replication.

Current understanding of human miRNA features was applied

in screening for candidate genes of HPV miRNAs using

miRSeqNovel software [25]. Accumulating miRNA sequencing

data continuously serves to correct miRNA annotations in the

miRBase [7]. We considered the relative sequence abundance as

one of the main criteria in prediction of mature miRNAs [43].

Many candidate HPV microRNAs had low read counts, which

made prediction of the precise features of novel microRNAs as

well as annotation of isomiRs and star miRNAs challenging.

Consequently some of our candidate miRNAs were not located in

a typical mature miRNA location (Figure S2). While miRSeqNo-

vel is useful in finding novel miRNA candidates when read counts

are sufficient, accurate prediction of pre-miRNA is difficult when

viral miRNAs are expressed at low levels and the background

noise is relatively high. Therefore, more reads from tissue RNA,

which may be limited when using FFPE samples, would be needed

to obtain precise information about star miRNAs and isomiRs.

This problem also calls for the development of highly efficient

laboratory models of HPV infection.

Altogether, five of the putative papillomavirus microRNAs were

encoded by HPV 16, one by HPV 38, one by HPV 68, one by

HPV 45 and one by HPV 6. HPV 6, 16, 45 and 68 belong to

alpha-papillomaviruses, whereas HPV 38 is a beta-papillomavirus.

None of the candidate HPV encoded microRNAs had similarity to

known human microRNA sequences. Of the validated micro-

RNAs, HPV16-miR-H1-1 is located within the E1 region of the

coding strand, and HPV16-miR-H2-1 in the negative strand

corresponding to the LCR region. Intriguingly, the HPV16-miR-

H2-1 sequence is present in a number of HPV 16 isolates but has a

one-nucleotide deletion in the prototype sequence. Many of the

isolates have been cloned from carcinoma tissues, suggesting that

the ability to express this particular microRNA might promote

carcinogenesis. Interestingly, the pre-microRNA sequence of

HPV38-miR-H1, encoded by the E7 region, is shared by HPV

types 22, 23, 120, 104 and 115, which are all members of the beta-

papillomavirus genus. Moreover, the pre-miRNA sequence of

HPV45-miR-H1, encoded by the L1 region, is partially similar to

HPV 16, suggesting evolutionary divergence of viral miRNA

function between HPV types. Although the deep sequencing read

counts for the HPV 6 encoded miRNA were high, we were not

able to validate it by qPCR, possibly due to the specific design of

TaqMan assays. Because of the very short length of the miRNA

there are very limited possibilities to alter the assay design if no

results are obtained with the qPCR test.

Several of the putative miRNA sequences were encoded by the

negative DNA strand, which disagrees with the consensus that all

papillomavirus transcripts originate from the positive strand of

papillomavirus genomes. Although in this first report we did not

study the mechanisms of transcription of HPV microRNAs, our

methodology should practically exclude RNA degradation prod-

ucts or DNA from sequencing libraries.

Viral miRNAs may also possess features that do not follow the

canonical properties of human miRNAs [12]. The precursor

sequence of HPV16-miR-H1 is still uncertain and needs further

validation of length and exact sequence. Due to low expression

level of this miRNA we were not able to establish its exact length.

Merkel cell polyomavirus encoded MCV-miR-M1-5p, which was

first predicted from VMir and validated [17], and further

identified by Illumina sequencing and validated by qRT-PCR,

has a 59end 2-nt shift from the VMir predicted MCV-mir-M1

mature sequence, which has also been shown to exist and be

functional in vitro [19]. Further studies are needed to prove

whether the isomiRs presented here could also exist and be

functional under some conditions.

Entire tissue samples consisting of both healthy and infected

cells were used for these studies. Robust signals were seen in

cervical tissue in in situ hybridization, often colocalizing with and

restricted to regions staining for p16INK4a, which is considered a

surrogate marker for high-risk HPV oncogene activity. In situ

hybridization also showed altered distribution of human miR-205,

whose high expression has been reported before in CaSki cells and

in cervical cancer tissues [44]. miR-205 was also recently shown to

promote proliferation of human cervical cancer cells [45].

Although some viral miRNAs are occasionally expressed at high

levels, low level of expression has also been shown biologically

relevant, for example for Merkel cell polyomavirus miRNA [19].

Those authors speculated that even low levels of viral miRNA

expression might be sufficient to regulate host immune response

[19]. However, the signals in the in situ assays for the U6, miR-205

and HPV miRNAs cannot be directly compared as a measure of

the expression level.

Cellular targets of HPV encoded miRNAs give an overview of

their putative functions. Gene ontology classes of the predicted

cellular targets of HPV16-miR-H1-1 suggest important roles in

host cell interactions of HPV 16, such as the cell cycle process

(CUL3, CYP26B1, MAP3K11, PBRM1, SMC1A), especially the

M phase (CYP26B1, PBRM1, SMC1A), which is important for

viral infection [5]. A set of predicted target genes is involved in

regulation of immune functions of the host, such as T cell

activation (BCL11A, CHD7, ITGAM, RAG1) and immune

system development (BCL11A, CHD7, RAG1, TCEA1). Involve-

ment of this particular microRNA in neoplastic development is

suggested by its putative target genes with key roles in focal

adhesion (CAV2, IGF1R, ITGB8, PTEN, PIK3CD) and cell

migration (CAV2, ITGAM, PAX6, PTEN, SEMA3F, ULK1).

Importantly, target genes involved in epithelium development

(RGMA, SHANK3, PAX6, PFN1, WNT4) and cancer (CBL,

CYCS, FGF7, IGF1R, PTEN, PIK3CD, WNT4) address to a

further role in the onset of epithelial abnormalities and oncogen-

esis. PIK3CD, involved in activation of cell growth, survival,

proliferation and motility, in regulation of cell morphology, and in

mediating host immune responses, is of particular interest, because

the same target gene has been predicted for Merkel cell

polyomavirus miRNA [19]. Further, we have previously reported

activation of the Akt/PI3K pathway by the HPV 16 E5 oncogene

[39]. The present results suggest that HPV encoded miRNAs may

be involved in this process, taken into account that HPV16-miR-

H1-1 has two putative target sites within the E5 gene.

Similar pathways are represented among the predicted targets

of HPV16-miR-H2-1. These involve cell cycle process (SETD8,

CYP26B1, FOXN3, HMGA2, MAP9, PAFAH1B1, PBRM1,

TP53INP1, VASH1) and M phase (SETD8, CYP26B1, HMGA2,

MAP9, PAFAH1B1, PBRM1), as well as immune regulation such

as T cell activation (PKNOX1, SP3, XRCC4) and immune system

development (JAK2, PKNOX1, SP3, XRCC4, FOXP1). Impor-

tantly, predicted target gene functions in cell migration (CDK5R1,

ITGA5, PAFAH1B1, SRF) and cell adhesion (ARF6, FAT3,

CHL1, COL19A1, CNTNAP2, CDK5R1, FLRT2, ITGA5,

NLGN1, PCDH18, PCDHA family, SORBS1) suggest a possible

involvement or interplay with the E5 viral oncogene, which

showed very similar functions in our earlier studies [6,39].

Both HPV 16 encoded microRNAs have two interesting

common targets involved in cell cycle regulation. CYP26B1

encodes a CYP450 family enzyme crucial in retinoic acid

metabolism, specifically the inactivation of all-trans retinoic acid
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(RA) and generation of its hydroxylated forms [46]. RA has been

shown to regulate epithelial cell differentiation and inhibit the

growth of HPV 18 harboring HeLa cervical carcinoma cells [47].

RA has also been shown to down-regulate the mechanisms

protecting HPV harboring CaSki and HeLa cells from Fas/FasL

mediated apoptosis [48]. Down-regulation of RA by HPV

encoded miRNA through CYP450 would thus lead to increased

resistance of HPV infected cells to apoptosis and stimulate cell

growth. Another common target of HPV 16 encoded miRNAs,

PBRM1, encodes polybromo-1, which can function as a

transcriptional activator or suppressor of a number of genes by

chromatin remodeling [49]. Its role as a negative regulator of cell

proliferation could be counteracted by HPV 16 miRNA to allow

expansion of the HPV infected cell population.

Other common target genes include fibroblast FGF7, encoding

fibroblast growth factor 7, also known as keratinocyte growth

factor (KGF). KGF is a potent epithelial growth factor, which has

been implicated in epithelial morphogenesis in wound healing,

and has been shown to be a bifunctional regulator of the growth of

HPV 16 immortalized cervical epithelial cells [50]. Another

common target gene, TEAD1 (or SV40 transcriptional enhancer

factor SV40 transcriptional enhancer factor), encodes transcrip-

tional enhancer factor 1 (TEF-1), which regulates cell prolifera-

tion, migration and epithelial-mesenchymal transition (EMT)

induction, and has been shown to bind and activate the early

HPV 16 promoter [51,52].

Viral miRNAs have potentially evolved to provide ideal tools for

viruses to modulate both viral and cellular gene expression. Viral

miRNAs of SV40 [9], Merkel cell polyomavirus (MCV) [17,19],

JC virus and BK virus [16], and BPCV [20] share similar

functions in negatively regulating viral early gene expression by

targeting early transcripts (T-antigen), with subsequent escape

from host immune attack and facilitation of viral replication.

Despite the lack of sequence similarities, HPV has similar genome

size and similar gene functions to those of polyomaviruses, which

suggests that HPV might encode microRNAs with related

functions. Our findings are in agreement with these consider-

ations. Expression levels of the HPV encoded miRNAs described

here were low, which is reasonable given that even low levels may

suffice to facilitate viral replication, and that their targets may also

be important for viral replication.

The significance of the predicted microRNA target sites within

the E5 gene, L1 gene or LCR in the viral genome remains to be

established. E5 transcripts of genital papillomaviruses are always

multicistronic [53], and targeting of that particular region would

affect the expression of several viral genes. Autoregulation of viral

replication as shown for polyomavirus microRNAs, for example to

establish latency, remains an intriguing possibility in the patho-

genesis of papillomaviruses.

This paper is the first to report validated microRNAs encoded

by papillomaviruses. In our approach putative viral microRNAs

were sequenced and identified directly from biological material, in

disease tissues from papillomavirus induced lesions, and in cancer

derived cell lines, and viral microRNA expression was further

shown in additional tissue samples. Reports showing the expres-

sion of viral microRNAs in human samples are rare [16]. To our

knowledge, this is the first paper to use in situ hybridization to show

the expression of viral microRNA in human tissue.

Here we have described the discovery and validation analysis of

HPV encoded microRNAs using a combination of next generation

sequencing, qRT-PCR and in situ hybridization. Altogether nine

candidate microRNAs were identified. The expression of four out

of five studied miRNAs was confirmed in human tissue or human

epithelial cell lines harboring HPV 16. Another four candidate

HPV miRNAs still await experimental validation. Biological

functions of the predicted cellular target genes suggest important

functions in the establishment of infection and in carcinogenesis.

Viral microRNAs are also tempting as possible targets for new

antiviral drugs. These findings emphasize the need for further

studies on HPV miRNA functions.

Supporting Information

Figure S1 Schematic presentation of reads used in
prediction. Reads (red lines) were mapped to reference genome

(black line). First, if the gap between mapped reads was smaller

than 40 nt, the locations of reads were combined to consider the

candidate pre-miRNA location. Most highly expressed reads were

supposed to represent mature miRNA. Then, remaining reads

were blasted to 100 nt upstream or downstream to find candidate

pre-miRNA sequences.

(TIF)

Figure S2 Visualization of candidate viral miRNA
expression profiles and RNA structures. For each predicted

miRNA, its expression profiles (WIG format) from 12 sequencing

libraries are shown in Integrative Genomics Viewer. Red bars

present the reads mapped to the reference genome. Each row

presents one library from Lib1 (first row) to Lib12 (last row). The

RNA secondary structure of pre-miRNA was predicted by

RNAfold, colored by base-pairing probabilities. The mature

miRNA sequences are highlighted in the schematic secondary

structure. A. HPV6-miR-H1; B. HPV16-miR-H1; C. HPV16-

miR-H2; D. HPV16-miR-H3; E. HPV16-miR-H5; F. HPV16-

miR-H6; G. HPV38-miR-H1; H. HPV45-miR-H1; I. HPV68-

miR-H1.

(TIF)

Figure S3 Visualization of reads alignment for HPV16-
miR-H1/H2. Some mapped reads of HPV16-miR-H1/H2 from

sequencing library 7 (Lib7) are shown. The arrow indicates the

predicted HPV16-miR-H1-1 sequence. Colorspace reads from

SOLiD sequencing platform are converted to basespace. Gray or

blue color depicts one or two base mismatches found in colorspace

but not in basespace. Green, yellow or red color stands for one,

two and three mismatches in basespace respectively.

(TIF)

Figure S4 Prediction of HPV16-miR-H1 pre-miRNA
sequence. RNA secondary structure of pre-miRNA predicted

from miRSeqNovel and VMir. The pre-miRNA from miRSeq-

Novel is longer because it covers the reads within 40 nt gaps, while

pre-miRNA from VMir is selected from the most stable RNA

structure.

(TIF)

Figure S5 In situ hybridization for HPV 16 E1 mRNA.
To control for microRNA specificity of HPV16-miR-H1 signal,

slides were hybridized under the same experimental conditions to

a probe specific for HPV 16 E1 mRNA. Absence of E1 mRNA

signal is shown in a CIN 1 sample. The figure fields for U6 and

HPV16-miR-H1-1 are the same as in Figure 3.

(TIF)

Figure S6 Venn Diagram of HPV16-miR-H1-1 and
HPV16-miR-H2-1 targets. HPV16-miR-H1-1 has 137 pre-

dicted targets in human genome, while HPV16-miR-H2-1 has

176. They share 15 common mRNA targets.

(TIF)
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Table S1 Sequences of PCR primers as well as in situ and

northern hybridization probes with their Tm values. F*, forward

primer; R*, reverse primer.

(XLSX)

Table S2 393 Complete papillomavirus genomes in reference

genome. Each raw present one complete papillomavirus genome

with its NCBI Reference Sequence, start and end position in the

reference genome and its full name.

(XLSX)

Table S3 First round prediction result on positive strand of

reference genome.

(XLSX)

Table S4 First round prediction result on negative strand of

reference genome.

(XLSX)

Table S5 Second round prediction result on positive strand of

reference genome.

(XLSX)

Table S6 Second round prediction result on negative strand of

reference genome.

(XLSX)

Table S7 Nine candidates miRNA prediction results in Table

S3–6. Each raw presents one predicted miRNA with its

information of strand, start location in the reference genome,

pre-miRNA length, total mapped reads in pre-miRNA, RNA

MFE (minimum free energy) and its papillomavirus annotation.

(XLSX)

Table S8 Complete result table of TaqMan qPCR reactions

with Ct-values. No signal was obtained in runs showing empty

cells. NA, not analyzed.

(XLSX)

Table S9 Target prediction of HPV16-miR-H1 and HPV16-

miR-H2 in human genome. The official symbol and name of each

target is shown, as well as the number of different conserved target

sites. HPV16-miR-H1 has 137 conserved targets and HPV16-

miR-H2 has 176 conserved targets.

(XLSX)
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36. Coupe VM, González-Barreiro L, Gutiérrez-Berzal J, Melián-Boveda AL,
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