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The composition of the conserved N297 glycan in immunoglobulin G (IgG) has been 
shown to affect antibody effector functions via C1q of the complement system and 
Fc gamma receptors (FcγR) on immune cells. Changes in the general levels of IgG-
glycoforms, such as lowered total IgG galactosylation observed in many autoimmune 
diseases have been associated with elevated disease severity. Agalactosyslated IgG 
has therefore been regarded and classified by many as pro-inflammatory. However, 
and somewhat counterintuitively, agalactosylation has been shown by several groups 
to decrease affinity for FcγRIII and decrease C1q binding and downstream activation, 
which seems at odds with this proposed pro-inflammatory nature. In this review, we 
discuss these circumstances where altered IgG galactosylation/glycosylation is found.  
We propose a novel model based on these observations and current biochemical 
evidence, where the levels of IgG galactosylation found in the total bulk IgG affect the 
threshold required to achieve immune activation by autoantibodies through either C1q 
or FcγR. Although this model needs experimental verification, it is supported by several 
clinical observations and reconciles apparent discrepancies in the literature, and sug-
gests a general mechanism in IgG-mediated autoimmune diseases.

Keywords: autoimmunity, immune regulation, immunoglobulin G glycosylation, galactosylation, Fc gamma 
receptor, complement, antibody effector functions

introdUCtion

Antibodies are crucial sentinels of the immune system, generated by B cells that sense incoming 
foreign antigens by their membrane-bound immunoglobulins or B cell receptor (BCR). With each 
B cell carrying a unique BCR, collectively they are able to respond to virtually any invading substance, 
let  alone a complex pathogen (1). Once recognizing their cognate antigen, each B  cell becomes 
activated and can class switch from the initial IgM and IgD type of BCR, to immunoglobulin G 
(IgG), IgA, or IgE (2). After maturation to plasmablasts and plasma cells, the B cells start to secrete 
the acquired BCR in the form of soluble immunoglobulin where it can mount humoral immune 
responses from complement activation (IgM and IgG) or cellular responses through myeloid 
and NK cells via Fc-receptors (all immunoglobulin types). In plasma, IgG is the most abundant 
immunoglobulin type found and consists of four subclasses, IgG1, IgG2, IgG3, and IgG4 in order of 
decreasing abundance. Since the first structures of IgG were solved, it became apparent that these 
structures are glycoproteins, with a conserved N-linked Fc-glycan attached to the asparagine found 
at position 297, situated in the constant region of the heavy chain domains (3) (Figure 1). However, it 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.00553&domain=pdf&date_stamp=2018-03-19
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.00553
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:g.vidarsson@sanquin.nl
https://doi.org/10.3389/fimmu.2018.00553
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00553/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00553/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00553/full
http://loop.frontiersin.org/people/181191
http://loop.frontiersin.org/people/188621
http://loop.frontiersin.org/people/88709


Fab

Fc
Asn297-glycans

Hinge

Core structure

N-Acetylglucosamine (GlcNAc)

Mannose

Galactose

Sialic acid

Fucose

Bisecting GlcNAc

Asn297

A B

FiGUre 1 | Schematic representation of immunoglobulin G (IgG) structure and glycan composition. (a) Schematic representation of antibody with heavy chains  
and light chains, respectively, in blue and red, with general Y shaped structure. The Fab, Fc, and hinge domains are indicated. Within the Fab domains, the 
antigen-binding domain is indicated in yellow and within the Fc, the region where the FcγRs and C1q bind is indicated in green. (B) Schematic  
representation of IgG-Fc-N297-glycan with the different sugar groups and their respective positions.
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remained enigmatic if, and then how, this rather flexible structure 
affects the function of IgG. In recent years, these aspects have 
become ever more clear, although fundamental discrepancies 
between clinical and experimental observations seem to prevail. 
These observations and possible resolutions will be discussed 
further below.

MeCHanisM oF GLyCosyLation

Most membrane surface proteins and secreted proteins found 
in plasma are glycosylated. Glycan synthesis starts at the 
endoplasmic reticulum (ER) when a lipid-linked precursor 
oligosaccharide is synthesized (Figure 2) (4). In the ER lumen, 
this precursor is transferred to the Asn site of the protein at 
accessible residues containing the Asn-X-Ser/Thr motif, where 
X is any amino acid except proline. Further processing of the 
glycan then takes place in the ER and Golgi apparatus, which 
includes trimming and remodeling of the glycan. The cell 
type-specific spatial and temporal organization of glycosidases 
and glycosyltransferase expression in ER and Golgi apparatus 
regulate the final composition of the glycans (4–6). For IgG, 
assembly of heavy and light chains takes place early in the ER 
(6). After initial trimming of glucose and mannose groups by 
the glucosidases and ER mannosidase I in the ER, the whole 
complex is transported to the cis-Golgi (6). The diversity of 
the glycans derives from several factors; involvement of many 
different enzymes and substrates in different compartments, 
variable modification of glycan core structure to bi-, tri-, and 
tetra-antennary, competition between enzymes for substrates 
and acceptors, accessibility of the enzymes to the glycan, incom-
plete processing, and other posttranslational modifications on 
the same protein (6). For the IgG N-glycans, we know they 
assemble in a bi-antennary glycan with a core structure of man-
nose and N-acetylglucosamine groups and variable extension of 
galactose, sialic acid, fucose, and bisecting N-acetylglucosamine 
(bisection) (Figure 1B).

Extracellularly, glycosyltransferases and glycosidases are 
present in circulation, mainly editing the terminal sialic acid 
groups on glycans (7). This has been proven to be a functional 
mechanism in the sialylation of IgG, found in a study where 
mice with ST6GalT1-deficient B-cells did contain sialylated IgG. 

This occurs through liver-derived ST6galT1 and platelet-derived 
CMP-sialic acid as sugar donor, which are present in the circula-
tion (7). Although sialylation of IgG seems to be affected also in 
plasma, we have observed several immune responses against both 
red blood cell (RBC) and platelet antigens formed after transfu-
sion or pregnancy, can have markedly different sialylation than 
total IgG in the same patient (8–11), suggesting that B cells can 
also have a significant influence on the IgG sialylation in humans. 
This is supported by mouse work, where they show in vivo that 
overexpression or knockout of sialyltransferase in B-cells attenu-
ates IgG sialylation and disease activity in collagen-induced 
arthritis (12).

igG-Fc GLyCosyLation in HUMans 
and in aUtoiMMUnity

When analyzing normal IgG repertoire in normal human serum 
it is found that the overall total glycosylation pattern is, although 
heterogeneous, generally quite constant, with high fucosylation 
(96%), low bisection (8%), intermediate galactosylation (40%), 
and low sialylation (4%) (13). Age and gender are two factors that 
were found to be correlated with the overall IgG glycosylation 
patterns. The main variations consist of a decrease in average 
galactosylation and sialylation and slight increase in bisection 
associated with higher age (13). The degree of fucosylation is 
almost 100% shortly after birth (when maternal antibodies have 
dissipated), after which levels of IgG fucosylation gradually 
reach ~96% around 20 years of age (14). Infection status, BMI, 
and epigenetic influences also seem to alter total IgG glycosyla-
tion (15–17).

Glycosylation patterns of total IgG have also been observed 
to temporarily change during certain conditions. During preg-
nancy, in particular, the degree of galactosylation and sialylation 
increases, with additional minor decrease in bisection while 
fucosylation remains stable (18, 19). Furthermore, in autoim-
mune diseases, changes in total IgG have been detected in, for 
example, rheumatoid arthritis (RA) (20, 21), inflammatory 
bowel disease (22), multiple sclerosis (23), myasthenic gravis 
(24), ankylosing spondylitis, primary Sjögren’s syndrome, psori-
atic arthritis (25), and systemic lupus erythematosus (SLE) (26).  
In all these diseases, a lower degree of total IgG galactosylation is 
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associated with disease progression and flare (20–28). However, 
the relevance of galactosylation of total IgG, which by definition 
are not causing the disease, on the disease severity is unknown.  
In inflammatory autoimmune disorders, such as RA and SLE, IgG 
autoantibodies presumably play a role in initiating or perpetuat-
ing the inflammatory condition (29, 30). In particular in RA, 
several types of autoantibodies have been identified that target 
a range of subtle chemical modifications of autologous proteins, 
including anti-citrullinated protein antibodies (ACPA) and 
anti-carbamylated protein antibodies—which may be referred 
to collectively as anti-modified protein response (31). The exact 
role of the autoantibodies in these diseases has not been fully 
elucidated as yet, although certain passive transfer mouse mod-
els suggest a pathogenic role for ACPAs (32). To our knowledge, 
the IgG Fc glycosylation patterns have only been determined for 
disease-associated autoantibodies of a few antigen-specific IgG, 
including ACPAs and anti-RBC autoantibodies (11, 33–37).  

In all these diseases, fucosylation is not lowered, even increased 
for ACPA in RA (11, 33, 34). Several studies suggest similarly 
low, but variable, levels of galactosylation in the antigen-specific 
IgG as found in the total IgG (11, 34, 35, 38). However, in two 
studies, differential changes in glycosylation patterns have been 
observed between total IgG and specific IgG1 (11, 34), observed 
in PR3-ACPA and anti-RBC autoantibodies. In both these stud-
ies, the galactosylation was variable between the patients, with 
total IgG galactosylation often diverging from antigen-specific 
IgG galactosylation. The PR3-ANCA IgG1 antibodies also 
showed a particularly stable and relatively high galactosylation 
during relapse, while the total IgG galactosylation was lowered 
(34). Importantly, this may be a relevant phenomenon that may 
affect the disease outcome, most likely due to elevated FcγRIIIa 
and/or FcγRIIIb occupancy which is likely to affect effector 
functions, as will be discussed in detail in the following sections 
of this review.
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tHe iMportanCe oF igG-Fc 
GLyCosyLation For Fcγr-Mediated 
eFFeCtor FUnCtions

Immunoglobulin G binds with the Fc region to FcγRs. These 
immune receptors are expressed on myeloid and NK  cells 
of the immune system. Humans express five different FcγR, 
which can occur in several allotypic variants (39) (Figure  3). 
Of these five variants, FcγRIa, FcγRIIa, and FcγRIIIa contain an 
immunoreceptor tyrosine activation motif (ITAM), FcγRIIb an 
immunoreceptor tyrosine inhibitory motif (ITIM), and FcγRIIIb 
which is GPI-linked, contains no intracellular signaling domain 
(40). Binding of IgG to these receptors followed by clustering 
of the intracellular domains induces an ITAM-mediated signal 
transduction which can be counteracted by inclusion of the 
ITIM-containing FcγRIIb, if present (41).

Structurally, the glycan opens up the Fc-portion of IgG and 
keeps the two CH2 domains at a distance from each other, allow-
ing for interactions with not only FcγR but also C1q that both 
require similar residues in the IgG for binding (42–44). In addi-
tion to the fact that the glycan has been found to show direct, but 
minor, interactions with the protein backbone of FcγR (43), the 
IgG Fc-glycan also interacts with a glycan found only in human 
FcγRIIIa and FcγRIIIb (45, 46) thereby affecting binding affin-
ity of IgG to those receptors. If, and then how, the exact glycan  
composition—thus not only the mere presence of a glycan—
affects binding to the other FcγR or C1q has remained unknown 
until recently, as discussed further below. The final secreted IgG 
eventually protects us by opsonizing incoming pathogens. These 
are then recognized by FcγR, the first component of the comple-
ment system (C1q), or both. This can trigger multiple effector 
functions, such as complement deposition and lysis (47), but also 
FcγR- and or complement-mediated phagocytosis by myeloid 
cells (monocytes, macrophages, or neutrophils), trogocytosis 
(where myeloid cells rupture the membrane of target cells), 
or FcγR-mediated antibody-dependent cellular cytotoxicity 
(ADCC) through NK or myeloid cells. These effector functions 
are currently utilized and have been improved upon by protein 
and glycan-engineering for many current and future therapeutic 
antibody approaches. However, these effector functions are also 
triggered in various allo- and autoimmune diseases (48).

In humans, we know FcγRIIIa is an important activating 
FcγR, and of all FcγRs, its affinity for IgG is most influenced by 
changes in IgG Fc glycosylation. It has been known for over a 
decade that afucosylation increases affinity of IgG1 to FcγRIIIa 
and FcγRIIIb (49, 50), and later confirmed for other IgG sub-
classes (51, 52). Earlier studies have hinted at the possibility that 
galactosylation may also affect binding to FcγRIIIa in a positive 
way (53–56), and sialylation in a negative fashion (56–59), 
but the effect of the other glycans had not been extensively 
studied. We have recently confirmed that for IgG1 additional 
galactosylation increases the affinity for FcγRIIIa and FcγRIIIb, 
but only for afucosylated IgG1 (60), which is found in 6% of 
IgG1 at the glycopeptide level (13, 61, 62). An overview of the 
effect of glycovariation on the affinity for FcγRs is displayed in 
Figure 4. The degree of galactosylation of IgG ranges roughly 
from 20 to 60% on total IgG and similarly for afucosylated IgG 
(13, 61, 62). The apparent affinity increases by approximately 
twofold between afucosylated IgG1 with either 20 vs 70% galac-
tosylation, which corresponds to ~20× or 40× increased affinity 
compared to fucosylated IgG1, respectively (60).

For bisection and sialylation, we found only small effects on 
binding to FcγRIII. Additional sialylation of the galactosylated, 
afucosylated IgG1 caused a slight or no decrease in affinity 
(56–60). Variation in bisection did not appear to have any effect 
in the experiments conducted up until now, except for potentially 
strengthening the negative effect of sialylation on FcγRIIIa and 
FcγRIIIb-binding (60).

In recent years, it has become apparent that during viral 
infections of HIV and dengue fever, antigen-specific IgG may 
contain decreased levels of Fc fucosylation (63, 64). For HIV, 
this was observed especially for those patients who had a longer 
disease free survival, the so-called elite controllers, and this 
correlated with the degree of antibody-mediated cellular viral 
inhibition (ADCVI) of the patient’s serum. In dengue, a higher 
degree of afucosylation was more often found in patients with 
antibody-dependent enhancement of disease (64). For these 
infections, and possibly more viral infections, the enhanced 
affinity for FcγRIIIa of the afucosylated antigen-specific IgG 
indeed enhances ADCC and ADCVI of the virus and virus 
infected cells (65). For HIV, this rationalizes the better clini-
cal outcome for the patients who have more antigen-specific 
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antibodies with low fucose, but for dengue, the stronger side 
effects have negative side effects.

Interestingly, the changes in antibody fucosylation and 
galactosylation of antigen-specific IgGs are also found in alloim-
mune settings. Examples of this are after blood transfusion, fetal 
neonatal immune thrombocytopenia (FNAIT) and hemolytic 
disease of the fetus or newborn (HDFN) (8–10, 66, 67). Both 
these latter diseases are in a pregnancy setting where the fetus 
is positive while the mother herself is negative for a paternal 
antigen on platelets or RBCs, respectively, for FNAIT or HDFN, 
and thus makes antibodies against the blood cells of the child 
upon exposure. This can lead to complications and is dangerous 
for the health of the child and hence it is important to diagnose 
correctly and timely and also treat accordingly (68).

We have recently shown that glycosylation status of these anti-
bodies matters for pathogenicity (8, 66, 69). The lower degree of 
fucosylation, in particular, and also increased galactosylation of 
these antibodies correlate with enhanced disease severity (8–10, 
66, 69). The effector mechanism of these antibodies is thought 
to take place via FcγR-bearing cells in the liver and spleen of 
the fetus, which target the RBC or platelets (70). Previous work 
has already suggested that FcγRIIIa is the main receptor involved 
in both RBC and platelet clearance because patients are more 
likely to carry the high-affinity FcγRIIIa allele (70, 71), now 
further supported by the observation that IgG with glycosylation  

patterns that target them to FcγRIIIa with higher affinity also 
seem to correlate with enhanced disease severity in these dis-
eases (8–10, 66).

As mentioned above, altered glycosylation has been detected 
and described for many autoimmune diseases (20, 26, 28). This 
can be either in the total IgG of a patient (i.e., all IgG specificities 
and not directly related to the disease entity itself) (20–26) or in 
the IgG specific for the disease (11, 33–37). Most often, a decrease 
in total IgG Fc-galactosylation has been found and associated 
with disease progression or severity (5, 20, 22, 26). By contrast, 
total IgG Fc galactosylation increases during pregnancy, which 
is clearly associated with disease remission in RA (18, 72–74). 
It has been shown that FcγRs are important for RA and other 
autoimmune diseases but axillary involvement of complement is 
very likely (75, 76). These associations have almost exclusively 
brought about the hypothesis that agalactosylated IgGs are pro-
inflammatory, while highly galactosylated and sialylated IgGs 
are anti-inflammatory. This anti-inflammatory nature of IgG has 
been shown in mice not only to stem from binding of hypersia-
lylated IgG to SIGN-R1 (in humans DC-SIGN) (77, 78) but also 
to the structural homolog and previously identified low affinity 
IgE-receptor CD23 (77–79). Structural changes in sialylated IgG 
do not seem to support this model (80–82), and work with sialic-
acid enriched IVIg by other groups does not support this notion 
(83–87). Using detailed glycoengineered IgG (60), we also find 
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no binding of any glycoform to the human receptors (Temming 
et al. manuscript in preparation). For galactosylation, the exact 
role of IgG galactosylation and its influence on disease activity 
also needs to be further elucidated. Importantly, recent affinity 
data seem at odds with the widespread notion that agalacto-
sylated IgG are pro-inflammatory, given the weaker binding of 
agalactosylated and afucosylated IgG to FcγRIIIa in comparison 
to galactosylated, afucosylated IgG as described above. In addi-
tion, highly galactosylated IgG has also been associated with 
enhanced anti-inflammatory properties when present in immune 
complexes, as it apparently promotes the association of FcγRIIb 
with Dectin-1 (88).

However, an often overlooked aspect of FcγR binding and sub-
sequent activation through IgG-containing immune complexes 
or IgG-opsonized cells, is the fact that this occurs in the presence 
of high concentrations of monomeric (total) IgG in circulation. 
At these high concentrations (around 10 mg/mL or 60–70 µM, 
or 7 mg/mL or 40–50 µM of IgG1), exceeding the KD for bind-
ing of the most common glycoforms of IgG1 to, e.g., FcγRIIa or 
FcγRIIIa by at least two orders of magnitude (39), most Fc recep-
tors will be bound to monomeric IgG (i.e., a degree of saturation 
of ca. 98% or more). This is even higher for the high-affinity 
FcγRIa, which is saturated to an even higher degree, and with 
less displacement. Upon encounter of, e.g., an FcγR-bearing cell 
with an opsonized cell providing higher-avidity interactions, the 
monomeric IgG occupying the FcγR may quickly dissociate and 
binding of the opsonized cell will take place. How efficient this 
occurs will depend on the nature of the monomeric IgG (subclass 
and affinity); which will be strongly influenced by the relative 
levels of the different Fc glycovariants, but only for FcγRIIIa and 
FcγRIIIb.

The most important glycosylation changes affecting this are 
again fucosylation and galactosylation. As explained above, we 
and others have observed that afucosylated, highly galactosylated 
IgG has a higher affinity for FcγRIIIa and FcγRIIIb. These changes 
are reflected not only in the activity of NK cell to mediate ADCC 
via FcγRIIIa (53, 55, 60, 89) but also on how irrelevant antibodies, 
which may bind as monomeric entity to these FcγR, can inhibit 
the ADCC of specific antibodies (52). This may be relevant, e.g., 
in the context of RA, where during disease remission, the bulk 
of antibodies have a normal galactose percentage while during 
a flare the bulk of antibodies is lowered in galactose, including 
the afucosylated fraction. Of note, given the ca. 20-fold stronger 
binding of afucosylated IgG for FcγRIII (49, 60, 90), approximately 
50% of IgGs bound to FcγRIII are expected to be afucosylated 
(given that the concentration of the latter is ca. 20-fold lower). 
Therefore, comparing a theoretical transition from a flare to 
remission, an elevated portion of receptor-bound monomeric 
IgG can be expected to consist of afucosylated, galactosylated 
IgG with a 2- to 3-fold higher affinity compared to afucosylated, 
agalactosylated IgG during remission. Under these conditions, 
immune complexes, in case of autoantibodies almost exclusively 
fucosylated judging from the current knowledge on ACPA and 
anti-RBC autoantibodies (11, 34, 38), are expected to have less 
capacity to displace these higher-affinity IgG from the FcγR. How 
strong this effect is, will particularly depend on the relative shifts in 
galactosylation profiles of the total IgG, although galactosylation 

changes in the autoantibodies themselves may also affect this 
balance (54–56). Theoretically, immune-complexes therefore 
have less tendency to cause crosslinking and immune activation 
if the bulk of IgG show relative elevated IgG-Fc galactosylation, 
and hence have diminished capacity to cause disease (Figure 5). 
Overall, the altered glycosylation profiles of autoantibodies may 
result in altered FcγR-binding and activation, but this may be 
attenuated by altered glycosylation profiles of non-specific total 
IgG. We should, of course, realize that all these autoimmune dis-
eases are characterized by multifactorial components, ultimately 
resulting in disease onset and progression. For RA, this includes 
the acquirement of multiple disease factors, such as infiltration 
of immune cells into the joint, ACPA, anti-hinge antibodies, 
rheumatoid factor (IgM based), increased TNF levels, and com-
plement discussed below (75, 91).

tHe iMportanCe oF igG-Fc 
GLyCosyLation For CoMpLeMent-
Mediated FUnCtions

Fc glycosylation—the presence of the Fc glycan—is important 
for classical complement activation, has been known already for 
a long time (42, 92). In RA, the complement system has been 
suggested to play an important part of the pathological features, 
and so have changes in IgG Fc glycosylation are in the galactose 
end groups (18, 20, 93). The same seems true for many other 
autoimmune disease where lowered IgG-Fc galactosylation 
of total IgG correlates with disease severity (5, 11, 20, 22, 26). 
One study proposed that activation of complement by these 
agalactosylated IgG species involves specific recognition by the  
mannose-binding lectin and activation through the lectin path-
way of complement activation (94). However, to our knowledge, 
these results have never been verified. In contrary, we have 
recently found that IgG agalactosylation—irrespective of all 
other glycan end groups—does not induce activation of comple-
ment via the lectin pathway, confirming various other studies on 
this subject (60, 95, 96). This seems to leave the classical pathway 
as the main route for enhanced disease activity possibly affected 
by IgG-Fc glycan variations, by binding of antibody (complexes) 
to C1q, although deviations from this are likely to exist depend-
ing on the disease etiology.

Having established that low galactosylation of total IgG seems 
to correlate with enhanced disease activity in several autoim-
mune diseases where complement seem to play an important 
role (5, 11, 20, 22, 26), has led to the suggestion that agaloc-
tosylated IgG is pro-inflammatory with enhanced complement 
activity. In contrary, several publications seem now to suggest 
the opposite to be true. While a few studies found that fucosyla-
tion does not affect complement-mediated activity (49, 51, 60),  
two recent studies suggest that galactosylation of human  
IgG positively affects C1q binding and downstream activation  
(60, 97, 98). In our recent study where we screened 20 differ-
ent and highly defined IgG glycovariants for C1q binding and 
activation, we found that galactosylation primarily enhanced 
C1q binding and increased CDC and that additional sialylation 
increases this effect on the classical complement activation 
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pathway. Bisection showed no affect in any combination with 
fucose, galactose, or sialylation (60) (Figure 4). Similarly, Quast 
et al. (97) showed that increased galactosylation enhances C1q 
binding and CDC in antibody models, where CDC is the main 
effector function. However, in their model, the addition of sialic 
acid hampered this enhanced effect (97). The difference in effec-
tor function might depend on the nature of the antigen, effector 
cells, and/or target cells. This is plausible as hexamerization 
of IgG on the surface of the target is likely needed for proper 
binding and activation of C1q, and the propensity of different 
antibodies/antigens to do this may vary as they take on differ-
ent molecular configurations (99, 100). Much more research 
on this mechanism is, however, required as we do not know 
how the specificity of the IgG influences this effect or whether 
these changes are also relevant in a setting where IgG is already 
enhanced for CDC by protein engineering (101, 102).

It may seem counterintuitive that agalactosylated IgG has 
been associated with higher pathogenicity while new studies 
with glycoengineered IgG shows it to have lower potential 
to activate C1q compared to galactosylated IgG. A possible 
explanation may be similar to that what we propose for FcγRs 
(Figure  6). During remission, total IgG galactosylation is 

relatively high, while during a flare of the autoimmune disease 
the total IgG galactosylation is relatively low. In the latter case, 
the threshold for activation of C1q might be lowered due to 
lower steady-state occupancy by the low-galactosylated IgG. If 
so, then this could allow for relatively increase in activation 
of complement by pathogenic IgG complexed by its cognate 
autoantigen.

Although the binding affinity of monomeric to IgG has been 
estimated to be very low, i.e., in the 20–100 µM range (103–106), 
we again have to take into account the exceptionally high 
concentration of IgG in serum, making this model plausible. 
Considering IgG1, present at concentrations around 40–50 µM, 
this translates to ca. 30–70% saturation of C1q. However, care 
should be taken as measurements of the affinity of monomeric 
IgG binding to C1q might have been influenced by the presence 
of trace amounts of aggregates, resulting in an overestimation of 
the deduced affinities.

Furthermore, we do not know how well these biochemi-
cal principles translate into the in  vivo setting. This could be 
experimentally determined, but needs high concentrations of 
both IgG and C1q as the monomeric affinity is generally very 
low. However, it is important to keep in mind that we do not yet 
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know whether the observed changes in IgG galactosylation in, for 
example, RA are truly causative of disease flares or a response to 
the flares. Efforts to investigate the causative association should 
be undertaken.

ConCLUsion

All in all, it was shown that glycan alterations found in IgG 
seem to be driven by the type of response and have functional 
consequences. The knowledge that afucosylation imposes better 
effector functions has already been put to use to enhance the 
function of therapeutic antibodies used in cancer treatment 
(107, 108). Additional glycoengineering of the galactose end 
groups could thus even further improve the functionality of these 
antibodies. These changes do occur naturally in humans as they 
are formed in certain immune reactions resulting in stronger 
humoral immune responses (9, 63, 64, 66, 69). For autoimmune 
mediated diseases, where changes in galactosylation in both the 
bulk and the pathogenic antibodies are frequently found, glyco-
sylation changes effects both of binding to FcγR and C1q, which 
in turn affects their downstream activation. Based on the current 

evidence, the glycan changes in the bulk of endogenous IgG have 
the opposite effect on what is observed for antigen-specific IgG. 
Skewing toward lowered levels of galactose of the bulk IgG lowers 
its potential to efficiently block both FcγR, but also potentially 
C1q, giving more room for activation by existing pathogenic 
IgG-complexes. Eventually, it might be possible to monitor the 
glycosylation status, especially degree of galactosylation, of the 
total or disease-specific antibodies in autoimmune diseases. This 
could help to predict or detect an upcoming flare in autoimmune 
diseases, enabling intervention early after, or even before symp-
toms to set in.
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