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ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causa-
tive agent of the CoV disease 2019 (COVID-19) pandemic, enters host cells via the
interaction of its receptor-binding domain (RBD) of the spike protein with host an-
giotensin-converting enzyme 2 (ACE2). Therefore, the RBD is a promising vaccine tar-
get to induce protective immunity against SARS-CoV-2 infection. In this study, we
report the development of an RBD protein-based vaccine candidate against SARS-
CoV-2 using self-assembling Helicobacter pylori-bullfrog ferritin nanoparticles as
an antigen delivery system. RBD-ferritin protein purified from mammalian cells effi-
ciently assembled into 24-mer nanoparticles. Sixteen- to 20-month-old ferrets were
vaccinated with RBD-ferritin nanoparticles (RBD nanoparticles) by intramuscular or
intranasal inoculation. All vaccinated ferrets with RBD nanoparticles produced potent
neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demon-
strated efficient protection from SARS-CoV-2 challenge, showing no fever, body
weight loss, or clinical symptoms. Furthermore, vaccinated ferrets showed rapid
clearance of infectious virus in nasal washes and lungs as well as of viral RNA in re-
spiratory organs. This study demonstrates that spike RBD-nanoparticles are an effec-
tive protein vaccine candidate against SARS-CoV-2.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), originally named the
2019 novel CoV (2019-nCoV) upon initial isolation from Wuhan, China, in December

2019, has caused a global outbreak of coronavirus disease 2019 (COVID-19), with signif-
icant socioeconomic impacts (1, 2). From the continuously growing numbers of diag-
noses and deaths, COVID-19 was declared a public health emergency of international
concern (PHEIC) in January 2020 and soon declared a pandemic by the WHO in March
2020 (3, 4). As of 27 January 2021, more than 100 million people have been infected
with SARS-CoV-2, among which 2 million have died (5). Although approximately 80%
of the patients with confirmed SARS-CoV-2 infections are asymptomatic or show mild
flu-like symptoms, 20% of them progress to severe pneumonia and acute respiratory
distress syndrome requiring hospitalization and mechanical ventilation (6, 7). The over-
whelming number of SARS-CoV-2 patients has rapidly devastated the availability of
health care resources (8). A shortage of medical resources and staff in conjunction with
the overwhelming number of patients have exacerbated the quality of medical care
and eventually increased the mortality rates of COVID-19 (9). Although a significant
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proportion of the infected patients have recovered, many of them report cardiovascu-
lar, pulmonary, and neurologic symptoms lasting after the recovery (10, 11). Thus,
strong preventive measures are essential to halt the pandemic and its destructive
effects on global public health, as well as the economy.

SARS-CoV-2 is a member of the Coronaviridae family, carrying a single positive-
stranded RNA genome within the viral envelope (2). Although at least seven coronavi-
ruses are known as etiological agents of mild respiratory illnesses in human infection,
the family had not been closely associated with severe illnesses until the relatively
recent outbreaks of SARS-CoV, Middle East respiratory syndrome CoV (MERS-CoV), and
SARS-CoV-2 (1, 12). The emergence of these pathogens and the COVID-19 pandemic
have called for urgent global research efforts to investigate the pathogenesis of coro-
naviruses. The SARS-CoV-2 RNA genome is approximately 30 kb and encodes structural
proteins, such as spike (S), envelope (E), membrane (M), and nucleocapsid (N), and non-
structural proteins, such as papain-like protease, chymotrypsin-like protease, and RNA-
dependent RNA polymerase (13). The heavily glycosylated S protein protruding from
the virion surface is the key bridge between the virus and the host cell, playing a cru-
cial role in host cell receptor recognition, virion attachment, and ultimately entry into
the host cell. S is a member of the class I viral fusion protein, which undergoes trimeri-
zation upon cleavage into the S1 and S2 domains by a host cellular protease, furin.
While S1 confers specificity in cell tropism through its receptor-binding domain (RBD),
which directly interacts with the receptor of SARS-CoV-2, angiotensin-converting
enzyme 2 (ACE2), S2 mediates membrane fusion via formation of a trimeric hairpin
structure from its heptad repeat domains (14). Therefore, the S1 RBD has been consid-
ered one of the most promising candidates in vaccine development to protect against
coronaviruses (15–17). Its efficacy has previously been shown to induce potent neutral-
izing antibodies against MERS-CoV (18). Furthermore, previous studies of neutralizing
antibodies from naturally recovered patients of SARS-CoV-2 infections have mapped
their epitopes to be S1 and the RBD (19, 20), implicating RBD-targeting antibodies in
successful immunity against SARS-CoV-2 (21–23). Thus, most of the currently devel-
oped vaccines against SARS-CoV-2, despite their diversity in vaccine approaches,
include the RBD in their immunogens (24–28).

One major limitation of small soluble proteins alone as vaccine candidates is that
our immune system reacts efficiently only against immunogens of nanometer range in
size (29, 30). Therefore, many protein vaccines using viral proteins are developed into
virus-like particles (VLPs), which are multiprotein structures that mimic the organiza-
tion and conformation of native viruses but lack the viral genome. However, this
approach is limited to a few pathogens that are capable of self-assembling into VLPs
upon overexpression of the viral protein, such as the hepatitis B virus (HBV) surface
antigen (HBsAg) and human papillomavirus (HPV) L1 protein (31–33). Fortunately, the
latest advances in molecular biology and nanotechnology have overcome this limita-
tion by adopting nanoparticle engineering to serve as a platform for vaccines. The effi-
cacy of these nanoparticle-engineered vaccines exceeds that of traditional vaccines,
such as whole inactivated vaccines of bacterial and viral pathogens (34–38). Moreover,
recent studies have shed light on the immunological advantages of nanoparticle-based
vaccines in nearly every step of humoral and cellular immunity: efficient antigen trans-
port to draining lymph nodes and antigen presentation by follicular dendritic and
helper T cells, as well as high levels of activation of the germinal centers (30, 39, 40).
Among the genetically engineered nanoparticles, ferritin is the most well characterized
in the bionanotechnology field. Ferritin, ubiquitous through kingdoms of life, has a
conserved role in minimizing damage to cells from reactive oxygen species formed
from the Fenton reaction upon exposure to excess iron(II). Due to its natural tendency
to self-assemble into 24-meric homopolymer and amenability via fusion peptides, ferri-
tin is an ideal candidate for drug delivery and vaccine development (41, 42). Most
importantly, its exceptional chemical and thermal stability does not require stringent
temperature control, enabling a streamlined distribution process, especially in areas
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with limited resources for cold-chain supplies (41, 43). One of the recently engineered
ferritins for vaccine development is the self-assembling Helicobacter pylori-bullfrog
(Rana catesbeiana) hybrid ferritin which carries NH2-terminal residues from the lower
subunit of bullfrog ferritin on the core of Helicobacter pylori ferritin to form radially pro-
jecting tails (38). The H. pylori ferritin-based nanoparticle has been reported to be an
effective platform for vaccines to carry trimeric glycoproteins for presenting viral
immunogens on its 3-fold axis points. Most importantly, it provides stronger protective
immunity at a lower dose than soluble immunogens against influenza and Epstein-Barr
viruses, while minimizing the risk of autoimmunity through its genetic diversity from
the heavy and light chains of human ferritin (38, 44, 45).

Despite recent efforts to develop mouse models that fully recapitulate human
SARS-CoV-2 infection, the current human ACE2 (hACE2)-transgenic mouse model fails
to mimic pathogenic progress and symptoms of COVID-19 in humans. Ferrets (Mustela
putorius furo), on the other hand, are naturally susceptible to human respiratory
viruses, e.g., respiratory syncytial virus (46), influenza virus (47, 48), and SARS-CoV (49,
50), making ferret models ideal to study respiratory virus infections in humans. In addi-
tion, ferrets share with humans the anatomy of upper and lower respiratory tracts, the
architecture of terminal bronchioles, and the density of submucosal glands (51, 52).
Recently, we and others have shown that SARS-CoV-2-infected ferrets develop immune
responses and pathogenic progress similar to humans’ and shed virus through nasal
wash, saliva, urine, and fecal samples, which highly recapitulates human SARS-CoV-2
infection (53–56). Furthermore, we have also demonstrated the efficacy of the ferret
model in drug discovery for SARS-CoV-2 (57). Thus, ferrets represent an infection and
transmission animal model of SARS-CoV-2 that should facilitate the development of
SARS-CoV-2 therapeutics and vaccines.

Here, we demonstrate the immunogenic efficacy of the self-assembling spike RBD-
ferritin nanoparticle (RBD-nanoparticle) as an efficient SARS-CoV-2 vaccine antigen. We
purified the RBD-nanoparticle from transfected HEK293T cells and immunized ferrets
via the intramuscular (i.m.) and intranasal (i.n.) routes to monitor the induction of neu-
tralizing antibodies. Furthermore, we challenged the vaccinated ferrets with SARS-CoV-
2 and observed protective immunity against SARS-CoV-2. We propose the self-assem-
bling RBD-nanoparticles as a potential vaccine candidate that effectively protects
against SARS-CoV-2 infection.

RESULTS
Purification and characterization of RBD-ferritin nanoparticles. Kanekiyo et al.

have discovered the use of engineered ferritin in vaccine developments by fusing it
with viral immunogens (38, 44). Briefly, the NH2-terminal tail from the lower subunit of
bullfrog ferritin was fused to H. pylori ferritin so that the bullfrog-originated tail and vi-
ral immunogen were fused by the linker and presented on the 3-fold axis points of the
H. pylori ferritin core. The human codon-optimized RBD of SARS-CoV-2 Wuhan-Hu-1
strain (NCBI accession no. NC_045512) was fused to the interleukin 2 (IL-2) signal pep-
tide at the amino terminus and the H. pylori-bullfrog ferritin at the carboxyl terminus
to generate the RBD-ferritin fusion. Computer-assisted modeling predicts the three-
dimensional structure of RBD-ferritin nanoparticles, with RBD forming radial projec-
tions on the 3-fold axis point of fully assembled nanoparticles (Fig. 1A). Ferritin and
RBD-ferritin fusion proteins were readily purified from the supernatants of transfected
HEK293T cells (Fig. 1B). To demonstrate the 24-mer self-assembly of ferritin nanopar-
ticles, purified ferritin and RBD-ferritin proteins were subjected to size exclusion chro-
matography, with columns designed to have a maximum resolution for proteins with
kilodalton and megadalton ranges of molecular weight. As a result, the purified ferritin
nanoparticles and RBD-nanoparticles showed peaks at approximately 408 kDa and
1,350 kDa, respectively, corresponding to a 24-mer of each protein (Fig. 1C). These
results indicate that RBD-ferritin protein is readily purified from mammalian cells to ho-
mogeneity and efficiently assembles into 24-mer nanoparticles.
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Immunization with RBD-nanoparticle induces neutralizing antibody in ferrets.
To test the vaccine efficacy of purified RBD-nanoparticles, we immunized ferrets that
were 16 to 20 months old (n=10/immunization route), which is equivalent to 30 years
of age in humans. While intramuscular (i.m.) immunization is the most widely used
route for vaccine delivery, intranasal (i.n.) immunization closely resembles infection
with respiratory pathogens and efficiently stimulates mucosal immunity (58). Ferrets
were injected with 15mg RBD-nanoparticles via the i.m. route only or via both the i.m.
and i.n. routes over 31 days, with boosting immunizations at days 14 and 28 (Fig. 2A).
Blood was drawn from each ferret prior to primary and boosting immunizations on
days 14 and 28. All ferrets vaccinated with RBD-nanoparticles produced strong neutral-
izing antibodies after the second boosting immunization, performed at day 28.
Neutralization titers did not show statistically significant differences between the
routes of immunization (Fig. 2B). These data indicate that RBD-nanoparticle immuniza-
tion induces strong neutralizing antibody regardless of the route of immunization.

Immunization with RBD-nanoparticles promotes rapid viral clearance and
protects ferrets from SARS-CoV-2 challenge. Immunized ferrets were challenged
with 105.0 50% tissue culture infective doses (TCID50)/ml of NMC2019-nCoV02 strain
SARS-CoV-2 3 days after the last immunization at day 31 and were monitored for clini-
cal symptoms resembling COVID-19. Ferrets with adjuvant-only immunization were
included as a control group. Over a total of 10 days from the day of challenge infection,
ferrets with adjuvant-only immunization showed an increase in body temperature and
a decrease in body weight (Fig. 3A). In contrast, ferrets immunized with RBD-

FIG 1 Design and purification of RBD-nanoparticles. (A) Computer-assisted modeling of an RBD-
nanoparticle based on previously solved structures of H. pylori ferritin (PDB accession no. 3EGM) and
SARS-CoV-2 RBD (PDB accession no. 7JMP). The RBD forms radial projections on a 3-fold axis point of
the fully assembled nanoparticle. (B) Coomassie blue staining of purified ferritin-nanoparticles and
RBD-nanoparticles following SDS-PAGE. (C) Size exclusion chromatography peaks of the concentrated
supernatants from HEK293T cells transfected with plasmids encoding secreted ferritin-nanoparticles or
RBD-nanoparticles. The supernatants were concentrated with 100-kDa-MWCO and 500-kDa-MWCO
filters on a TFF system and loaded onto Superdex 200 Increase 10/300 GL and HiPrep 16/60
Sephacryl S-500 HR gel filtration columns on a Bio-Rad NGC chromatography system, respectively.
mAU, arbitrary units (in thousands).
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nanoparticles did not show any change in either body temperature or body weight
(Fig. 3A and B). Minor body weight changes in ferrets immunized by the i.m. route
showed a statistically insignificant difference from the body weight changes of the ad-
juvant-only-immunized ferrets (Fig. 3B). On the other hand, ferrets immunized by the i.
m. and i.n. routes provided stronger protection, with high statistical significance
against body weight loss, as shown by the minimal reduction of body weight followed
by a constant increase thereafter (Fig. 3B). Nasal wash samples were collected every
other day for 10 days after the virus challenge, and 3 ferrets were sacrificed at 3 and
6 days postinfection (dpi) to harvest the lungs. Consistently with the trends shown in
body temperature and weight, immunized ferrets showed rapid viral clearance in the
nasal washes (Fig. 3C) and lungs (Fig. 3D) of both groups of vaccinated ferrets. It
should be noted that i.m. and i.n. immunization resulted in slightly more effective viral
clearance in nasal washes at 4 dpi than i.m. immunization (Fig. 3C).

To further investigate the potency of protective immunity by RBD-nanoparticles, we
challenged the immunized ferrets with a higher titer (106.0 TCID50/ml) of SARS-CoV-2
by following the same immunization protocol (Fig. 2A). Consistently, RBD-nanopar-
ticle-immunized ferrets showed no increase of body temperature compared to adju-
vant-only-immunized ferrets (see Fig. S1 in the supplemental material). While adju-
vant-only-immunized ferrets suffered from cough, runny nose, and reduction in
movement, RBD-nanoparticle-immunized ferrets showed only a mild reduction in move-
ment on the 2nd and 3rd days after the high-virus-titer challenge (Table 1). On the other
hand, i.n. and i.m. immunization resulted in more potent protective immunity upon chal-
lenge with a high virus titer than i.n. immunization only (Fig. S2). Intranasal and i.m. im-
munization led to faster clearance of infectious virus in nasal washes at 4 and 8dpi than
i.m. immunization alone (Fig. S2A). Infectious virus titers of lungs were also lower in i.n.
and i.m. immunized ferrets than in i.m. immunized ferrets (Fig. S2B). These data demon-
strate that RBD-nanoparticles induce strong protective immunity to suppress SARS-CoV-
2-induced clinical symptoms and promote viral clearance. Moreover, a combination of

A

0 14 28

Clinical symptoms

41 days31

FIG 2 Immunization with RBD-nanoparticles elicits neutralizing antibody formation. (A) Immunization
schedule of ferrets. At day 31, ferrets were challenged with 105.0 TCID50/ml of SARS-CoV-2 and
observed for clinical symptoms for the following 10days. One group was immunized with only PBS
and adjuvant (adjuvant only), and two other groups were immunized with 15mg RBD-nanoparticles
in adjuvant at a 1:1 ratio for a total volume of 600ml. (B) Serum neutralization titers of adjuvant-
immunized, RBD-nanoparticle i.m. immunized, or RBD-nanoparticle i.m. and i.n. immunized ferrets.
Neutralizing antibody titers against SARS-CoV-2 NMC2019-nCoV02 (100 TCID50) of ferritin-nanoparticle-
immunized groups were measured in Vero cells with serially diluted ferret sera collected before
immunizations at days 0, 14, and 28.
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i.n. and i.m. immunization induces a stronger antiviral immunity against challenge with
high-titer SARS-CoV-2 than i.m. immunization alone.

RBD-ferritin vaccination blocks lung damage from SARS-CoV-2 challenge.
COVID-19 has most commonly been shown to be associated with a spectrum of lung
damage. To compare lung histopathologies among immunized ferrets, RNAscope in
situ hybridization and histopathological examination were conducted (Fig. 4). Lung tis-
sues harvested from naive ferrets were included as negative controls (Fig. 4D).
RNAscope in situ hybridization results showed that the adjuvant-only-immunized fer-
rets had a number of SARS-CoV-2 RNA-positive cells at 3 and 6 dpi, with infiltration of
numerous inflammatory immune cells (Fig. 4A to E). At 3 dpi, i.m. or i.m. and i.n. immu-
nized ferrets showed considerable reduction of viral RNAs in the lungs compared to adju-
vant-only-immunized ferrets (Fig. 4). At 6dpi, lung tissues of i.m. or i.m. and i.n. immunized
ferrets showed complete clearance of viral RNAs (Fig. 4F and G), while adjuvant-only-

FIG 3 Immunization with RBD-nanoparticles promotes rapid viral clearance and protects ferrets from SARS-CoV-2 challenge. (A) Body temperature changes
of adjuvant-immunized, RBD-nanoparticle i.m. immunized, or RBD-nanoparticle i.m. and i.n. immunized ferrets upon SARS-CoV-2 challenge. (B) Body weight
changes of adjuvant-immunized, RBD-nanoparticle i.m. immunized, or RBD-nanoparticle i.m. and i.n. immunized ferrets upon SARS-CoV-2 challenge. (C)
Viral titer in the nasal washes of adjuvant-immunized, RBD-nanoparticle i.m. immunized, or RBD-nanoparticle i.m. and i.n. immunized ferrets upon SARS-
CoV-2 challenge. (D) Viral titer in the lung tissue homogenates of adjuvant-immunized, RBD-nanoparticle i.m. immunized, or RBD-nanoparticle i.m. and i.n.
immunized ferrets upon SARS-CoV-2 challenge.
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immunized ferrets still showed high viral RNAs (Fig. 4E). Finally, i.m. or i.m. and i.n. immu-
nized ferrets showed little or no infiltration of inflammatory immune cells in infected lungs
(Fig. 4B to G). These data show that RBD-nanoparticle immunization accelerates viral clear-
ance in the lung and suppresses the infiltration of inflammatory immune cells.

DISCUSSION

Since its first discovery in Wuhan, China, in late 2019, SARS-CoV-2 has rapidly spread
around the world and was declared a pandemic in 3months. Confirmed infection and
death counts have skyrocketed to over 88 million infections and 2 million deaths, and
the statistics are still on a continuous rise. Although 80% of the infections do not pro-

TABLE 1 RBD-nanoparticle immunization suppresses clinical symptoms induced by challenge with a high SARS-CoV-2 titera

Group (n=4/group) Clinical symptom

No. of animals at dpi:

0 1 2 3 4 5 6 7 8 10
Adjuvant only Cough 0 0 0.5b 1 1 0 0 0 0 0

Runny nose 0 0 1.0 1 1 1 1 0.75 0 0
Movement, activity 0 0 1.25 2 2 1.25 0.75 0.5 0 0

Total 0 0 2.75 4 4 2.25 1.75 1.25 0 0

RBD-nanoparticles Cough 0 0 0 0 0 0 0 0 0 0
Runny nose 0 0 0 0 0 0 0 0 0 0
Movement, activity 0 0 0.75 0.5 0 0 0 0 0 0

Total 0 0 0.75 0.5 0 0 0 0 0 0
aA group of adjuvant-immunized or RBD-nanoparticle i.m. immunized ferrets were challenged with 106.0 TCID50/ml of SARS-CoV-2 and observed for their clinical symptoms:
cough, runny nose, movement, and activity. The symptoms were quantified as counts per 30 min. Score for cough: 0, no evidence of cough; 1, occasional cough; 2, frequent
cough. For runny nose: 0, no nasal rattling or sneezing; 1, moderate nasal discharge on external nares; 2, severe nasal discharge on external nares. For movement and
activity: 0, normal movement and activity; 1, mildly reduced movement and activity; 2, significantly reduced movement and activity.

bAverage value of each ferret's clinical symptom score.

FIG 4 Lung histology and RNAscope results of immunized ferrets upon SARS-CoV-2 challenge.
Adjuvant-immunized, RBD-nanoparticle i.m. immunized, or RBD-nanoparticle i.m. and i.n. immunized
ferrets were intranasally inoculated with 105.0 TCID50/ml of SARS-CoV-2. Tissues were harvested 3 and
6 dpi. RNAscope detected SARS-CoV-2 spike RNA-positive cells in lung tissues of adjuvant-immunized
(A and E), RBD-nanoparticle i.m. immunized (B and F), and RBD-nanoparticle i.m. and i.n. immunized
ferrets (C and G). Mock-infected ferret lung (D) was included as a control. The magnification is �100,
and scale bars represent 100mm. Insets indicate the magnification (�400) of a SARS-CoV-2-positive
image, and the scale bar represents 20mm. Black arrows indicate SARS-CoV-2 RNA-positive cells.
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gress to severe COVID-19, the recent surge in infections and severe patients have led
to subsequent increases in mortality rates (8, 9). While several vaccines were approved at
accelerated rates (59, 60), additional in-depth study of mRNA-based vaccines regarding
safety concerns and long-term effects still need to be addressed, as they are the first
approved mRNA human vaccine of its kind. Moreover, taking the growing evidence of
reinfections into consideration, recovered patients cannot be completely excluded from
the population requiring vaccination (61–64). Therefore, there still is a constant need for
alternative vaccine approaches against SARS-CoV-2 using relatively well-characterized
approaches. Recent advances in nanotechnology has favorably allowed the application
of nanoparticles in the field of vaccinology to develop safer, yet potent, vaccines. One of
the most promising candidates is H. pylori-bullfrog ferritin, which has been genetically
engineered to carry a protruding tail from the bullfrog on the self-assembling ferritin
core of H. pylori and serves as a platform to build nanoparticles of immunogen. This
approach has proven to have higher efficacy at a lower dose than traditional protein
subunit vaccines. This approach also highlights the lower risk of vaccine-related adverse
effects and potentially greater accessibility to the public with reduced production cost
(38, 44, 45). Importantly, the inherent stability of ferritin nanoparticles from heat and
chemicals may shed light on the removal of the necessity of the strict cold-chain supply
required for the mRNA-based vaccines in current distribution (41).

SARS-CoV-2 carries the spike protein, which attaches to the host receptor ACE2,
triggering membrane fusion for entry into host cells. The RBD of the spike protein con-
fers the specificity to bind to ACE2 and therefore is a promising target for vaccine de-
velopment throughout the Coronaviridae family. We selected the RBD as a vaccine anti-
gen, chosen for previously developed vaccine candidates against coronaviruses (17,
65, 66). However, soluble antigen is weakly immunogenic and therefore requires a
high dose of antigen along with an adjuvant, which correlates with a higher risk of vac-
cine-related adverse effects (29). In this study, we engineered the fusion of the SARS-
CoV-2 spike RBD with H. pylori-bullfrog ferritin to develop an RBD-nanoparticle vaccine.
Ferrets immunized with RBD-nanoparticles carried efficient neutralizing antibodies
against SARS-CoV-2 and were protected from fever and body weight loss upon SARS-
CoV-2 challenge. These clinical symptoms corresponded to the accelerated viral clear-
ance in nasal washes and lungs following SARS-CoV-2 challenge. We further investi-
gated the vaccine potential of RBD-nanoparticles by challenging the immunized ferrets
with a high virus titer (106.0 TCID50/ml). Immunized ferrets showed considerably
reduced clinical symptoms, such as body weight loss, cough, runny nose, and move-
ment activity, upon challenge with high-titer SARS-CoV-2. Moreover, RNAscope analy-
ses showed rapid viral clearance in the lungs of immunized ferrets compared to clear-
ance in adjuvant-only-immunized ferrets. Histological analysis also showed little or no
lung tissue damage and inflammatory immune cell infiltration in immunized ferrets. As
seen from other protein vaccines, such as the HPV VLP, which requires prime-boost
regimens (67), the first immunization alone was not sufficient to induce neutralizing
antibodies. i.n. plus i.m. immunization elicited more potent protective immunity upon
challenge with high-titer SARS-CoV-2 than i.m. immunization alone, which is consistent
with previous reports showing a stronger induction of mucosal immunity upon i.n.
than i.m. immunization to protect against respiratory pathogens such as MERS-CoV
(65, 66, 68), influenza virus (69), and Mycoplasma pneumoniae (70). To differentiate vac-
cine efficacy between i.n. immunization and i.n. and i.m. immunization, we repeated
the viral challenge with a high titer (106.0 TCID50/ml) and observed improvement in vi-
ral clearance in lung and nasal washes from i.n. and i.m. immunized ferrets. However,
as i.n. and i.m. immunization was employed together in this study, further investigation
is required to directly compare vaccine efficacies between i.n. immunization and i.m.
immunization against SARS-CoV-2 infection. Also, ferrets challenged with a 106.0

TCID50/ml virus titer showed delayed viral clearance compared to ferrets challenged
with a 105.0 TCID50/ml virus titer. However, 105.0 TCID50/ml is already excessive and not
physiologically relevant to a real clinical setting.
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In this study, we integrated SARS-CoV-2-derived immunogen into self-assembling
nanoparticles to develop an effective vaccine candidate against COVID-19. Intramuscularly
immunized animals showed strong induction of neutralizing antibody, rapid clearance of
respiratory track virus, and clear suppression of clinical symptoms, which is further
enhanced in combination with intranasal immunization. However, additional comprehen-
sive studies are needed to understand the humoral and cellular immunity elicited by RBD-
nanoparticle administration and differential activation of IgA-mediated mucosal immunity
by different immunization routes. Taken together, our study indicated that immunization
with self-assembling SARS-CoV-2 RBD-nanoparticles elicits protective immunity against
SARS-CoV-2 infection, showing its potential as a vaccine candidate in the midst of the
COVID-19 pandemic.

MATERIALS ANDMETHODS
Materials and reagents. See Table 2 for a list of materials and reagents.
Expression vector construction. The gene encoding the recombinant ferritin engineered from

Helicobacter pylori nonheme ferritin and the 2nd to 9th residues of the bullfrog (Rana catesbeiana) ferri-
tin lower subunit was a gift from Gary Nabel (44). The gene encoding spike of SARS-CoV-2 (GenBank
accession no. NC_0101080), codon optimized for human codon usage (GenBank accession no.
MC_0101081), was purchased from GenScript (pUC57-2019-nCoV-S). The RBD was used to generate a
fragment encoding the RBD-SSGGASVLA linker-recombinant ferritin. For the expression plasmid, a com-
mercially available pFUSE vector (InvivoGen) was engineered to replace the human ferritin light-chain
gene promoter with the simian virus 40 (SV40) promoter. Genes encoding the recombinant ferritin and
the RBD-linker-ferritin fragment were cloned into the plasmid vector.

Computer-assisted three-dimensional model of nanoparticles. Previously solved structures of the
H. pylori ferritin nanoparticle (Protein Data Bank [PDB] accession no. 3EGM) and SARS-CoV-2 RBD (PDB
accession no. 7JMP) were processed with PyMOL (Schrodinger) and Autodesk Meshmixer (Autodesk).
The model was generated to reflect the linker connecting the end of the RBD to the start of H. pylori fer-
ritin monomer.

Expression and purification of nanoparticles. HEK293T cells were directly purchased from the
American Type Culture Collection (ATCC) and maintained in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS; Gibco) and 1% penicillin/strepto-
mycin (Gibco). The cells were transiently transfected with polyethylenimine (Polysciences) and re-
spective vector plasmids in Opti-MEM and FreeStyle 293 medium (Gibco) supplemented with 3mM
valproic acid. Supernatants containing the nanoparticle were harvested 72 h after transfection and
concentrated with the Labscale TFF system equipped with filters (Millipore Sigma) with 100-kDa and
500-kDa molecular weight cutoffs (MWCO). The concentrates were purified by size exclusion chro-
matography (NGC medium-pressure liquid chromatography; Bio-Rad) using Superdex 200 10/300 GL
and HiPrep 16/60 Sephacryl S-500 HR (Cytiva) columns running degassed phosphate-buffered saline
(PBS) at 0.4ml/min. Standard curves were plotted using a gel filtration low-molecular-weight/high-
molecular-weight (LMW/HMW) calibration kit (Cytiva) running at the same conditions. Collected

TABLE 2 List of materials and reagents

Type of resource Reagent or resource Vendor or source Catalog no.
Recombinant DNA pFUSEN-hIgG1Fc InvivoGen pfcn-hg1

H. pylori-bullfrog recombinant ferritin Jefferey Cohen and Gary Nabel at the NIAID
SARS-CoV-2 spike (codon optimized for human codon usage) GenScript MC_0101081

Chemical Polyethylene imine Polysciences 23966
Valproic acid Sigma P4543
AddaVax adjuvant InvivoGen Vac-adx-10
RNAscope reagent ACD 322360
RNAscope probe ACD 848561
Gill’s hematoxylin no. 1 Polysciences 24242

Purification Labscale Tangential Flow Filtration (TFF) system Sigma C1975
TFF filter (100-kDa MWCO) Sigma PXB100C50
TFF filter (500-kDa MWCO) Sigma PXB500C50
NGC medium-pressure liquid chromatography system Bio-Rad
BioFrac Fraction collector Bio-Rad 7410002
Superdex 200 Increase 10/300 GL column Cytiva 45-002-570
HiPrep 16/60 Sephacryl S-500 HR column Cytiva 28935606
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fractions were verified for their yield and purity via SDS-PAGE and stored at 280°C in 10% glycerol
(Invitrogen).

Virus propagation. The NMC2019-nCoV02 strain of SARS-CoV-2 was isolated from a patient diag-
nosed with COVID-19 who tested positive for SARS-CoV-2 in February 2020 in South Korea. Vero cells
were used to propagate the virus in DMEM (Gibco) supplemented with 1% penicillin/streptomycin
(Gibco) at 37°C. The viruses were harvested 72 h later and stored at 280°C until use.

Animal care. Male and female ferrets that were 16 to 20months old and tested seronegative for
influenza A virus, MERS-CoV, and SARS-CoV were purchased from ID Bio Corporation (Cheongju,
South Korea). The ferrets were housed in an animal biosafety level 3 (ABSL3) facility within
Chungbuk National University (Cheongju, South Korea) with a 12-h light/dark cycle and with access
to water and diet. All animal care was performed strictly according to the animal care guidelines and
experiment protocols approved by the Institutional Animal Care and Use Committee (IACUC) of
Chungbuk National University.

Ferret immunizations and viral challenge. RBD-ferritin nanoparticles (volume, 300ml) and
AddaVax adjuvant (volume, 300ml) were administered into the legs through intramuscular injection
and/or the intranasal route. Subsequently, ferrets were intranasally infected with 105.0 or 106.0 TCID50/ml
SARS-CoV-2. Body weight and temperature were measured, and veterinary clinical symptoms were
observed every day. Blood and nasal washes were collected every other day for 10 days. Three animals
per group were sacrificed at days 3 and 6 to collect lung tissues with individual scissors. Infectious
viruses from the nasal washes and lung tissues were quantified by inoculation onto Vero cells.
Veterinary symptoms were scored according to the procedure used in our previous publication (57).

Titration of neutralizing antibody in serum. The neutralizing antibody assay against SARS-CoV-2
was carried out using a microneutralization assay in Vero cells. Collected ferret serum specimens were
inactivated at 56°C for 30min. Initial 1:2 serum dilutions were made with the medium, and 2-fold serial
dilutions of all samples were made to a final serum dilution of 1:2 to 1:256. For each well, 50ml of serially
diluted serum was mixed with 50ml (equal volume) of 100 TCID50 of SARS-CoV-2 and incubated at 37°C
for 1 h to neutralize the infectious virus. The mixtures were then transferred to Vero cell monolayers.
Vero cells were incubated at 37°C in 5% CO2 for 4 days and monitored for a 50% reduction in cytopathic
effect (CPE).

RNAscope. SARS-CoV-2 RNA (spike gene) was detected using the spike-specific probe (Advanced
Cell Diagnostics; catalog [cat.] no. 848561) and visualized using an RNAscope 2.5 HD RED reagent kit
(Advanced Cell Diagnostics; cat. no. 322360). Lung tissue sections were fixed in 4% neutral buffered
formalin and embedded in paraffin, according to the manufacturer’s instructions, followed by coun-
terstaining with 50% Gill’s hematoxylin no. 1 (Polysciences; cat. no. 24242-1000). Slides were viewed
using an Olympus IX 71 (Olympus, Tokyo, Japan) microscope with DP controller software to capture
images.

Statistical analysis. Asterisks in all figures indicate statistical significance compared with the adju-
vant-only group as evaluated by the two-way analysis of variance (ANOVA) Dunnett multiple-compari-
son test (* indicates a P of ,0.05, ** indicates a P of ,0.01, *** indicates a P of ,0.001, and **** indicates
a P of,0.0001). Figures were drawn using GraphPad Prism 8 (GraphPad).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.02 MB.
FIG S2, PDF file, 0.03 MB.
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