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ABSTRACT SARS-CoV-2 causes COVID-19, an acute respiratory distress syndrome
(ARDS) characterized by pulmonary edema, viral pneumonia, multiorgan dysfunc-
tion, coagulopathy, and inflammation. SARS-CoV-2 uses angiotensin-converting
enzyme 2 (ACE2) receptors to infect and damage ciliated epithelial cells in the
upper respiratory tract. In alveoli, gas exchange occurs across an epithelial-endo-
thelial barrier that ties respiration to endothelial cell (EC) regulation of edema,
coagulation, and inflammation. How SARS-CoV-2 dysregulates vascular functions to
cause ARDS in COVID-19 patients remains an enigma focused on dysregulated EC
responses. Whether SARS-CoV-2 directly or indirectly affects functions of the endo-
thelium remains to be resolved and is critical to understanding SARS-CoV-2 patho-
genesis and therapeutic targets. We demonstrate that primary human ECs lack
ACE2 receptors at protein and RNA levels and that SARS-CoV-2 is incapable of
directly infecting ECs derived from pulmonary, cardiac, brain, umbilical vein, or kid-
ney tissues. In contrast, pulmonary ECs transduced with recombinant ACE2 recep-
tors are infected by SARS-CoV-2 and result in high viral titers (;1� 107/ml), multi-
nucleate syncytia, and EC lysis. SARS-CoV-2 infection of ACE2-expressing ECs elicits
procoagulative and inflammatory responses observed in COVID-19 patients. The
inability of SARS-CoV-2 to directly infect and lyse ECs without ACE2 expression
explains the lack of vascular hemorrhage in COVID-19 patients and indicates that
the endothelium is not a primary target of SARS-CoV-2 infection. These findings
are consistent with SARS-CoV-2 indirectly activating EC programs that regulate
thrombosis and endotheliitis in COVID-19 patients and focus strategies on thera-
peutically targeting epithelial and inflammatory responses that activate the endo-
thelium or initiate limited ACE2-independent EC infection.

IMPORTANCE SARS-CoV-2 infects pulmonary epithelial cells through ACE2 receptors
and causes ARDS. COVID-19 causes progressive respiratory failure resulting from dif-
fuse alveolar damage and systemic coagulopathy, thrombosis, and capillary inflam-
mation that tie alveolar responses to EC dysfunction. This has prompted theories
that SARS-CoV-2 directly infects ECs through ACE2 receptors, yet SARS-CoV-2 antigen
has not been colocalized with ECs and prior studies indicate that ACE2 colocalizes
with alveolar epithelial cells and vascular smooth muscle cells, not ECs. Here, we
demonstrate that primary human ECs derived from lung, kidney, heart, brain, and
umbilical veins require expression of recombinant ACE2 receptors in order to be
infected by SARS-CoV-2. However, SARS-CoV-2 lytically infects ACE2-ECs and elicits
procoagulative and inflammatory responses observed in COVID-19 patients. These
findings suggest a novel mechanism of COVID-19 pathogenesis resulting from indi-
rect EC activation, or infection of a small subset of ECs by an ACE2-independent
mechanism, that transforms rationales and targets for therapeutic intervention.
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SARS-CoV-2 predominantly infects the epithelium of upper and lower airways caus-
ing pulmonary pathology and acute respiratory distress syndrome (ARDS) (1).

COVID-19 is characterized by progressive respiratory failure resulting from diffuse alve-
olar damage, inflammatory infiltrates, endotheliitis, and pulmonary and systemic coa-
gulopathy forming obstructive microthrombi with multiorgan dysfunction (1–3).
Collectively, these findings indicate that initial pulmonary epithelial infection leads to
COVID-19 vasculopathy with featured alveolar endothelial cell (EC) dysfunction playing
a key role in anomalous vascular leakage, coagulation, and inflammation. In COVID-19
patients, procoagulative responses are associated with altered von Willebrand factor
(vWF) and thrombomodulin expression and the induction of proinflammatory cyto-
kines (interleukin-1 [IL-1], IL-6, tumor necrosis factor alpha [TNF-a]) that further impli-
cate activation of the endothelium in myocarditis and vasculopathy (1–4).

Despite coagulopathy and capillary inflammation in COVID-19 patients, it is unclear
whether ECs are directly infected by SARS-CoV-2 or whether EC activation is an indirect
response to primary alveolar epithelial cell damage and inflammatory responses (1–3).
SARS-CoV-2 infects cells by attaching to human angiotensin-converting enzyme 2
(ACE2) receptors (5–7). Rationales for SARS-CoV-2 directly infecting ECs originated
from prothrombotic findings, endotheliitis, protective ACE2 functions, and reports that
ECs express cellular ACE2 receptors (8–10). However, several studies demonstrate that
in the vasculature ACE2 is confined to the tunica media, colocalizing with smooth mus-
cle actin, not the endothelium (11–14). CDC analysis of COVID-19 patient tissues indi-
cates that SARS-CoV-2 is detectable in airways, pneumocytes, alveolar macrophages,
and lymph nodes but not in ECs or other extrapulmonary tissues (1). In retrospect,
there are minimal data supporting SARS-CoV-2 infection of ECs and no immunohisto-
chemical studies demonstrating the colocalization of SARS-CoV-2 antigens with EC
markers in pulmonary or renal tissues, which express ACE2 on adjacent epithelial cells.
Nearly all studies reference electron microscopy data displaying two potential SARS-
CoV-2 particles (3, 15), which instead of virus have been implicated as being endoplas-
mic reticulum (ER) vesicles (16).

Nonetheless, pathological findings in COVID-19 patients demonstrate the dysregu-
lation of EC functions (17); however, the mechanism(s) of endothelial damage and acti-
vation in SARS-CoV-2-directed coagulopathy and inflammation remains to be revealed
(2, 4). Our initial studies were predicated on ACE2 receptors directing SARS-CoV-2
infection and dysregulation of normal EC functions. We critically analyzed SARS-CoV-2
infection of primary human ECs derived from lung, heart, kidney, brain, and umbilical
veins (see Text S1 in the supplemental material). Remarkably, we found that SARS-CoV-
2 failed to infect primary human ECs derived from any organ. In contrast to the com-
plete infection of VeroE6 cells, no SARS-CoV-2-infected ECs were detected, by N or
Spike antigen immunostaining, at any multiplicity of infection or plating cell density
(Fig. 1A). Consistent with this, both ACE2 RNA and protein, found in VeroE6 and Calu3
cells, were undetectable in ECs (Fig. 1B and C), and no viral progeny was detected in
the supernatants of SARS-CoV-2-infected human ECs (1 to 3 days postinfection [dpi])
(Fig. 1G).

To determine whether SARS-CoV-2 infection of ECs is receptor restricted, we lentivi-
rus transduced primary human pulmonary and brain ECs to express ACE2 and eval-
uated viral replication and protein expression. We found that expressing ACE2 in pri-
mary human ECs permitted SARS-CoV-2 to ubiquitously and productively infect ECs,
reaching viral titers of 1� 107 to 3� 107 (1 to 3 dpi) (Fig. 1D and G) (Text S1). SARS-
CoV-2 infection colocalized with ACE2-expressing ECs (Fig. 1E and F) and resulted in
detectable N protein at 4 to 6 h postinfection (hpi) and multinucleate syncytia and EC
lysis at 12 to 24 hpi (Fig. 1D and F). Collectively, these findings demonstrate that pri-
mary human ECs lack ACE2 receptors required for SARS-CoV-2 infection but express
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FIG 1 SARS-CoV-2 fails to infect primary human endothelial cells without rACE2 expression. (A) Primary human microvascular endothelial cells from
pulmonary (hPMECs), brain (hBMECs), cardiac (hCMECs), or glomerular (hGMECs) tissue or umbilical vein (HUVECs) or VeroE6 cells were mock or SARS-CoV-2

(Continued on next page)
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proteases essential for SARS-CoV-2 infection. These findings suggest that SARS-CoV-2
may cause procoagulative endotheliitis through indirect EC dysregulation mechanisms
or as a result of ACE2-independent, or induction-directed, infection of a small number
of activated ECs.

The potential for damage, inflammation, or activation to conditionally permit SARS-
CoV-2 infection of a small EC subset (12, 18, 19) prompted us to analyze cellular
responses that may contribute to COVID-19 pathogenesis. We analyzed transcriptional
responses of ACE2-expressing ECs to SARS-CoV-2 infection and found significant
changes in mRNAs that regulate coagulation and inflammation from 6 to 24 h (Text S1)
including 2- to 3-fold decreases in PAI-1, antithrombin, and factor VIII and increases in
tissue factor (24-fold), thrombomodulin (TM) (6-fold), vWF (3-fold), thrombin receptors
(PAR1/3, 3-fold), EGR-1 (37-fold), E-selectin (600-fold), IL-1b (28-fold), IL-6 (12-fold), and
TNF-a (160-fold) (20, 21) (Fig. 2A). SARS-CoV-2 selectively induced thrombomodulin in
infected recombinant ACE2-expressing human microvascular endothelial cells from
pulmonary tissue (rACE2-hPMECs), with TM internally colocalized with viral N protein
(Fig. 2B), suggesting the potential for SARS-CoV-2 to sequester a coagulation-inhibiting
EC surface receptor (20). However, a comprehensive assessment of coagulation and
inflammatory mediators in SARS-CoV-2-infected epithelial and endothelial cells is
required to fully understand EC activation events and complex coagulation factor and
inflammatory responses that can be therapeutically targeted.

Our findings indicate that the absence of ACE2 prevents SARS-CoV-2 infection of
human ECs and suggests that ECs are not primary targets of SARS-CoV-2 infection in
COVID-19 patients. Consistent with this, COVID-19 does not result in Ebola-like hemor-
rhagic disease that would likely result from lytic SARS-CoV-2 infection of ACE2-express-
ing ECs. The inability of SARS-CoV-2 to infect human ECs is supported by low ACE2
expression in the highly vascularized lower respiratory tract (22), CDC and primary
human EC infection findings (1, 14, 22), and the presence of ACE2 in vascular smooth
muscle and heart muscle cells (11, 18, 23, 24) but not the EC lining of vessels (12–14,
23). These findings support a secondary role of the endothelium, perhaps in response
to epithelial cell damage and cross talk, alveolar tissue factor/basement membrane ex-
posure, or inflammatory EC activation, that directs a coagulative, endotheliitic state (1,
3, 17, 25).

Our findings do not address whether SARS-CoV-2 infection of pulmonary epithelial
cells permits SARS-CoV-2 to selectively infect or activate ECs. In the course of these
experiments, we tested, but were unable to define, conditions that permitted SARS-
CoV-2 infection of pulmonary ECs (addition of angiotensin II (AngII), activating AMP ki-
nase, hypoxia, TNF-a, IL-1b , IL-6, bradykinin, or endothelin-1). However, it remains con-
ceivable that COVID-19 epithelial cell or immune cell responses selectively activate the
endothelium (2) and permit a subset of ECs to be infected over time (19). Reported EC
heterogeneity in response to acute lung injury (19) supports the potential for infection
of a subset of ECs, and one report suggests that 1/250 ECs are ACE2 positive and that
both SARS-CoV-2 and influenza virus increase the number of ACE2-positive ECs (3). Yet
SARS-CoV-2 infection of ACE2-expressing ECs remains to be demonstrated in COVID-19
patients and is at odds with current findings and additional studies indicating that ECs
lack ACE2 (12–14, 23).

Consistent with COVID-19 disease, we found that SARS-CoV-2 infection of ECs indu-
ces procoagulative and inflammatory mediators (1–3, 17, 21). Our finding that the

FIG 1 Legend (Continued)
(strain WA) infected (multiplicity of infection [MOI] of 10) and at 24 hpi immunoperoxidase stained for nucleocapsid protein. (B and C) Primary human ECs
and VeroE6, HEK293T, and Calu3 cells were analyzed by qRT-PCR for ACE2 mRNA (B) and by Western blotting for expressed ACE2 (C). HUVECs contain a
potential ACE2 truncation lacking the N-terminal SARS-CoV-2 binding domain. GAPDH, glyceraldehyde-3-phosphate dehydrogenase. (D) Primary human
pulmonary ECs lentivirus transduced to express recombinant ACE2 were infected with SARS-CoV-2 (MOI of 1) for 6 to 48 hpi. (E) ACE2-hPMECs or wild-type
(WT)-hPMECs were immunoperoxidase stained for nucleocapsid protein. hPMECs or rACE2-hPMECs were analyzed by immunofluorescence assay (IFA) for
the EC marker PECAM-1 and ACE2. (F) Following SARS-CoV-2 infection, rACE2-hPMECs were analyzed by IFA for coexpressed ACE2 and nucleocapsid
protein (N) or PECAM-1 expression. Bars represent 50mm. (G) For supernatants of SARS-CoV-2-infected (MOI of 1) WT hPMECs, hBMECs, rACE2-hPMECs,
rACE2-hBMECs, and VeroE6 cells, titers were determined 2 to 72 hpi (limit of detection, ,10 focus-forming units [FFU]/ml).
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FIG 2 Recombinant ACE2-expressing ECs elicit procoagulation and inflammatory responses. hPMECs
expressing recombinant ACE2 (hPMEC-rACE2) were synchronously infected with SARS-CoV-2 and
analyzed by qRT-PCR for changes in the mRNA levels of coagulation and inflammatory responses 6 to
24 hpi. (A) Levels of tissue factor (TF), thrombomodulin (TM), tumor necrosis factor alpha (TNFa),
interleukin 6 (IL-6), IL-1b , and E-selectin were found to increase dramatically in SARS-CoV-2-infected
ECs. (B) The induction of TM in SARS-CoV-2-infected rACE2-hPMECs (MOI of 1) was monitored by IFA
of viral nucleocapsid (N) and cellularly expressed thrombomodulin (TM) from 6 to 24 hpi.
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coagulation initiator tissue factor is highly induced, whereas the coagulation inhibitor
thrombomodulin is induced and may be sequestered within ECs, provides potential
thrombotic mechanisms, while findings of induced cytokines and E-selectin are con-
sistent with inflammation and endotheliitis (3, 20, 25, 26). These results rationalize a
detailed analysis of EC-expressed procoagulative and inflammatory factors and the
potential role of targeting thrombomodulin, TNF-a, and E-selectin in resolving EC-
directed COVID-19 coagulation and inflammation (3, 4, 20, 26). However, in the ab-
sence of EC infection, damage to alveolar epithelial cells may alone initiate coagulop-
athy through tissue factor, intra-alveolar fibrin deposition, and common EC basement
membrane exposure that triggers activation of the endothelium (25, 27). In COVID-19
patients, EC damage and activation responses are also likely to be exacerbated by
impaired ACE2 activity that increases the severity of ARDS, AngII-directed EC damage,
bradykinin-directed permeability and inflammation, and the loss of protective anti-
inflammatory Ang1-7 responses (9, 24, 28–30). Overall, our data suggest that SARS-
CoV-2 is likely to indirectly dysregulate EC functions, and this explains the absence of
an acute lytic infection of ECs and the chronic vascular disease process that over time
evolves into an aberrant prothrombotic endotheliitis in COVID-19 patients. These find-
ings focus strategies on therapeutically targeting epithelial and inflammatory responses
that activate the endothelium or initiate limited ACE2-independent EC infection.
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