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Abstract: In order to solve the problem of poor interfacial adhesion between aramid fibers and a
rubber matrix, an efficient and mild modification method was proposed via polydopamine and
mercapto functionalized graphene oxide (GO) and carbon nanotube (CNTs) hybrids synergistically
modifying aramid fibers. GO and CNTs were firstly stacked and assembled into unique 3D GO-CNTs
hybrids through π-π conjugation. Then, the mercapto functionalization of the assembled 3D GO-
CNTs hybrids was realized via the dehydration condensation reaction between the hydroxyls of GO
and the silanol groups of coupling agent. Finally, the mercapto functionalized 3D GO-CNTs hybrids
were grafted onto the aramid fibers, which were pre-modified by polydopamine through the Michael
addition reaction mechanism. The surface morphology and chemical structures of GO-CNTs hybrids
and fibers and the interfacial adhesion strength between fibers and rubber matrix were investigated.
The results showed that the modification method had brought about great changes in the surface
structure of fibers but not generated any damage traces. More importantly, this modification method
could improve the interfacial strength by 110.95%, and the reason was not only the reactivity of
functional groups but also that the 3D GO-CNTs hybrids with excellent mechanical properties could
effectively share interfacial stress. The method proposed in this paper was universal and had the
potential to be applied to other high-performance fiber-reinforced composites.

Keywords: aramid fiber; polydopamine; graphene oxide; carbon nanotube; interfacial adhesion

1. Introduction

The interface between the reinforcing phase and the matrix phase is a key factor
affecting the comprehensive properties of composites [1]. For aramid fiber (AF)-reinforced
rubber matrix composite products, such as rubber tracks, conveyor belts and tires, etc.,
the reinforcing phase (aramid fiber) is a kind of brittle material, while the matrix phase
(rubber) shows excellent elasticity. That is to say, when bearing a large load, the reinforcing
phase would break before the final failure of the composites. The interfacial performance
plays an important role in the mode of crack propagation at the end of fibers, which has a
crucial effect on the load transmission. Aramid fiber with the advantages of high strength
and light weight has the defects of strong chemical inertia and weak interfacial adhesion
with other materials [2–4]. Therefore, the improvement of interfacial performance between
aramid fiber and rubber is a key and hot issue to be studied.

Currently, the main methods of the surface modification of aramid fiber can be divided
into physical and chemical methods. The physical methods mainly include ultrasound [5],
high-energy radiation [6,7], plasma treatment [8], UV-initiated grafting [9], etc. The physical
modification methods with simple process technologies have the disadvantages of a difficult
industrialization process and an unstable modification effect. In comparison, the widely
studied chemical methods mainly include acid etching [10], chemical graft [11,12], and
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enzyme catalysis [13], which can directly introduce active groups onto the fiber surfaces
but can easily cause irreversible damages to the fiber structures. Therefore, finding a mild
and efficient physical–chemical mixed method to modify the surface of aramid fibers has
become the research emphasis.

Some characteristics of natural organisms often become a breakthrough for researchers
to solve research problems. Inspired by the mechanism of biological adhesion proteins
in marine mussels, polydopamine (PDA), a polymer obtained via the oxidative self-
polymerization of mussel adhesion protein molecule-dopamine [14,15], is considered an
adhesive material with great application potential and has been gradually applied to the
surface modification of high-performance fibers due to its high chemical activity [16,17].
At present, the adhesion mechanism of dopamine is still controversial, but researchers
generally believe that catechol and the amino group play a central role [18]. Based on the
differences in the surface activity of substrates, PDA can form an adhesive coating on the
surface of substrates through covalent or non-covalent interaction [19,20]. In addition, PDA
has the advantage of not damaging the substrate structure [21].

Nanomaterials have developed rapidly in the past decade and have been widely used
in many fields [22]. As a typical carbon nano material, carbon nanotubes (CNTs) with
a one-dimensional (1D) structure have an extremely high tensile strength of 11–63 GPa
and a Young’s modulus of 270–950 GPa and have been reported to be a promising high-
performance fiber surface modification material due to its effect on the surface structure of
fibers and the enhancement of interfacial strength [23]. However, due to the lack of active
groups, it is difficult for CNTs to directly interact with inert high-performance fibers and
then be grafted on the fiber surface [24]. In comparison, as another typical carbon nano
material, graphene oxide (GO) with a two-dimensional (2D) structure not only has excellent
mechanical properties but also contains rich oxygen-containing groups, such as hydroxyl
and carboxyl groups [25,26]. It can be seen that the synergistic use of CNTs and GO is an
ideal solution.

In this paper, we proposed a mild and universal modification method via poly-
dopamine and mercapto functionalized 3D GO-CNTs hybrids synergistically modifying
aramid fibers to improve the interfacial adhesion with rubber matrix. Firstly, the 3D GO-
CNTs hybrids were assembled under ultrasonic condition via π-stacking interaction formed
between the π-conjugated multiple aromatic regions of GO sheets and the sidewalls of
CNTs. Then, the GO-CNTs hybrids were mercapto functionalized through the dehydra-
tion condensation reaction between hydroxyls of GO and silanol groups of the coupling
agent MPTMS. Finally, the mercapto functionalized 3D GO-CNTs hybrids were grafted
onto the pretreated aramid fibers with an initial layer of poly-dopamine via the Michael
addition reaction. Since mercapto groups can participate in the vulcanization reaction of
rubber [27,28], nano materials containing mercapto groups can be grafted onto the surface
of AF to achieve covalent bonding between fibers and the rubber matrix, thereby improving
the interfacial adhesion. The surface morphology and chemical structures of GO-CNT
hybrids and fibers and the interfacial adhesion strength between fibers and rubber were
characterized to verify the effectiveness of this modification method.

2. Materials and Methods
2.1. Materials

The aramid fibers (Kevlar K-29, 3300 dtex, 14–15 µm in average diameter) used in
this study were received from Changzhou Gaoyuan Group Co., Ltd., Changzhou, China.
Methanol, ethyl acetate, acetone, deionized water, glacial acetic acid, dopamine hydrochlo-
ride, tris (hydroxymethyl) aminomethane (Tris), and (3-mercaptopropyl) trimethoxysilane
(MPTMS) were purchased from Shanghai Aladdin Industrial Co., Ltd., Shanghai, China.
Graphene oxide (GO) and multi-walled carbon nanotubes (CNTs) were provided from
Nanjing Xianfeng Nanotechnology Co., Ltd., Nanjing, China. The rubber ingredients
were obtained from Nanjing Xinyue Chemical Industrial Co., Ltd., Nanjing, China, and
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were listed in Table S1. The properties of the aramid fibers, CNT, and GO are shown in
Supplementary Materials S1.2.

2.2. GO-CNTs Hybrids and PDA Synergistically Modifying the AF Surface

Figure 1 shows the schematic illustration of AF surface modification, which can be
summarized as follows:

Figure 1. Schematic illustration of the surface modification of aramid fibers.

(1) GOs (0.5–5 µm in sheet diameter and 0.8–1.2 nm in thickness) and CNTs (8–15 nm in di-
ameter and 0.5–2 µm in length) with a mass ratio of 2:1 were added into deionized wa-
ter, and the concentration of carbon nano-materials was controlled to 0.5 mg/mL. After
stirring for 15 min, the mixture liquor was treated by ultrasound for 6 h to prepare a 3D
carbon nano-material hybrid (which were labeled GO-CNTs) suspension. The dried
GO-CNTs and a little glacial acetic acid were added into a methanol/water/MPTMS
solution (wherein the volume ratio was controlled to 7:2:1) to be treated by ultrasound
for 4 h. The mercapto functionalization of GO-CNTs was realized via the dehydration
condensation reaction between the hydroxyls of GO and the silanol groups of MPTMS.
The reacted nano-materials were labelled M-GO-CNTs.

(2) The AFs were cleaned with ethyl acetate and acetone, then dried and labelled R-AF.
The cleaned R-AFs were immersed into a dopamine solution with a concentration of
2 g/L and a pH value of 8.5, followed by stirring at room temperature for 12 h. After
the reaction, AFs were rinsed with water to remove the excess reagents, followed by
drying at 100 ◦C for 3 h. The reacted AFs were labelled P-AF.

(3) M-GO-CNTs were added into a methanol/water solution (the volume ratio was 7:2)
and then treated by ultrasound for 2 h to prepare a M-GO-CNT suspension. P-AFs
were immersed into this suspension, whose pH value of 8.5 was adjusted by tris
(hydroxymethyl) aminomethane. The mixture was stirred slowly for 12 h. After the
reaction, AFs were rinsed with methanol to remove the excess reagents, followed by
drying at 100 ◦C for 3 h. The reacted AFs were labelled M-AF.
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2.3. Preparation of AF/Rubber Composites

The AF/rubber composites were prepared for the pull-out test, which was an ef-
fective way to characterize the interfacial adhesion according to GB/T 2942-2009. The
rubber matrix for the test were firstly plasticized and mixed, which was detailed in
Supplementary Materials S1.1. Then, the rubber matrix and AF were placed in the testing
mold, where both ends of the AF bundles were covered with rubber sheets. The size
of the groove swhere the rubber sheet and AF bundles were placed in the mold were
50 mm × 6.4 mm × 6.4 mm and 30 mm × 0.8 mm × 3.2 mm, respectively. Finally, The
AF/rubber composites were obtained by vulcanization treatment at 140 ◦C for 20 min
under 20 MPa. For the AF/rubber composites for the pull-out test, the gauge length of the
AF bundles between rubber sheets and the depth of AF bundles embedded in the rubber
sheet were 8.6 mm and 6.4 mm, respectively. Figure 2 shows the schematic illustration of
the preparation and pull-out test for AF/rubber composites.

Figure 2. Schematic illustration of the preparation and pull-out test for AF/rubber composites.

2.4. Characterization

The GO-CNTs before and after functionalization were characterized by TEM (FEI
Tecnai G2 F20, Waltham, MA, USA), XPS (ESCALAB 250XI, Thermo, Electron Corporation,
Waltham, MA, USA), FTIR (PerkinElmer Spectrum Two, Waltham, MA, USA), and XRD
(SmartLab 9, Rigaku, Tokyo, Japan) to verify the structures of functionalized 3D carbon
nano-material hybrids. The AFs before and after surface modification were characterized
by SEM (Hitachi S-4800, Hitachi, Tokyo, Japan), XPS, and FTIR to illustrate the effectiveness
and mildness of modification. Details of sample preparation for the above tests are shown
in Supplementary Materials S1.3. According to GB/T 2942-2009, the pull-out test was
conducted to analyze the interfacial adhesion between AFs and rubber matrix by using
universal testing machine (Wance Testing Machine ETM104C, Shenzhen, China). The
tensile speed of the machine is 100 mm/min, and the force is applied along the longitudinal
axis of the fibers. The average of eight samples at the same conduction was recorded as the
final result, to reduce test error.

3. Results and Discussion
3.1. Characterizations of 3D Carbon Nano-Material Hybrids

Figure 3 shows the micro morphology of carbon nano-materials. In Figure 3a, it can be
clearly observed that the entanglement between most CNTs is very serious. After treated by
GO, the TEM image of GO-CNTs in Figure 3b shows that the entanglement of CNTs tends
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to decrease more than common pure CNTs [29,30], which indicates that the assembly of GO
and CNTs can improve the dispersibility of CNTs. Moreover, some CNTs are inserted into
the lamellae of GO, while the rest are distributed at the edge of GO. Comparatively, the
TEM image of the M-GO-CNTs in Figure 3c shows a larger shaded area and more stacking
GO lamellae, and more CNTs are evenly distributed into the lamellae of GO to form the
more stable 3D hybrids, which is related to the bridge role of silane coupling agent MPTMS
in the mercapto functionalization treatment process of the hybrids.

Figure 3. TEM micromorphology of (a) CNTs, (b) GO-CNTs, and (c) M-GO-CNTs.

Figure 4 shows the FTIR spectra of GO-CNTs and M-GO-CNTs. The absorption peaks
of GO-CNTs are located at 3427 cm−1, 2917 cm−1, and 2854 cm−1 (double peaks), 1727 cm−1,
1614 cm−1, and 1038 cm−1, which are attributed to -OH stretching vibration, methylene
stretching vibration, C=O stretching vibration, C=C stretching vibration, and C-O stretching
vibration, respectively [31]. It is worth noting that, due to the lack of chemical groups on
the surface of CNTs, the absorption peaks of GO-CNTs mainly comes from GO. Compared
with the FTIR spectrum of GO-CNTs, there are several new absorption peaks appearing
in that of M-GO-CNTs. Thereinto, 2554 cm−1, 1342 cm−1, and 693 cm−1 are related to
sulfur, which can be attributed to S-H stretching vibration, S-CH2 symmetrical deformation
vibration, and S-C stretching vibration, respectively. Moreover, 1445 cm−1, 1091 cm−1, and
882 cm−1 are related to silicon, which can be attributed to CH2 shear vibration in Si-CH2,
Si-O-Si antisymmetric stretching vibration, and Si-OH stretching vibration [32]. These new
peaks indicate the successful realization of mercapto functionalization.

Figure 4. FTIR spectra of GO-CNTs and M-GO-CNTs.

Figure 5 shows the XPS spectra of GO-CNTs and M-GO-CNTs. It can be deduced from
the XPS wide scan spectrum of Figure 5a that GO-CNTs are mainly composed of carbon (C)
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and oxygen (O), whose contents are respectively 88.28 at.% and 11.72 at.%, wherein oxygen
is mainly attributed to the oxygen-containing functional group of GO. By contrast, the new
peaks of S2p and Si2p can be observed in the XPS wide scan spectrum of M-GO-CNTs,
and the contents of sulfur (S) and silicon (Si) are 11.82 at.% and 13.89 at.%, respectively.
Moreover, the O content was increased, while the C content was decreased, obviously. The
changes in elements and their content can initially prove the functionalization of the carbon
nano-materials. As shown in Figure 5b, for the S2p high-resolution spectrum of M-GO-
CNTs, the curve can be fitted to S2p1/2 at 164.3 eV and S2p3/2 at 163.1 eV, which indicates
the existence of an S-C bond [33]. For the Si2p high-resolution spectrum of M-GO-CNTs in
Figure 5c, the fitted peaks of 102.0 eV and 102.8 eV can be attributed to Si-C and Si-O-Si,
respectively [34].

Figure 5. XPS wide-scan spectrum (a), S2p (b), and Si2p (c) high-resolution spectra of M-GO-CNTs.

Figure 6 shows the XRD spectra of R-CNTs, GO-CNTs, and M-GO-CNTs. For R-
CNTs, only one strong diffraction peak (002) can be found, located at 2θ = 25.68◦, which
is derived from free graphite carbon in CNTs. For the XRD spectrum of GO-CNTs, there
are two strong diffraction peaks, of which the diffraction peak located at 2θ of 10.72◦

can be attributed to the oxygen-containing functional groups between the GO lamellar
structures, while the other one located at 2θ of 25.68◦ indicates the assembly between
GO and CNTs. After the 3D GO-CNTs hybrids are assembled, the crystal plane spacing
is 0.825 nm. Compared with R-GO, it can be found that there are a certain number of
CNTs in the hybrid lamellae. After mercapto functionalization, in the XRD spectrum of



Polymers 2022, 14, 3988 7 of 13

M-GO-CNTs, the 2θ value corresponding to the strong diffraction peak (001) becomes 8.32◦,
that is, the crystal plane spacing at this time is significantly increased to 1.063 nm, which
is sufficient to illustrate that, for the 3D structure of GO-CNTs, functionalized grafting
changes its crystal structure.

Figure 6. XRD spectra of R-CNTs, GO-CNTs, and M-GO-CNTs.

3.2. Characterizations of Aramid Fibers

Figure 7 shows the surface morphologies of AFs before and after surface modification.
In the SEM images of the surface morphology as shown in Figure 7a, the surface of R-AF is
smooth and almost free of any defects due to high crystallinity. After being treated by the
oxidative self-polymerization of dopamine, the PDA particles are observed and relatively
evenly distributed on the surface of P-AF (Figure 7b). Furthermore, there is no etching
or damage trace observed on the P-AF surface, namely, the pretreatment of fibers does
not generate micro structural damage on the surface. As shown in Figure 7c, by contrast,
a great deal of sheet-like morphology is observed on the surface of M-AF, and the fiber
diameter is increased significantly (from 14.5 µm to 38.9 µm), which indicates the successful
graft of 3D carbon nano-material hybrids. Obviously, through the modification treatment,
the surface structure of M-AF has changed significantly, and the surface is no longer as
smooth as that of R-AF. Moreover, although the graft of 3D carbon nano-material hybrids
can improve the diameter of a single-filament fiber to a certain extent, it would not be
expected to be so significant. By the wrapping effect of sheet structures, it inferred that
the dramatic improvement of fiber diameter may be attributed to the micro feature of the
“integrate phenomenon” of several single-filament fibers after surface modification.

Figure 8 shows the FTIR spectra of AFs before and after surface modification. For
the FTIR spectrum of R-AF, the peaks located at 3311 cm−1 and 1538 cm−1 are attributed
to the stretching vibration and deformation vibration of N-H, respectively, while the C-N
stretching vibration generates two peaks at 13941 cm−1 and 1108 cm−1. The other three
peaks, at 1505 cm−1, 1640 cm−1 and 822 cm−1, are respectively ascribed to the stretching
vibration of C=C and C=O from amide groups and the deformation vibration of C-H [35].
After treated by PDA, the stretching vibration of -OH and C-O from PDA generates new
peaks at 3405 cm−1 and 1160 cm−1, respectively, while the stretching vibration of the
methylene group generates double peaks at 2905 cm−1 and 2835 cm−1 [36]. By contrast, for
the FTIR spectrum of M-AF, it is worth noting that the new peaks at 2554 cm−1, 1342 cm−1,
687 cm−1, 1445 cm−1, and 1091 cm−1 can be attributed to the S-H stretching vibration, S-
CH2 symmetrical deformation vibration, S-C stretching vibration, CH2 scissoring vibration
in Si-CH2, and Si-O-Si antisymmetric stretching vibration, respectively. In short, the result
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of FTIR can fully confirm the successful graft of functionalized 3D carbon nano-materials
on the surface of aramid fibers.

Figure 7. Surface morphologies of (a) R-AF, (b) P-AF, and (c) M-AF.

Figure 8. FTIR spectra of R-AF, P-AF, and M-AF.

Figure 9 shows the XPS spectra of AFs before and after surface modification. As
shown in Figure 9a, the surface of R-AF and P-AF are mainly composed of C, N, and O, and
there is no significant change in content, while the new peaks related to Si and S appear
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in the XPS wide-scan spectrum of M-AF, which can be ascribed to the graft of mercapto
groups. Meanwhile, the N1s peak disappeared, showing that the thickness of film is thicker
than the detecting depth of the probe. In Figure 9b, the C1s high-resolution spectrum of
R-AF can be fitted into four peaks, including the C-C/C=C peak at 284.6 eV, the C-N peak
at 285.5 eV, the C=O peak at 287.5 eV, and the O=C-O peak at 288.5 eV [37]. In contrast,
for the C1s high-resolution spectrum of P-AF in Figure 9c, a new peak, C-O at 286.4 eV,
can be observed, which can be attributed to the phenolic hydroxyl group from PDA [38].
Based on the treatment of mercapto functionalization, the S2p and Si2p new peaks of M-AF
were fitted, and the results are shown in Figure 9d,e, respectively. The S2p high-resolution
spectrum of M-AF can be fitted to S2p1/2 at 164.3 eV and S2p3/2 at 163.1 eV, indicating
the existence of an S-C bond, while the fitting peaks at 102.0 eV and 102.8 eV in the Si2p
high-resolution spectrum were attributed to Si-C and Si-O-Si, respectively. This result is
consistent with the FTIR spectrum.

Figure 9. XPS wide-scan spectrum (a), C1s high-resolution spectra of (b) R-FA and (c) P-AF, S2p
(d) and Si2p, and the (e) high-resolution spectra of M-AF.
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3.3. Interfacial Adhesion Property of AF/Rubber Composites

The interfacial adhesion between AFs and the rubber matrix was evaluated by a pull-
out test, and the result is shown in Table 1. Under the same test conditions such as the same
gauge length and embedded depth, the same testing mold and environment, the maximum
pull-out forces of R-AF and M-AF bundles with rubber were 28.3 ± 1.8 N, 38.07 ± 2.46 N
and 59.7 ± 4.7 N, respectively. Due to the smooth surface and lack of active groups, it can be
found that the pull-out force between R-AF and the rubber is very low. After being treated
by PDA, the appearance of PDA particles improves the surface roughness of the fiber to a
certain extent. In addition, since PDA is rich in a variety of active groups, this improves the
interfacial molecular interaction between fibers and the rubber. These factors may be used
to explain the reason for the increase of pull-out force between P-AF and the rubber after R-
AF is treated by PDA. However, there are no groups on the surface of PDA that can directly
participate in the vulcanization reaction of rubber, which limits the improvement of the
interfacial adhesion strength of the composites to a certain extent [39,40]. For M-AF, it can
be found that the interfacial strength is increased by 110.95% after the surface modification,
showing the excellent interfacial adhesion. Obviously, the increased roughness generated
by the graft of nano-materials is one of the reasons for the improvement of the interfacial
performance. Furthermore, the functionalized 3D carbon nano-material hybrids with
abundant mercapto groups can also promote the co-vulcanization reaction between AFs
and the rubber.

Table 1. The result of the pull-out test for AF/rubber composites.

Samples Pull-Out Force (N)

R-AF 28.3 ± 1.8
P-AF 38.07 ± 2.46
M-AF 59.7 ± 4.7

Figure 10 shows the interlaminar fracture surface morphology of the composites
after the pull-out test. There is a little residual rubber remaining on the surface of the
R-AF bundle (as shown by arrows), while a large amount of residual rubber remains on
the surface of the M-AF bundle, which indirectly proves that the modified method can
effectively improve the interfacial adhesion performance. The change in the residual rubber
content on the fiber surface indicates that the fracture of the composite is transferred from
the interface region to the rubber side. Most importantly, the conclusion that 3D carbon
nano-material hybrids can share the interfacial stress and play a traction role between the
reinforcing phase and the matrix phase can be obtained from the micro morphology of the
fiber bundle after pull-out tests.

Figure 10. Interlaminar fracture surface morphology after a pull-out test.
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4. Conclusions

In this work, in order to improve the interfacial adhesion between aramid fibers
and the rubber matrix, an efficient and mild modification method was proposed by poly-
dopamine and mercapto functionalized 3D graphene oxide and carbon nanotube hybrids
synergistically modifying the aramid fiber surface. SEM, TEM, FTIR, XPS, and XRD were
conducted to indicate the deposition of 3D hybrids on the fiber surface and the realization
of mercapto functionalization, thereby verifying that the proposed modification method
was feasible and effective. The results of the pull-out test showed that the pull-out force
between fiber bundles and the rubber matrix was increased by 110.95% after the fiber
surface modification, presenting a significant improvement in interfacial adhesion. This
was not only attributed to the increase of fiber surface roughness and the reactivity of
mercapto functional groups but was also related to the grafted 3D carbon nano-materials
could effectively share the interfacial stress and play a traction role in interface. In ad-
dition, the surface modification method proposed in this study has certain universality
and is considered to have the potential to be applied to other kinds of high-performance
fiber-reinforced composites.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym14193988/s1, Supplementary Materials S1.1: Plasticizing
and mixing process of rubber; Table S1: Rubber ingredients; Supplementary Materials S1.2: Physical
and chemical properties of the main materials; Supplementary Materials S1.3: Details of sample
preparation for the tests.
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