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ABSTRACT Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that
can cause severe disease following in utero exposure, during primary infection, or la-
tent virus reactivation in immunocompromised populations. These complications
lead to a 1- to 2-billion-dollar economic burden, making vaccine development
and/or alternative treatments a high priority. Current treatments for HCMV include
nucleoside analogues such as ganciclovir (GCV), foscarnet, and cidofovir. Recently,
letermovir, a terminase complex inhibitor, was approved for prophylaxis after stem
cell transplantation. These treatments have unwanted side effects, and HCMV is be-
coming resistant to them. Therefore, we sought to develop an alternative treatment
that targets a different stage in viral infection. Currently, small antiviral peptides are
being investigated as anti-influenza and anti-HIV treatments. We have developed
heparan sulfate-binding peptides as tools for preventing CMV infections. These pep-
tides are highly effective at stopping infection of fibroblasts with in vitro-derived
HCMV and murine cytomegalovirus (MCMV). However, they do not prevent MCMV
infection in vivo. Interestingly, these peptides inhibit infectivity of in vivo-derived
CMVs, albeit not as well as tissue culture-grown CMVs. We further demonstrate that
this class of heparan sulfate-binding peptides is incapable of inhibiting MCMV cell-
to-cell spread, which is independent of heparan sulfate usage. These data indicate
that inhibition of CMV infection can be achieved using synthetic polybasic peptides,
but cell-to-cell spread and in vivo-grown CMVs require further investigation to de-
sign appropriate anti-CMV peptides.

IMPORTANCE In the absence of an effective vaccine to prevent HCMV infections, al-
ternative interventions must be developed. Prevention of viral entry into susceptible
cells is an attractive alternative strategy. Here we report that heparan sulfate-binding
peptides effectively inhibit entry into fibroblasts of in vitro-derived CMVs and par-
tially inhibit in vivo-derived CMVs. This includes the inhibition of urine-derived HCMV
(uCMV), which is highly resistant to antibody neutralization. While these antiviral
peptides are highly effective at inhibiting cell-free virus, they do not inhibit MCMV
cell-to-cell spread. This underscores the need to understand the mechanism of cell-
to-cell spread and differences between in vivo-derived versus in vitro-derived CMV
entry to effectively prevent CMV’s spread.
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Human cytomegalovirus (HCMV) is a significant pathogen within immunocompro-
mised groups. Disease in these populations can result from primary infection or

spontaneous latent virus reactivation (1, 2). As 60 to 90% of adults are latently infected
with HCMV, there is a substantial population at risk for complications if their immune
system becomes compromised (3, 4). HCMV infection/reactivation in immunocompro-
mised persons can result in mononucleosis-like symptoms, interstitial pneumonia,
gastroenteritis, retinitis, or organ transplant rejection in transplant patients (1, 3). HCMV
is also the leading cause of congenital disease (5, 6). In utero infection may result in fetal
abnormalities such as microcephaly or severe sequelae that can evolve over time in the
form of progressive deafness, mental retardation, or learning disabilities (7, 8). HCMV
infections impose a yearly 1- to 2-billion-dollar economic burden; therefore, develop-
ment of effective treatment and preventive strategies is a high priority (5, 9). Because
there is no effective vaccine, treatment of infected immunocompromised patients
primarily consists of nucleoside analogs such as ganciclovir (GCV), foscarnet, or cido-
fovir which inhibit DNA replication (10–12). Unfortunately, GCV treatment can be
myelosuppressive, while foscarnet and cidofovir are nephrotoxic (13). All DNA poly-
merase inhibitors select for resistant HCMV mutants, and cases of GCV-resistant HCMV
infections are on the rise (1, 14, 15). This has led to the development of novel
treatments such as the recently FDA-approved terminase inhibitor, letermovir (16).

Antiviral peptides (APs) are an attractive alternative treatment for inhibiting viral
infections. Indeed, peptide therapeutics are being investigated for respiratory viruses
and HIV (17–19). APs have different mechanisms for virus inhibition from inhibiting viral
attachment, entry, replication, or egress (20). HCMV attaches to a host cell via heparan
sulfate proteoglycans (HSPGs) (21). Viral glycoproteins gB and gM/gN initially interact
with negatively charged sulfate moieties, which serve to “dock” the HCMV virion to the
host cell (21). Docking triggers a signal cascade within the cell allowing for subsequent
viral entry. HSPGs are ubiquitously expressed on most host cells, supporting the idea
that HCMV can infect almost any human cell type (22).

HSPGs have a myriad of functions, including binding chemokines and cytokines and
serving as scaffolds for ligand receptors, growth factors, and other cell adhesion
molecules (23). Cell surface HSPGs are also major components of host-mediated
endocytosis and cell membrane fusion processes. HSPG functions have been exploited
for malarial and viral infections, including HCMV and herpes simplex virus 1 (24–26).
Because of their major role in the early stages of HCMV replication, heparan sulfates
(HSs) are an attractive target for intervention. HS-binding peptides effectively inhibit
HCMV infection (27). However, these peptides were not tested against the more
virulent in vivo-derived virus or in an in vivo setting (28).

We have previously reported that synthetic heparin-binding peptides bind patho-
logical amyloid deposits in vitro and in vivo (29, 30). As HCMV attaches to cells via HS,
we investigated whether these peptides could inhibit virus attachment. In this study,
we demonstrate that these synthetic polybasic peptides are efficient at inhibiting viral
entry of tissue culture-derived HCMV and murine cytomegalovirus (MCMV). We also
provide evidence of effectively inhibiting an HCMV clinical isolate obtained from
infected bodily secretions. However, these peptides could not prevent cell-to-cell
spread of MCMV, potentially explaining the need to further investigate additional
antiviral peptides for efficiency in vivo.

RESULTS
Peptide characteristics. Three polybasic peptides, designated p5(coil), p5(coil)D, and

p5 � 14(coil), were synthesized using a glycine-rich backbone to enhance flexibility of
the peptide chain (Table 1). The p5(coil) peptide is the parental peptide (31, 32) from
which the derivative p5(coil)D and p5 � 14(coil) peptides were designed. p5(coil)D is the D
form of p5(coil). Because D-form peptides are more proteolytically stable and are equally
effective as L-form peptides at inhibiting HCMV entry, we focused on p5(coil)D for the
majority of this study (33). We also utilized the peptide p5 � 14(coil), which is p5(coil)

with an additional repeat of the last 14 amino acids. The addition of 14 amino acids has

Jackson et al.

January/February 2019 Volume 4 Issue 1 e00586-18 msphere.asm.org 2

https://msphere.asm.org


been shown to increase the efficacy of peptide-induced HCMV inhibition (27). At a
peptide concentration of 50 �M, both p5(coil)D and p5 � 14(coil) inhibited HCMV and
MCMV infection of fibroblasts (Table 1). We chose 50 �M as the initial concentration for
the screening the peptides because another polybasic D-form peptide could inhibit
MCMV in vivo at this dose (33). All three peptides were predicted to adopt a flexible coil
secondary structure, which is different from previously published peptides and may
increase their efficacy (34, 35).

As p5(coil) was the peptide from which the others were generated, we tested the
binding of a biotinylated variant to a panel of HS moieties using a synthetic glycoarray
(Fig. 1A). p5(coil) bound significantly more effectively to sulfated glycans (black bars)
than to unsulfated glycans (red bars) (Fig. 1A), with the exception of the 5-sugar HS008
glycan. Statistical analysis showed significantly enhanced binding of p5(coil) to almost all
sulfated glycans relative to nonsulfated species (see Table S1 in the supplemental
material). In general, no significant difference was observed between levels of peptide
binding to the structurally different sulfated HSs. Figure 1B lists the structure of the
glycans used in the glycan array. These results highlight that p5(coil) preferentially binds
sulfated glycans.

Efficacy of inhibition of CMV infection. The blockade of HCMV and MCMV
attachment to cells was studied in the presence of increasing concentrations of peptide

TABLE 1 Polybasic peptide descriptions and characteristicsa

Peptide
No. of
aa Primary structure Property

Net charge
(positive)

% of infection
inhibition

MCMV HCMV

p5(coil) 31 GGGYS KGGKG GGKGG KGGGK GGKGG GKGGK G Flexible coil 8
p5(coil)D 31 [GGGYS KGGKG GGKGG KGGGK GGKGG GKGGK G]D D form of p5(coil) 8 68 89
p5 � 14(coil) 45 GGGYS KGGKG GGKGG KGGGK GGKGG GKGGK GGGKG GKGGG KGGKG Flexible coil 12 72 96
aPeptide secondary structures were predicted via ITASSER software. Peptide inhibition of infection was determined at 50 �M. Positively charged residues are
underlined.
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FIG 1 Binding of peptide p5(coil) to an array of synthetic HS glycans. (A) A 0.5-mg/ml aliquot of biotinylated p5(coil) peptide was incubated with a heparan
sulfate glycan array, and the binding was visualized using a streptavidin-conjugated fluorophore. Nonsulfated glycans are shown in red. Each bar represents
the mean and SD from 5 replicates. Statistical analysis data are presented in Table S1. (B) Composition of the HS glycans used in panel A.
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p5(coil)D or p5 � 14(coil) (Fig. 2). The estimated 50% inhibitory concentrations (IC50s) of
p5(coil)D and p5 � 14(coil) for blocking HCMV (TB40/E) were 9.98 and 0.6 �M, respectively
(Fig. 2A), and those for MCMV were 22.6 and 2.97 �M, respectively (Fig. 2B). These data
indicate that our peptides are capable of inhibiting both HCMV and MCMV; however,
MCMV is inhibited to a lesser extent. Peptide inhibition of infection of mice was
evaluated using the MCMV mouse model (Fig. 3). BALB/c mice were pretreated with
p5(coil)D or p5 � 14(coil) at 250 �g per mouse 1 h prior to infection. Evaluation of the viral
titer in spleens harvested 4 days postinfection (dpi) indicated no significant difference
in viral burden (Fig. 3). In order to confirm peptide was present at the time of infection
and following infection, we evaluated peptide biodistribution postadministration (see
Table S2 in the supplemental material). Our biodistribution assay confirms that p5(coil)D

or p5 � 14(coil) is present within the host at the time of infection and following
infection. While there is a difference in biodistributions between the two peptides,
there is no difference in levels of viral dissemination to the spleen. We have previously
reported the inability of p5RD, another antiviral polybasic peptide, which is significantly
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FIG 2 The p5(coil) family of peptides prevent HCMV and MCMV infection. Peptides were serially diluted and assayed in an
HCMV (TB40/E UL18Luc) luciferase assay (A) or an MCMV plaque reduction assay (B). IC50s for HCMV of 9.98 �M for p5(coil)D

and 0.6 �M for p5 � 14(coil) and IC50s for MCMV of 22.6 �M for p5(coil)D and 2.97 �M for p5 � 14(coil) were calculated with
GraphPad Prism. Each point represents an average of 3 or 4 replicates � SD from 3 experiments.
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FIG 3 Peptide efficacy in vivo. BALB/c mice were treated with peptide (250 �g/mouse) i.v. and infected with 1 � 106 PFU
of MCMV i.p. 1 h later. Bars represent the average of 4 or 5 mice per group from 2 experiments. One-way ANOVA with
Tukey’s multiple comparison of means was used to determine statistical significance. ns, not significant.
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more stable in vivo, to substantially inhibit infection of any primary dissemination
organs (e.g., spleen, liver, and lung) (33). The inability of these peptides to reduce viral
load in vivo could be due in vivo dosage/timing effect, but an alternative explanation
is that the peptides differ in their ability to block in vivo-derived virus versus in
vitro-derived viruses. Previous studies have reported differences between MCMVs
grown in culture compared with those harvested in vivo, which was related to their
HSPG usage for entry (36–40).

Peptide inhibition of in vivo- and in vitro-derived MCMV. To evaluate the
possibility of differential inhibition between in vitro-derived virus and in vivo-derived
virus, we performed plaque reduction assays using MCMV salivary gland-isolated virus
(SGV) and MCMV passaged on cultured cells (tissue culture-derived virus [TCV]) (Fig. 4).
Both p5(coil)D and p5 � 14(coil) significantly inhibited infection of both murine TCV
(Fig. 4A) and SGV (Fig. 4B) relative to untreated cells (phosphate-buffered saline [PBS]).
Additionally, in both cases p5 � 14(coil) was significantly more efficacious than p5(coil)D.
When used at 50 �M, p5 � 14(coil) inhibited murine TCV (75%) more effectively than
SGV (40%) (Fig. 4C). Our data support observations made by Ravindranath and Graves
(36) and indicate SGV and TCV use different entry strategies. One entry mechanism is
inhibited by peptides (i.e., TCV), and the other is only partially blocked (i.e., SGV).

To further investigate the differences in SGV and TCV entry identified by the peptide
inhibition studies, mouse embryonic fibroblasts (MEFs) were treated with 50 mM
sodium chlorate prior to infection to remove 2-O- and 6-O-linked HS sulfations (41). We
focused on these sulfation patterns based on observations from HCMV, which indicated
that these O-linked sulfations were important for viral attachment (28). This treatment

PBS

p5 (co
il)D

 

p5+
14 (co

il) 
0

50

100

150

Treatment

%
 In

fe
ct

io
n

ns

****

0 20 40
0

50

100

150

Heparin Concentraition
(ug/ml)

%
 In

fe
ct

io
n 

N
or

m
al

iz
ed

 
to

 U
nt

re
at

ed
 C

on
tr

ol

ns

MCMV TCV MCMV SGV 

Sodium Chlorate Treatment  

TC vs SG Inhibition 

MCMV SGV MCMV TCV 

TCV
SGV

0

50

100

150

Virus

%
 In

fe
ct

io
n 

N
or

m
al

iz
ed

 
to

 U
nt

re
at

ed
 C

on
tr

ol

****

TCV
SGV

0

50

100

150

Virus

%
 In

fe
ct

io
n 

N
or

m
al

iz
ed

 
to

 U
nt

re
at

ed
 C

on
tr

ol

**

A. B. C. 

D. F. 

0 20 40
0

50

100

150

Heparin Concentraition
(ug/ml)

%
 In

fe
ct

io
n 

N
or

m
al

iz
ed

 
to

 U
nt

re
at

ed
 C

on
tr

ol ****

**

PBS

p5 (co
il)D

 

p5+
14 (co

il) 
0

50

100

150

Treatment
%

 In
fe

ct
io

n

****

***

E. 

FIG 4 Differential effects of peptide treatment on in vivo- and in vitro-derived MCMV. Peptide at a 50 �M concentration was used to inhibit (A) tissue
culture-derived (TCV) or (B) salivary gland-derived (SGV) MCMV. (C) Data from panels A and B to compare the efficacy of p5 � 14(coil) inhibition of TCV and SGV.
(D) MEF 10.1 cells were treated with 50 mM sodium chlorate to remove 2-O- and 6-O-linked sulfations. Treated cells were infected with �100 PFU of TCV or
SGV. Either TCV (E) or SGV (F) was incubated with various concentrations of heparin and used to infect MEF 10.1 cells (�100 PFU/well). Data were normalized
to untreated (PBS) controls. Bars represent the average � SD from 2 experiments with 3 replicates per experiment. Statistical significance was determined by
one-way ANOVA with a Tukey’s multiple comparison of means. ns, not significant; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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resulted in inhibition of infection of both SGV and TCV, with the latter being signifi-
cantly more impacted (Fig. 4D). It is known that incubation of MCMV with heparin
blocks cellular entry; therefore, we studied the effect of increasing heparin concentra-
tion on infection efficiency of TCV (Fig. 4E) and SGV (Fig. 4F). Pretreatment of TCV with
heparin resulted in a dose-dependent decrease in infection, with 50% loss of efficiency
in the presence of 40 �g/ml heparin (Fig. 4E). In contrast, there was no significant
decrease in the infectivity of murine SGV following pretreatment with 40 �g/ml heparin
(Fig. 4F).

Because viruses derived from different tissues vary in their susceptibility to antibody
neutralization (37), we speculated that perhaps not all in vivo-derived MCMVs would be
resistant to peptide inhibition. Therefore, we infected mice subcutaneously in the
footpad, and SGV was isolated on day 14 postinfection, splenic virus (SPV) at day 5, and
the footpad virus (FPV) at day 3. The different time points were necessary to maximize
viral load in the given organ. Once MCMV organ titers were determined, whole-organ
homogenates were plated at �100 PFU on peptide-treated MEF 10.1 cells (Fig. 5A). As
expected there was some inhibition of in vivo-grown virus, but not to the same levels
as TCV. Interestingly, there was no difference between the different organs in regard to
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FIG 5 Generation of peptide-resistant MCMV in vitro. (A) Virus was harvested from salivary gland (SGV), spleen (SPV), and footpads (FPV)
of mice infected with MCMV. MEF 10.1 cells were treated with 50 �M p5 � 14(coil) and then infected with �100 PFU of each virus. The
percentage of infection inhibition was determined by comparison to untreated controls. (B) TCV was grown on RAW 264.7 macrophages
and BMDMs. Progeny virus was then subjected to a plaque reduction assay. The percentage of virus inhibition was determined by
comparison to untreated controls. (C) Comparison of peptide inhibition of MEF 10.1 cells infected with TCV, SGV, or BMDM-derived virus
(BMDMV) originally from TCV or SGV. Bars represent the average � SD from 2 experiments with 2 or 3 replicates per experiment. Statistical
significance was determined by one-way ANOVA with Tukey’s multiple comparison of means with a two-tailed t test. ns, not significant;
*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001. (D) Schematic of method used to generate in vivo-like virus in vitro.
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peptide inhibition susceptibility. Because there is no difference between viruses iso-
lated from different organs, the SGV phenotype is not the result of SGV sample
preparation.

We speculated that the differences in susceptibility to the peptides correlated with
differences in entry complexes that determine cellular tropism (42). MCMVs grown on
macrophages contain different entry complexes compared to MCMVs grown on fibro-
blasts (42). Therefore, we tested whether MCMVs derived from macrophages in vitro
would mimic peptide inhibition of SGV or TCV. In vitro-derived MCMV was grown on the
macrophage cell line RAW 264.7 or bone marrow-derived macrophages (BMDMs). The
progeny viruses were subjected to a plaque reduction assay (Fig. 5B). Peptide treatment
of cells blocked RAW 264.7-grown virus (�75% inhibition) but only partially blocked
BMDM virus (�50% inhibition). Not only are BMDMs capable of generating “in vivo-like”
virus, but when SGV virus was grown on BMDMs, the peptide was even less efficient in
blocking MCMV infection (Fig. 5C). Regardless of the initial MCMV input into BMDMs,
they produced “in vivo-like” virus (Fig. 5B to D). Additionally, these results indicate that
the phenotype observed with SGV and virus isolated from other tissues is not an artifact
of sample preparation.

Peptide inhibition of in vivo-derived HCMV. We sought to determine whether
p5 � 14(coil) could inhibit infection of an HCMV clinical isolate. This virus was used
directly from a patient’s urine (11). This is important because the tropism/entry complex
can mutate after a single passage in vitro (43, 44). Peptide p5 � 14(coil) significantly
inhibited the entry of a clinical isolates of HCMV into human fibroblasts (�70%
inhibition [Fig. 6A]), but was significantly more effective when tissue culture-
grownTB40/E virus was used (�90% inhibition). Because these results mimicked MC-
MV’s peptide inhibition, we tested which HS moieties were important for viral entry.
MRC-5 fibroblasts were treated with 50 mM sodium chlorate to remove 2-O and 6-O
sulfations (Fig. 6B). Despite the small but significant difference between HCMVs from in
vitro- or in vivo-grown viruses, removing the 2-O and 6-O sulfations prevented infection
of both HCMVs, albeit more inhibition of tissue culture-grown HCMVs than the clinical
isolate was observed. These results corroborate the MCMV data. Both viruses highly rely
on sulfated surface glycans for entry.

Do polybasic peptides prevent MCMV cell-to-cell spread? Cell-to-cell spread in
vivo is important for viral dissemination within the host (11, 45, 46). We evaluated the
effectiveness of p5(coil)D and p5 � 14(coil) on cell-to-cell spread. Infected peritoneal
exudate cells (PECs) were harvested from MCMV-infected mice and coincubated with
MEF 10.1 cells, treated with 100 �M p5(coil)D, p5 � 14(coil), or PBS as a control. Inhibition
of MCMV infection was measured via plaque reduction assay. Peptide treatment has no
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FIG 6 Peptide and sodium chlorate treatment prevents urine-derived CMV (uCMV) infection. (A) MCR-5
human fibroblasts were treated with p5 � 14(coil) at 50 �M and infected with the TB40/E strain or uCMV. (B)
MRC-5 cells were treated with 50 mM sodium chlorate to remove 2-O- and 6-O-linked sulfations. All cells
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effect on cell-to-cell spread (Fig. 7A). Because most of the PEC population consists of
immune cells (data not shown), we tested our peptide’s ability to inhibit cell-to-cell
spread from infected to uninfected MEF 10.1 cells in a plaque reduction assay. As seen
with the PECs, peptide treatment did not inhibit cell-to-cell spread regardless of cell
type (Fig. 7B). To evaluate whether or not HS mediates cell-to-cell spread, we treated
murine fibroblasts with heparinase, sodium chlorate, and heparin. Cell-associated virus
spread was marginally affected in the absence of HS, pointing to a different entry
mechanism from cell-free MCMV, as heparin treatment was ineffective at inhibiting
infection (Fig. 7C). These data highlight the complexity of CMV entry whether the virus
enters from cell-to-cell spread or cell-free virus.

DISCUSSION

Decades of investment and innovation have failed to generate a protective HCMV
vaccine (10, 11). Without a vaccine, treatment of HCMV relies on drugs that target two
different stages of HCMV replication. First, nucleoside analogues (e.g., GCV, foscarnet,
and cidofovir) have been the standard treatment for HCMV disease, but these com-
pounds are myelosuppressive and nephrotoxic. The recently approved letermovir
(trade name Prevymis), which inhibits the terminase complex, is not myelosuppressive
or nephrotoxic (16). All of these agents potentially select for resistant viruses (15, 47).
Therefore, a multifaceted approach may be required to inhibit additional stages during
HCMV replication, and this could include APs that block viral entry. Other anti-CMV APs
inhibit viral entry of in vitro-derived CMV, but none have been shown to inhibit a clinical
isolate of HCMV (27, 28, 33, 48). We demonstrated that our p5(coil) peptides are capable
of inhibiting infection of both HCMV and MCMV and that these peptides can partially
inhibit infection of in vivo-derived CMVs. This is the first report of an effective inhibition
of HCMV isolated directly from urine. Clinical isolates have previously been shown to be
resistant to anti-HCMV antibody neutralization (49). Although inhibition of in vivo-
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derived virus was not as efficient as the blockade of tissue culture-derived virus, greater
than 50% reduction in infectivity was achieved, which is comparable to that observed
following sodium chlorate treatment of cells. These results support previous observa-
tions and point to the important role of 2-O- or 6-O-sulfated cell surface glycans in viral
entry via HS moieties (28).

Our data indicate that the p5(coil) peptides, which presumably inhibit the interac-
tions of viral attachment proteins with HS, were unable to inhibit cell-to-cell spread.
Also, heparin treatment of infected cells did not inhibit cell-to-cell spread. These data
provide insights into why polyclonal antibodies generated in response to the gB
vaccine are of limited efficacy (50) (i.e., the mechanism of HCMV cell-to-cell spread may
be independent of HS interactions involving the viral gB protein). The studies of
peptide-mediated inhibition of viral attachment and infection have elucidated several
important aspects of CMV infection pathways. First, these peptides, which bind pref-
erentially to sulfated HS, effectively inhibited TCV entry into cultured cells. There was
one HS exception, HS008, to which the peptide did not bind. This glycan consisted of
GlcA-GlcNS-ClcA-GlcNS-GlcA, while HS007 is one sugar moiety shorter but binds to the
peptide very well. The full set of features that are important for viral entry, (i.e., length,
number of repeating sugar units, etc.) and whether it depends on in vivo- or cell
culture-grown virus remain to be determined. Interestingly, another AP, p5 � 14, also
did not bind to HS008 (data not shown) (27). Could the lack of binding to HS008 be the
reason that the peptides cannot block 100% of the infection? Without knowing the
composition of the HS on the cell surface, we can only speculate the lack of complete
inhibition of infectivity (i.e., 5% remaining infectivity for HCMV and 30% for MCMV).
Entry differences could be due to differences in entry complexes, glycosylations of the
virion proteins, or other factors during replication in vivo. Because we have demon-
strated that virus grown on BMDMs recapitulates the “in vivo” virus phenotype, this will
allow an in-depth investigation of these possibilities. Our data demonstrate the signif-
icant biochemical differences between in vivo-grown virus and virus cultured in vitro.
Previously, differences between in vivo-derived and tissue culture-grown MCMVs were
defined as “virulent” for in vivo-grown virus or “attenuated” when grown in vitro. These
differences were not due to selection of mutated viruses, but rather differential usage
of sugar moieties for entry (36, 39, 40), which could explain why one may be more
virulent than the other. Interestingly, it appears that all in vivo-derived viruses, regard-
less of the tissue from which they were isolated, utilize discrete surface HS compared
to tissue culture-derived virus. These differences in HS usage may explain the lack of
peptide-mediated inhibition of in vivo-grown MCMV. Furthermore, it is noteworthy that
cell attachment by in vivo-grown virus did not depend on 2-O or 6-O glycans, as
indicated by the differential inhibition following sodium chlorate treatment of the cells
(Fig. 6).

Perhaps most notably, we have shown that the HS-binding peptides do not inhibit
cell-to-cell spread of CMV, which represents the main mechanism of cellular transmis-
sion in vivo (45, 51–53). Our data indicate that cell-to-cell spread does not require HS
(i.e., heparinase and sodium chlorate treatment of uninfected cells prior to being
cocultured with infected fibroblasts only achieved approximately 15% inhibition).
These data once again indicate that our current understanding of CMV entry remains
incomplete. Further understanding of the mechanism of cell-to-cell spread may provide
a path to improve treatment strategies for HCMV.

MATERIALS AND METHODS
Cells and viruses. All experiments were performed with low-passage cells (�20 passages). MRC-5

human lung fibroblasts were cultured in modified Eagle’s medium (MEM; Lonza, Rockland, ME) supple-
mented with 10% fetal bovine serum (FBS; Atlanta Biologicals, Flowery Branch, GA), 1% penicillin–
streptomycin, and 1% L-glutamine. Cells of the mouse embryonic fibroblast (MEF) line 10.1 (54) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM; Lonza, Rockland, ME) supplemented with 10%
Fetalclone III serum (HyClone, Logan, UT), 1% penicillin–streptomycin, and 1% L-glutamine. RAW 264.7
cells were cultured in DMEM (Lonza, Rockland, ME) with 10% Fetalclone III (HyClone, Logan, UT), 1%
penicillin–streptomycin, and 1% L-glutamine. Primary bone marrow-derived macrophages (BMDMs) were
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cultured in RPMI 1640 (Lonza, Rockland, ME) supplemented with 10% Fetalclone III (HyClone, Logan, UT),
1% penicillin–streptomycin, and 1% L-glutamine.

The HCMV TB40/E and MCMV K181 (55) were used in this study. HCMV TB40/E expressing luciferase
under the control of the UL18 promoter was a gift from Christine O’Connor and Eain Murphy (University
of Buffalo and Forge Life Science, LLC). TB40/E viruses were propagated on HUVECs. MCMV was produced
in vitro using MEF 10.1 cells. All viruses were stored at �80°C until use. Viral titer was assessed by plaque
assay (described below) on MEF 10.1 cells (MCMV) or MRC-5 cells (HCMV). The HCMV clinical isolates were
collected at Johns Hopkins University without any identifiers that can link them to a specific patient. To
generate BMDM virus, differentiated BMDMs were infected with K181 and virus was harvested after a
100% cytopathic effect (CPE) was observed. Salivary gland-derived virus was harvested from mouse
salivary glands at 14 dpi with K181 via the intraperitoneal (i.p.) route. Spleen-derived virus was obtained
by harvesting the organ 5 dpi after i.p. infection, while footpad-derived virus was obtained by harvesting
footpads 3 dpi following footpad inoculation with K181. All organs were homogenized, and titers were
determined via plaque assay.

BMDM differentiation. Bone marrow from naive mice was harvested and incubated in RPMI 1640
for 4 h. The medium was then changed and supplemented with macrophage colony-stimulating factor
(M-CSF; PeproTech, Rocky Hill, NJ) at 1 ng/�l for 7 days. The medium was changed every 3 days.
Differentiated cells were infected with K181 at a multiplicity of infection (MOI) of �0.1. Virus was
harvested 1 day after cells showed 100% CPE.

Treatment of cells and viruses. Cells were washed with PBS prior to addition of treatment.
Heparinase I (NEB, Ipswich, MA) was used at 12 U/�l in medium. Cells were pretreated for 1 h at 37°C
before addition of virus or cells. MEF 10.1 or MRC-5 cells were treated for 1 h with 50 mM sodium chlorate
to remove 2-O- and 6-O-linked HS as previously described (41). Heparin at various concentrations was
preincubated with virus or infected fibroblasts for 30 min at 4°C. Following pretreatment, viral infectivity
was assayed by plaque assay or cell-to-cell transfer assay as described below.

Peptides. Peptides were purchased and purified as previously described (27). Briefly, peptides were
purified by high-performance liquid chromatography (HPLC), and purity was confirmed by mass spec-
trometry (MS). Purified peptides were lyophilized and resuspended in PBS prior to use.

Plaque reduction assay. Lyophilized peptides were resuspended in PBS and stored at 4°C until use.
Fibroblasts were seeded into 24-well dishes. After cells reached �80% confluence, medium was removed
and cells were washed with PBS. Peptide in PBS plus 10% FBS or PBS plus 10% FBS alone as the control
was added, and the mixture was incubated for 30 min at 37°C. Virus was added to treated and untreated
control wells (�100 PFU/well) and incubated for an additional hour. Following virus incubation, medium
was removed and the overlay was added. Overlays consisted of 0.75% carboxymethyl cellulose (CMC;
Sigma-Aldrich, St. Louis, MO) for MCMV-infected wells and 0.5% SeaKem agarose (Lonza, Rockland, ME)
in complete medium for HCMV-infected wells. For MCMV assays, plates were incubated for 5 days, at
which point they were stained with Coomassie stain and plaques counted using a dissecting microscope.
Reduction in viral infectivity was expressed as a percentage of infectivity of PBS-treated wells. Data were
analyzed using Prism 7 (GraphPad Software, La Jolla, CA).

Cell-to-cell transfer of virus. To examine fibroblast-mediated cell-to-cell spread, MEF 10.1 cells were
infected with K181 at an MOI of 3. Following 16 h of incubation, cells were trypsinized, washed, and
counted. Approximately 300 potentially infected cells were added to an uninfected 100% confluent
monolayer of MEF 10.1 cells. The uninfected monolayer was pretreated with peptide or PBS. Infected cells
were given an hour to transfer infection, medium was removed, and a CMC overlay was added. In order
to evaluate immune cell-mediated cell-to-cell spread, mice were injected i.p. with 3% thioglycollate (56).
After 4 days, animals were infected i.p. with MCMV K181 at 1 � 106 PFU, and peritoneal exudate cells
(PECs) were collected 12 h postinfection. PECs were added to an uninfected monolayer either treated
with p5 � 14(coil) or untreated. PECs were incubated for an hour, medium was removed, and a CMC
overlay was added. Analysis was performed as described for the plaque reduction assay.

HCMV infectivity assay. HCMV TB40/E infectivity was assessed using a luciferase reporter assay as
previously described (33). Briefly, MRC-5 fibroblasts were seeded into a 24-well dish. After reaching �80%
confluence, cells were washed once with PBS and peptide with PBS plus 10% FBS or the PBS-plus-10%
FBS control was incubated at 37°C for 30 min. Virus was added at �1,000 relative light units (RLU) and
incubated at 37°C for 1 h. Cells were washed, medium was replaced, and then the mixture was incubated
at 37°C for 3 days. On day 3, cells were washed with PBS and lysed using passive lysis buffer (Promega,
Madison, WI), and the cell lysates were pelleted. Luciferase reagent (Gaussian luciferase) was combined
1:1 with cell lysate in a clear-bottom 96-well plate. Luminescence was measured using a Synergy 2 plate
reader (BioTek, Winooski, VT) and recorded as RLU. The RLU from untreated uninfected samples was
subtracted as background, and results were normalized to untreated infected wells to 100% infection.
Data were analyzed using Prism 7 (GraphPad Software, La Jolla, CA). The data were expressed as the
percentage of luminescence of the untreated infected well.

Statistical analysis and IC50 determination. Each experiment represents two or more independent
experiments with at least three replicates per experimental group, unless otherwise indicated. Individual
data points are shown for all graphs. Error bars represent the standard deviation (SD) from each data set.
Statistical significance was determined by one-tailed Student’s t test or one-way analysis of variance
(ANOVA) with Tukey’s multivariance analysis when appropriate. IC50 values were calculated using a linear
regression sigmoidal dose-dependent test. All statistical analysis was performed using Prism 7 (GraphPad
Software, La Jolla, CA). Statistical significance was assigned to P values of �0.05. Significant values are
labeled as follows: ns, not significant; *, P � 0.05; **, P � 0.01; ***, P � 0.001; and ****, P � 0.0001.
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Glycan array. The glycan array was performed by Z-biotech, LLC. Briefly, biotinylated peptide was
incubated with various heparan sulfate derivatives. Following incubation, an antibiotin, fluorescently
labeled antibody was added, and a plate reader determined fluorescence. The data represent 6 technical
replicates per HS residue.

Mice. Animal use was approved under The University of Tennessee, Knoxville, IACUC protocol. The
animals used were housed and bred at the Walters Life Science Laboratory Animal Facility at The
University of Tennessee. BALB/c mice (6 to 12 weeks) were purchased from Jackson Laboratory (Bar
Harbor, ME) and housed under specific-pathogen-free conditions.

In vivo analysis of peptide efficacy. Mice were treated with intravenously via the retro-orbital route
with the indicated peptide at 250 �g/mouse 1 h prior to infection. One hour posttreatment, animals were
infected i.p. with 1 � 106 PFU of K181. Four days postinfection, animals were euthanized and spleens
were harvested. Viral burden was determined by plaque assay as described above.

Peptide biodistribution. To determine the distribution of our APs in vivo, mice were injected
intravenously (i.v.) in the lateral tail vein with 125I-labeled peptides (�120 �Ci, 20 �g of peptide). At 1 and
4 h postinjection, mice were euthanized with an isoflurane inhalation overdose, spleen, liver, lung, and
nine other tissues were harvested, and the tissue radioactivity was measured as previously described (30,
33). The biodistribution of radiolabeled peptide was expressed as a percentage of the injected dose per
gram of tissue.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
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