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Abstract

The wealth of information deliverable from transcriptome sequencing (RNA-seq) is signifi-

cant, however current applications for variant detection still remain a challenge due to the

complexity of the transcriptome. Given the ability of RNA-seq to reveal active regions of the

genome, detection of RNA-seq SNPs can prove valuable in understanding the phenotypic

diversity between populations. Thus, we present a novel computational workflow named

VAP (Variant Analysis Pipeline) that takes advantage of multiple RNA-seq splice aware

aligners to call SNPs in non-human models using RNA-seq data only. We applied VAP to

RNA-seq from a highly inbred chicken line and achieved high accuracy when compared with

the matching whole genome sequencing (WGS) data. Over 65% of WGS coding variants

were identified from RNA-seq. Further, our results discovered SNPs resulting from post

transcriptional modifications, such as RNA editing, which may reveal potentially functional

variation that would have otherwise been missed in genomic data. Even with the limitation in

detecting variants in expressed regions only, our method proves to be a reliable alternative

for SNP identification using RNA-seq data. The source code and user manuals are available

at https://modupeore.github.io/VAP/.

Introduction

Detection of single nucleotide polymorphisms (SNPs) is an important step in understanding

the relationship between genotype and phenotype. The insights achieved with next generation

sequencing (NGS) technologies provide an unbiased view of the entire genome, exome or

transcriptome at a reasonable cost [1]. Most methods for variant identification utilize whole-

genome or whole-exome sequencing data, while variant identification using RNA-seq remains

a challenge because of the complexity in the transcriptome and the high false positive rates [2].

However, having access to RNA sequences at a single nucleotide resolution provides the

opportunity to investigate gene or transcript differences across species at a nucleotide level.

RNA-seq is applicable to numerous research studies, such as the quantification of gene

expression levels, detection of alternative splicing, allele-specific expression, gene fusions or

RNA editing [3]. Workflows have been developed to address identifying SNPs from RNA-seq

reads in human samples, including SNPiR, eSNV-detect and Opossum + Platypus [4]. SNPiR
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[5] employs a non-splice aware mapper, BWA, and variant calling using GATK UnifiedGen-

otyper. eSNV-detect [6] relies on combination of two aligners (BWA and TopHat2) followed

by variant calling with SAMtools. Opposum reconstructs pre-existing RNA alignment files to

make them suitable for haplotype-based variant calling with Platypus [7], however no signifi-

cant improvement aside runtime was observed when compared to the current widely applied

approach for variant calling, which is the GATK HaplotypeCaller [4]. In addition these work-

flows either rely on outdated variant calling procedures, or do nothing to address the existing

bias in the read alignment step towards false positives calls as a result of the transcriptome

complexity, thus making it difficult to sufficiently compare their performance.

Due to these limitations, we designed a workflow, called VAP (Variant Analysis Pipeline),

to reliably identify SNPs in RNA-seq in non-human models. VAP takes into consideration

current state-of-the-art RNA-seq mapping, variant calling algorithms and the GATK best

practices recommended by the Broad Institute [8], Our workflow consists of (i) multiple

splice-aware reference-mapping algorithms that make use of the transcripts annotation data,

(ii) variant calling following the Genome Analysis Toolkit (GATK) best practices, and (iii)

stringent filtering procedures. We propose that calculating specificity will estimate the likeli-

hood of detecting a true variant in RNA-seq and sensitivity will determine how likely RNA-seq

is able to detect an expressed SNP if it is present in a transcribed gene [9]. Overall the results

indicate that RNA-seq can be an accurate method of SNP detection using our VAP workflow.

Materials and methods

VAP workflow

Fig 1 shows the flowchart of the VAP workflow. Read quality was assessed using FastQC and

preprocessed using Trimmomatic [10] and/or AfterQC [11] when required. Pre-processed

RNA-seq reads were mapped to the reference genome and known transcripts employing three

splice-aware assembly tools; TopHat2 [12], HiSAT2 [13] and STAR [14]. All three programs

are open-source and are highly recommended for reliable reference mapping of RNA-seq data

[15]. SAMtools was used to convert the alignment results to BAM format [16]. The mapped

reads undergo sorting, adding read groups, and marking of duplicates using Picard tools pack-

age (https://broadinstitute.github.io/picard/). The SNP calling step uses the GATK toolkit for

splitting “N” cigar reads (i.e. splice junction reads), base quality score recalibration and variant

detection using the GATK HaplotypeCaller [17]. Lastly, the filtering steps entail assigning pri-

ority to SNPs found in all three mapping plus SNP calling steps, to minimize false positive vari-

ant calls. The priority SNPs were filtered using the GATK Variant Filtration tool and custom

Perl scripts. SNPs were filtered using the set of read characteristics summarized in Table 1; low

quality calls (QD< 5), or variants with strong strand bias (FS > 60), or low read depth

(DP< 10) and SNP clusters (3 SNPs in 35bp window) were excluded from further analysis.

Custom filtering was described as follows: nucleotide positions with less than 5 reads support-

ing alternative allele and nucleotide positions with heterozygosity scores< 0.10 are eliminated

to prevent ambiguous SNP calls. Alternative-allele ratio (Het) is calculated by Heti = aai / ti;
where i is the nucleotide base pair, aai is the alternate read depth at the location i, and ti is the

total number of reads at location i. After filtering, the variants were annotated using the

ANNOVAR [18] and VEP [19] software. The pipeline is publicly available for download at

https://modupeore.github.io/VAP/.

DNA and RNA sequencing data

We obtained RNA-seq and whole genome sequencing (WGS) data for highly inbred Fayoumi

chickens from previously published works. For RNA-seq, a total of 117 million 75bp pair-end

SNP calling from RNA-SEQ in non-human models

PLOS ONE | https://doi.org/10.1371/journal.pone.0216838 September 23, 2019 2 / 17

Department of Agriculture National institute of

Food and Agriculture. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://broadinstitute.github.io/picard/
https://modupeore.github.io/VAP/
https://doi.org/10.1371/journal.pone.0216838


SNP calling from RNA-SEQ in non-human models

PLOS ONE | https://doi.org/10.1371/journal.pone.0216838 September 23, 2019 3 / 17

https://doi.org/10.1371/journal.pone.0216838


reads were generated from the brain and liver of 2 chicken embryos at day 12 (Zhuo et al.,

2017; the NCBI Sequence Read Archive Accession number SRP102082) [20]. For WGS, pooled

DNA samples were constructed from individual DNA isolates from blood from 16 birds, con-

tributing to 241 million 100bp pair-end reads (Fleming et al., 2016; the NCBI Sequence Read

Archive Accession number SRP192622) [21]. Both samples were sequenced on the Illumina

HiSeq platform. The transcriptome and whole genome of these samples have been deeply

sequenced to provide sufficient coverage for accurate identification of variants from RNA and

DNA of the same line. Having matched RNA and DNA samples allows for suitable verification

of RNA SNP calls, making our datasets good candidates for evaluating the accuracy of our

VAP methodology.

600K genotyping data

Samples were genotyped individually and included 96 samples from two purebred (24 sam-

ples) and one crossbred (72 samples) commercial broiler populations. Standard management

and husbandry procedures were followed, as approved by the Animal Care and Use Commit-

tee (AACUC #(27) 03-12-14R). The samples were genotyped with the ThermoFisher Axiom

Chicken Genotyping Array (the Gene Expression Omnibus Accession code GSE131764) [22].

The raw genotyping data (cel files) were analyzed with the Gallus gallus 5.0 genome (from

Axiom server) using the Axiom Analysis Suite Software (version 3.0.1) following the software’s

Best Practices Workflow using recommended settings for agricultural animals. The final

results were exported, including a raw VCF of all the genotype calls and a txt file of all variants

with> = 97% call rate. The txt file was utilized to filter low quality variants from the raw VCF.

RNA-seq mapping, variant calling and filtering

RNA-seq samples were mapped with the three RNA-seq mapping tools; TopHat2 (v 2.1.1),

HiSAT2 (v 2.1.0) and STAR (v 2.5.2b) 2-pass method using default parameters to the NCBI

Gallus gallus Build 5.0 reference genome and the mapping files were converted to BAM using

SAMtools (v 1.4.1). The BAM files were processed, and variants were called using Picard tools

(v 2.13.2) and GATK (v 3.8-0-ge9d806836) through the VAP pipeline. We used ANNOVAR (v

2017Jul16) and VEP (v 91) to annotate variants on the basis of gene model from RefSeq,

Ensembl and the UCSC Genome Browser. We retained SNPs found with all three mapping

tools and those that fulfilled the filtering criteria in Table 1. SNPs found in WGS data or

Fig 1. Flow chart of the VAP workflow. FastQ files are QC using FastQC, mapped using three aligners. BAM files are

pre-processed by Picard and GATK, then merged, annotated and filtered to achieve high-confident SNPs.

https://doi.org/10.1371/journal.pone.0216838.g001

Table 1. Criteria used in the VAP filtering workflow.

Criteria Threshold

ReadRankPosSum (RRPS) RRPS< -8

Quality by depth (QD) QD < 5

Read depth (DP) DP < 10

Fisher’s exact test p-value (FS) FS > 60

Mapping Quality (MQ) MQ < 40

SnpCluster 3 SNPs in 35bp

Mann-Whitney Rank-Sum (MQRankSum) MQRankSum < -12.5

Alternative allele supporting read depth ALTreads < 5

Alternative allele ratio (Het) aa / t � 0.10

https://doi.org/10.1371/journal.pone.0216838.t001
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present in dbSNP (Build 150) are identified as “verified” variants, while those not found are

tagged as “novel”. The precision of the VAP workflow was determined as the number of all

known RNA-seq variants divided by the total number of known and novel RNA-seq variants,

i.e. Precision = verifiedSNPs / (verifiedSNPs + novelSNPs).

WGS mapping, variant calling and filtering

We mapped the WGS data with BWA-mem (v 0.7.16a-r1181) [23] using default parameters to

the NCBI Gallus gallus Build 5.0 reference genome. Variant calling was performed using

Picard and GATK HaplotypeCaller, following the recommendations proposed by Van der

Auwera et al [24] and Yiyuan Yan et al [25]. Similar filtering parameters for RNA-seq as previ-

ously described were applied using the GATK Variant Filtration tool and custom scripts

(Table 1). To allow a fair comparison between RNA-seq and WGS variants, we estimated spec-

ificity with the fraction of coding exonic variants identified from WGS.

Sensitivity and specificity of verified RNA-seq SNPs

To determine the accuracy of detecting a true variant from RNA-seq using our VAP workflow,

we calculated the specificity and sensitivity of the verified RNA-seq SNPs. Because we are

using transcriptome data, we theoretically should only be able to detect SNPs at sites expressed

in our data. Sensitivity analysis will evaluate the accuracy of our pipeline to correctly detect

known SNPs using RNA-seq, and specificity analysis will assess how likely a SNP is detected

by RNA-seq compared to WGS. To do this, we further characterized our verified RNA-seq

SNPs as “true-verified” and “non-verified” SNPs. A true-verified SNP (TS) is a SNP with the

same corresponding dbSNP and/or WGS data, and a non-verified SNP (NS) is where the

genotype does not match the dbSNP/WGS data. Also, SNPs not detected in RNA-seq but

found in WGS and validated using dbSNP are called “DNA-verified” SNPs (DS). Sensitivity is

calculated as the number of TS divided by the number of TS plus the number of PS (i.e.

Sensitivity = TS / (TS + NS)). While specificity is estimated as the number of TS divided by the

number of TS plus the number of DS (i.e. Specificity = TS / (TS + DS)) [5,9].

Gene expression analysis

Variants in expressed regions were identified by gene quantification analysis using StringTie

v1.3.3 [26] on the TopHat2, HISAT2 and STAR BAM files. The average FPKM (fragments per

kilobase of transcript per million fragments mapped) was calculated for specificity analysis.

Results

The multi-aligner concept

VAP uses a multi-aligner concept to call SNPs confidently. The application of multiple aligners

reduces false discovery rates significantly, as shown in the eSNV-detect pipeline [6,27]. How-

ever, we do not assign a confidence hierarchy on candidate SNP calls, rather SNP detected

from all three aligners are weighted equally, thus all consensus SNPs are obtained and filtered

based on the filtering criteria listed above. High percentages of similar SNPs were observed

between all three tools, which shows that using a splice-aware read mapper is appropriate for

reference mapping using RNA-seq, unlike with BWA. Table 2 provides the summary of map-

ping and variant calling statistics from the multiple aligners.

SNP calling from RNA-SEQ in non-human models
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SNPs detected in RNA-seq data

Our method identified 514,729 SNPs from all 3 aligners before filtering, which assures reduc-

tion of false positives calls (Fig 2). After filtering, 282,798 (54.9%) high confidence SNPs

remain, of which 97.2% (274,777 SNPs) were supported by evidence from WGS or dbSNP

v.150 (Fig 3). The verified sites exhibited a transition-to-transversion (ts/tv) ratio of 2.84 and

estimated ts/tv ratio of ~5 for exonic regions and thus a good indicator of genomic conserva-

tion in transcribed regions. For the remaining (novel) 8,021 SNPs, we observed slightly lower

ts/tv ratio (2.81) than for the verified sites. The variant sites showed a clear enrichment of

Table 2. Summary from the multiple aligners; read mapping statistics and variant calls.

Tools % reads mapped % reference covered Variants SNPs % similar SNPs

TopHat 87.7 23.07 578655 535505 96.12

HiSAT 90.53 23.44 636948 583547 88.21

STAR 87.81 23.7 798696 708391 72.66

https://doi.org/10.1371/journal.pone.0216838.t002

Fig 2. Comparison of RNA-seq SNPs identified in the different mapping tools.

https://doi.org/10.1371/journal.pone.0216838.g002
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transitions, inclusive of A>G and T>C mutations (73.9%), indicative of mRNA editing and

the dominant A-to-I RNA editing [28] (Fig 4).

SNPs allele frequencies

The 282,798 SNPs called, were grouped based on their variant allele frequencies (VAF). VAFs

were calculated by dividing the number of reads supporting the variant allele by the total num-

ber of reads obtained. SNPs were grouped as homozygous to the alternative allele with

VAF� 0.99, and heterozygous with VAF< 0.99. We found 264,790 (93.6%) and 18,008 (6.4%)

SNPs were classified as homozygous alternate and heterozygous, respectively. Most of the pre-

dicted SNPs were homozygous to the non-reference allele, confirming high level of inbreeding

in Fayoumi [29,30].

Precision and sensitivity of RNA-seq SNPs

A high proportion of SNPs detected in RNA-seq data are true variants. The sensitivity of SNP

calls are similar for both heterozygous and homozygous sites (Fig 5). With the high number of

calls verified via dbSNP, the precision is much higher for homozygous variants compared to

heterozygous variants, indicating that a high proportion of expected variants can be detected

using RNA-seq with adequate coverage. The decreased precision in heterozygous SNPs may

suggest expression of the non-reference allele, and this provides the opportunity to study the

effects of genetic variation on the different transcriptional events, such as RNA editing,

Fig 3. Comparison of RNA-seq SNPs found in either dbSNP or WGS.

https://doi.org/10.1371/journal.pone.0216838.g003
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alternate splicing and allelic specific expression, which cannot be explained using DNA

sequencing data [31].

Functional classification of RNA-seq and WGS variants

Thirteen percent of the RNA-seq SNPs were predicted to be within protein-coding regions

while >1% of the WGS SNPs were in coding regions when annotated against both the NCBI

Fig 4. The mutational profile of RNA-seq variants.

https://doi.org/10.1371/journal.pone.0216838.g004
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and ENSEMBL gene database for chicken; the remaining SNPs were found in non-coding or

regulatory regions (Table 3). Due to difficulty in annotating and determining the impact of

polymorphisms on non-coding or regulatory regions, only polymorphisms found on coding

regions were further evaluated.

Specificity of RNA-seq SNPs

To calculate specificity of our VAP methodology, we focused on variants in coding regions to

allow for fair comparison between RNA-seq and WGS data. Approximately 66% of the coding

variants identified by WGS were discovered using RNA-seq alone (Fig 6). Given that RNA-seq

required less sequencing effort and computational requirements (e.g. 234 million for RNA-seq

compared to the 482 million for WGS sequencing reads used in our case study). Using RNA-

seq data is advantageous because it enriches for expressed genic regions compared to WGS

and therefore will increase the power to detect functionally important SNPs impacting protein

sequence.

We then compared the RNA-seq SNPs in expressed genes (having FPKM> 0.1), and the

specificity increased from 66% to over 82% (Fig 7). This shows that a large fraction of genes

are expressed at very low levels (Fig 8). Overall the results prove our methodology can achieve

high specificity for variant calling in expressed regions of the genome.

Comparison of RNA-seq and 600k genotyping panel SNPs

Given the high accuracy of genotyping arrays for SNP discovery, we compared our initially

verified RNA-seq SNPs with the genotyped chromosomes identified in the 600k chicken geno-

typing panel (i.e. the autosomes (GGA1–33). A low percentage (10%) of our RNA-seq SNPs

overlap with the 600k SNPs (Fig 9), which is largely due to the limitation in the number of var-

iants the genotyping panel is able to capture across different samples. However, 99.9% of the

Fig 5. Comparison of SNPs identified as homozygous and heterozygous in RNA-seq.

https://doi.org/10.1371/journal.pone.0216838.g005
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genotyping SNPs were found in dbSNP, proving dbSNP is an adequate method for in silico
verification of our RNA-seq SNPs.

RNA–DNA differences (RDD) sites

As mentioned before, our RNA-seq SNPs were notably contributed from transitions which

may be attributed to mRNA editing. Further classifications of the RNA-seq SNPs detected in

exons reveal 34% of the exonic SNPs verified by dbSNP were not identified in our WGS data.

The majority of the RNA SNPs were not found in WGS because of the mapping and filtering

parameters as shown in Table 4. Interestingly, 24% of these SNPs were not found because the

alternate nucleotide was not present in the DNA sequence potentially indicating RNA–DNA

Table 3. SNPs belonging to different annotation categories.

Annotation categories Number (%) Mean VAF (± SD) No. homozygous (VAF�0.99) a

RNA

Intergenic 162240 (57) 0.99 (0.06) 152732 (94%)

Up/downstream 11793 (4) 0.99 (0.07) 10817 (92%)

Intronic 58028 (20) 0.99 (0.05) 55744 (96%)

Exonic 36702 (13) 0.99 (0.08) 33051 (90%)

Non-synonymous 8599 (3) 0.98 (0.11) 7664 (89%)

Synonymous 28094 (10) 0.99 (0.07) 25353 (90%)

Stop-gain/loss 39 (<1) 0.96 (0.16) 34 (87%)

Splicing 8 (<1) 1 (0) 8 (100%)

UTR3/UTR5 13421 (5) 0.98 (0.09) 11895 (88%)

ncRNA 106 (<1) 0.97 (0.13) 100 (94%)

WGS

Intergenic 2865498 (82) 0.99 (0.07) 2659382 (92%)

Up/downstream 30741 (<1) 0.99 (0.08) 28558 (93%)

Intronic 565323 (16) 0.99 (0.07) 522577 (92%)

Exonic 34294 (1) 0.98 (0.09) 31875 (92%)

Non-synonymous 8946 (<1) 0.97 (0.11) 8283 (86%)

Synonymous 25274 (<1) 0.99 (0.08) 23526 (93%)

Stop-gain/loss 74 (<1) 0.98 (0.11) 66 (69%)

Splicing 17 (<1) 0.97 (0.13) 17 (100%)

UTR3/UTR5 12476 (<1) 0.99 (0.07) 11515 (92%)

ncRNA 302 (<1) 0.99 (0.07) 277 (91%)

Overlap RNA and WGS b

Intergenic 125218 (58) 1 (0.04) 112462 (89%)

Up/downstream 9787 (4) 0.99 (0.04) 6908 (87%)

Intronic 47894 (22) 1 (0.04) 43636 (91%)

Exonic 22551 (10) 0.99 (0.05) 19533 (87%)

Non-synonymous 5165 (2) 0.99 (0.06) 4486 (87%)

Synonymous 17363 (8) 0.99 (0.05) 15030 (86%)

Stop-gain/loss 23 (<1) 1 (0.01) 17 (39%)

Splicing 5 (<1) 1 (0) 5 (100%)

UTR3/UTR5 9943 (5) 0.99 (0.04) 8475 (85%)

ncRNA 73 (<1) 0.99 (0.03) 63 (86%)

a The percentages are in relation to the number of SNPs within the annotation category.
b The percentages are in relation to the number of SNPs within the annotation category in RNA.

https://doi.org/10.1371/journal.pone.0216838.t003
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differences (RDD). Consequently, these RDD sites may result from post-transcriptional modi-

fication of the RNA sequence, such as RNA editing or alternative splicing.

RNA editing is the most prevalent form of post-transcriptional maturation processes that

contributes to transcriptome diversity. It involves the modification of specific nucleotides in

the RNA sequence without altering its template DNA [28,32]. From our dataset, we identified

the three non-synonymous RDD mutations on CYFIP2, GRIA2 and COG3 previously vali-

dated by Frésand et al. in chicken embryos [28] (Table 5). This demonstrates the VAP method-

ology ability to detect conserved RNA editing phenomena and that it can be used in further

discovery of novel post-transcriptional editing events.

Discussion

RNA-seq is instrumental in understanding the complexity of the transcriptome. Several meth-

odologies have provided approaches to understanding the varied aspects occurring in the tran-

scriptome, but little has been done in its application to identifying variants in functional

regions of the genome. To this aim, we designed the VAP workflow, a multi-aligner strategy

using a combination of splice-aware RNA-seq reference mapping tools, variant identification

using GATK, and subsequent filtering that allows accurate identification of genomic variants

from transcriptome sequencing. Our results show very high precision, sensitivity and specific-

ity, though limited to SNPs occurring in transcribed regions.

Considering the mapping phase of RNA-seq reads is a crucial step in variant calling, we

devised a reference mapping strategy using three RNA-seq splice-aware aligners to reduce the

prevalence of false positives. The use of the splice-aware aligner allows for accurate assembly of

reads because it makes use of both the genome and transcriptome information simultaneously

for read mapping.

The ability to call variants from RNA-seq has numerous applications. It enables validation

of variants detected by genome sequencing. It also uncovers potential post-transcriptional

modifications for gene regulation (Table 5) and allows for detection of previously unidentified

variants that may be functionally important but difficult to capture using DNA sequencing or

Fig 6. Overlap of SNPs found in coding regions from RNA-seq and WGS. 66% of the coding variants identified in

WGS data were found in RNA-seq. However, the remaining WGS coding variants were not detected as a result of

either: lack of expression/transcription (“no transcription”), the position was homozygous in RNA (“no variation”),

“found but filtered” signifying that the position was detected but removed by one of our filtering steps, or “filtered”

which indicates the position was heterozygous but filtered because it didn’t meet the default parameters for variant

detection.

https://doi.org/10.1371/journal.pone.0216838.g006
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exome sequencing at lower cost. Although our WGS data was not sequenced from the same

samples that gave rise to the RNA-seq data, this could explain the poor overlap in our datasets,

for instance, 87.5% of RNA-seq variants in exons were not found in WGS though well charac-

terized in dbSNP (Fig 6), as a result further verification will require genome sequencing of the

same birds. Notwithstanding, RNA variants can be used in identifying genetic markers for

genetic mapping of traits of interest, thus offering a better understanding of the relationship

between genotype and phenotype.

Fig 7. Specificity and number of RNA-seq SNPs detected in relation to the genes expressed (FPKM values).

https://doi.org/10.1371/journal.pone.0216838.g007
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Our VAP methodology shows high precision in calling SNPs from RNA-seq data. It is how-

ever limited by the RNA-seq experiments; RNA SNPs are detected only on the transcripts

expressed. Regardless of comprehensive coverage, variant detection in some portions of the

genome are not guaranteed by RNA-seq because of the potential lack of expression. Also,

allele-specific gene expression or tissue-specific gene expression might hamper the discovery

of genomic variants given that the allele carrying the variant might not be expressed or the tis-

sues collected might not express the genes of interest.

Fig 8. Distribution of expression levels for genes with RNA-seq SNPs.

https://doi.org/10.1371/journal.pone.0216838.g008
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SNP genotyping offers a highly accurate and alternative method of SNP discovery, and thus

offers an additional in silico method of validation of our RNA-seq SNPs. However, a low overlap

with the 600K chicken genotyping panel was observed (Fig 9). This low overlap is most likely

due to the limitations in genotyping panels currently available for any given organism. The gen-

otyping panels are limited by the number of variants they are able to capture across different

genetic backgrounds [22]. Not surprisingly, the majority of the 600K genotyping variants were

also identified in dbSNP, proving that dbSNP an excellent choice for in silico validation.

Nevertheless, VAP allows the detection of variants even for lowly expressed genes. To

obtain higher confidence in variant calls, pooling multiple data sets (i.e. RNA-seq from differ-

ent tissues) can increase the coverage thereby facilitate variant discovery in regions of interest

that would have otherwise been missed. Our study demonstrates that variants calling from

Fig 9. Comparison of SNP calls between 600k Genotyping panel, RNA-seq SNPs, WGS SNPs and dbSNP v150. (a) all autosomal SNPs and (b) autosomal

SNPs found in exons.

https://doi.org/10.1371/journal.pone.0216838.g009

Table 4. Explanation for the 14,147 RNA SNPs not found in WGS data.

Reason for absence Number of SNPs

(%)

Position was heterozygous in WGS but filtered because it didn’t meet the default parameters

for variant detection.

1225 (8.7)

No reads were mapped to region/position. 1693 (12)

Position was homozygous in WGS 3471 (24.5)

Position was heterozygous in WGS but removed by our custom filtering pipeline 7758 (54.8)

https://doi.org/10.1371/journal.pone.0216838.t004

Table 5. Potentially functional RDD candidates found in Fayoumi.

CHROM POSITION DNA NUCLEOTIDE RDD NUCLEOTIDE AMINO ACID CHANGE GENE SHORT NAME VAF SCORE

chr 1 167798513 A G I/V COG3 0.524

chr 4 21653669 A G R/G GRIA2 0.703

chr 13 11398088 T C K/E CYFIP2 0.375

https://doi.org/10.1371/journal.pone.0216838.t005
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RNA-seq experiments can tremendously benefit from an increased number of reads increasing

the coverage of genomic regions especially for whole genome analysis; nevertheless even our

small sample size allowed for reliable calling of variants and enriching for variants in exonic

regions.

Despite the limitations of calling genomic variants from RNA-seq data, our work shows

high sensitivity and specificity in SNP calls from RNA-seq data. SNP calling from RNA-seq

will not replace WGS or exome-sequencing (WES) approaches but rather offers a suitable

alternative to either approaches and might complement or be used to validate SNPs detected

from either WGS or WES. Overall, we present a valuable methodology that provides an avenue

to analyze genomic SNPs from RNA-seq data alone.
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