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Abstract
Background: Thromboembolism affects up to 30% of children undergoing treatment 
for acute lymphoblastic leukemia (ALL). Increased thrombin generation has been re-
ported in ALL, but the mechanisms remain elusive.
Objective: We aimed to show that extracellular traps and cell- free DNA (cfDNA) pro-
mote thrombin generation in pediatric ALL.
Methods: In a longitudinal single- center study, we recruited 17 consecutive pediat-
ric ALL patients. Serial blood samples were collected at diagnosis and weekly during 
the	4-	week	induction	phase	of	antileukemic	chemotherapy.	Healthy	children	(n	=	14)	
and	children	with	deep	vein	thrombosis	(DVT;	n	= 7) or sepsis (n = 5) were recruited 
as negative and positive controls, respectively. In plasma, we measured endogenous 
thrombin generation potential (ETP) and components of extracellular traps, including 
cfDNA.
Results: In patients with ALL, ETP was increased at baseline and remained signifi-
cantly elevated throughout the induction therapy. Plasma levels of cfDNA were in-
creased at baseline and during the first 3 weeks of induction therapy. The extent of 
enhancement of ETP and plasma cfDNA in patients with ALL was similar to that seen 
in	patients	with	DVT	or	sepsis.	Treatment	of	plasma	with	DNase	1	 lowered	ETP	 in	
patients with ALL at each time point but did not affect ETP in healthy controls.
Conclusion: We conclude that childhood ALL is associated with a prothrombotic 
milieu at the time of diagnosis that continues during induction chemotherapy, and 
cfDNA contributes to increased thrombogenic potential.
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Essentials

•	 Thromboembolism	affects	≤30%	of	children	undergoing	treatment	for	acute	lymphoblastic	leukemia	(ALL).
• We hypothesized that extracellular traps and cell- free DNA increase thrombin generation in these patients.
• We found that thrombin generation potential was increased before and during chemotherapy.
• Treatment of plasma with DNase 1 lowered thrombin generation potential.

1  |  INTRODUC TION

Acute lymphoblastic leukemia (ALL) is the most common malignancy 
in childhood, affecting about 30 per million children.1 Complications 
associated with ALL and its therapy remain a challenge to successful 
outcomes. Thromboembolism in particular may affect up to 30% of 
children undergoing treatment for ALL.2 A majority of thrombotic 
complications	occur	during	the	first	4	weeks	of	therapy,	known	as	
the “induction” phase, during which patients receive intensive anti-
leukemic therapy to induce remission.

Several therapy- related hemostatic alterations occur with ALL 
that have the potential to cause hypercoagulability.3,4 Increased 
thrombin generation has been reported in pediatric ALL,4–	6 but 
the mechanisms remain elusive. Recent studies have focused on 
the role of extracellular traps, which contain decondensed chro-
matin nucleosomes (histone- bound DNA), citrullinated histones, 
and cell- free DNA (cfDNA) as potential mediators of increased 
thrombin generation in a variety of clinical settings associated with 
thrombosis.7–	9	Most	 studies	have	 characterized	extracellular	 traps	
released from neutrophils, but other hematopoietic cells such as 
eosinophils,10 mast cells,11 and basophils12 can also contribute to 
their formation. It is possible that blast cells undergoing lysis during 
therapy phase may likewise release cfDNA or citrullinated histones. 
We therefore hypothesized that increased thrombogenic potential 
in children undergoing induction therapy for ALL may be driven by 
release of cfDNA or other components of extracellular traps.

To address this question, we performed a longitudinal study in 
pediatric patients with ALL. The objectives were to determine if 
components of extracellular traps are elevated in the plasma of chil-
dren with ALL and to define the contribution of cfDNA to enhanced 
thrombin generation potential.

2  |  METHODS

We designed a longitudinal single- center cohort study of consecu-
tive pediatric patients with ALL undergoing induction with antileu-
kemic therapy at the Stead Family Children’s Hospital (SFCH) at the 
University of Iowa from 2016 through 2018. We recruited a total 
of 17 children with ALL and 28 additional subjects: 7 children with 
sepsis,	 5	 with	 deep	 vein	 thrombosis	 (DVT),	 and	 14	 healthy	 con-
trols. Healthy children without any acute or chronic illnesses, and 
children	with	sepsis	or	DVT	were	recruited	through	the	outpatient	
clinics and inpatient units of the SFCH. The protocol was approved 
by the University of Iowa Institutional Review Board (IRB). Informed 
consent and assent were obtained from parents/guardians of minor 

children and children >7 years of age, respectively. Assent was 
waived for critically ill children.

ALL was diagnosed using standard World Health Organization 
criteria with >20% of lymphoblasts in blood or bone marrow and 
lymphoblast subtyping by flow cytometry.13 Patients with ALL were 
categorized on the basis of lymphoblast phenotype and National 
Cancer Institute risk stratification as T- cell ALL (N =	3);	pre–	B-	cell	
ALL, standard risk (SR; N =	 10);	 or	 pre–	B-	cell	 ALL,	 high	 risk	 (HR;	
N =	4).	Subjects	were	followed	longitudinally	from	diagnosis	through	
completion	 of	 4	 weeks	 of	 induction	 chemotherapy	 according	 to	
Children’s Oncology Group protocols that consisted of a three (for 
pre- B SR) or four (for pre- B HR or T- cell ALL) drug regimen with cor-
ticosteroids, vincristine, pegylated asparaginase, and daunorubicin 
(only for four drug regimens). None of the subjects received antico-
agulants or antiplatelet therapy.

2.1  |  Sample collection and processing

For patients with ALL, blood samples were collected at the time 
of	 diagnosis	 (baseline)	 and	 weekly	 during	 the	 4-	week	 induction	
therapy time period (a total of five time points). The baseline sam-
ple	 was	 collected	 within	 24	 hours	 before	 initiation	 of	 induction	
chemotherapy. For control subjects, a blood sample was collected 
once only. Whole blood was collected into tubes containing 3.2% 
Na	citrate	through	a	central	venous	line	(CVL)	for	patients	with	ALL	
and through an antecubital vein from control subjects. All samples 
were collected in the morning and processed within 30 minutes. 
Blood was centrifuged at 2500 g for 10 minutes at room tempera-
ture. The supernatant fraction of platelet- poor plasma (PPP) was 
transferred to a separate tube and centrifuged again at 10 000 g 
for	10	minutes	and	aliquoted	and	stored	at	−80°C	until	assays	were	
performed. The volume of blood and sample collection complied 
with IRB guidelines.

2.2  |  Thrombin generation

Thrombin generation was measured using the Calibrated Automated 
Thrombogram (CAT, Diagnostica Stago, Inc, Parsippany, NJ, USA).14 
Briefly, 80 µL of PPP was incubated with 20 µL “PPP low” reagent 
containing	1	pM	of	tissue	factor	and	phospholipids	for	10	minutes,	
followed by addition of a fluorogenic substrate containing CaCl2. 
Thrombin generation was measured continuously, and parameters 
of lag time, peak thrombin, and endogenous thrombin potential 
(ETP, a measure of the area under the thrombin generation curve) 
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were recorded. In experiments with DNase 1, PPP samples were 
treated with 20 µg/mL of DNase 1 (Worthington Biochemical Corp., 
Lakewood,	NJ,	USA)	or	heat-	inactivated	DNase	1	(control)	at	37°C	
for 60 minutes prior to assay.

2.3  |  Components of extracellular traps

Quantification of circulating cfDNA in plasma samples was 
performed using the Qubit dsDNA HS Assay (Invitrogen, Life 
Technologies, Carlsbad, CA, USA). Levels of citrullinated histone H3 
(H3Cit) were measured by ELISA (Clone 11D3, Cayman Chemical, 
Ann	 Arbor,	MI,	 USA),	 and	 nucleosomes	were	measured	 using	 the	
Cell Death Detection ELISA (Roche Diagnostics, Basel, Switzerland), 
which detects mono-  and oligonucleosomes, and presented as fold 
change compared to healthy controls.

2.4  |  Other hematologic assays

Complete	blood	cell	 count	was	performed	using	Sysmex	XN-	450/
XN-	430,	a	quantitative	automated	hematology	analyzer.	Plasma	pro-
thrombin and serum plasminogen activator inhibitor- 1 (PAI- 1) were 
measured	 using	 human-	specific	 ELISAs	 (Molecular	 Innovations,	
Southfield,	MI,	USA).

2.5  |  Statistical analysis

Prism software (GraphPad Software, La Jolla, CA, USA) was used 
for all statistical analysis. Descriptive analyses were performed 
using mean, median, and standard deviation for the age and blood 
cell counts. A normality test was performed on each data set using 
the	D’Agostino-	Pearson	omnibus	K2	test.	For	parameters	showing	
a	nonlinear	distribution,	 the	Kruskal-	Wallis	 test	on	 ranks	was	per-
formed. Dunn’s test was used for multiple comparisons. One- way 
or two- way analysis of variance with Tukey’s test for multiple com-
parisons was performed to analyze data sets that showed normal 
distribution. In studies using DNase 1 treatments, the two- stage lin-
ear	step-	up	procedure	of	Benjamini,	Kreiger,	and	Yekulteli	was	per-
formed. Statistical significance was defined as P < .05.

3  |  RESULTS AND DISCUSSION

Detailed patient characteristics and hematologic parameters are 
provided in Table 1. The ETP was significantly elevated during 
weeks	1	to	4	of	induction	therapy	in	patients	with	ALL	and	in	pa-
tients	with	DVT	(P < .05 and P < .01 vs healthy controls, respec-
tively) (Figure 1A). No differences in lag time to initial thrombin 
generation were observed between healthy controls, patients with 
ALL	at	baseline	or	during	induction	therapy,	or	children	with	DVT	

TA B L E  1 Hematologic	parameters	for	healthy	controls	and	patients	with	ALL

Healthy controls 
(N = 16)

Patients with ALL (N = 17)

Baseline, week 
0a  Week 1 Week 2 Week 3 Week 4

Age, y 5.0 (0.5- 17) 5.9	(1.5-	14.2)

Sex,	M:F 6:8 10:7

Hemoglobin, g/dL 12.3 ± 0.2 8.1 ±	0.4* 9 ±	0.4* 8.3 ±	0.3* 8.7 ±	0.3* 8.8 ±	0.3*

Hematocrit, % 37.1 ± 0.8 23.5 ±	1.3* 25 ±	1* 23.7 ±	0.8* 25.6 ±	0.8* 26.7 ±	0.8*

Platelet count, mean, 
×103/µL

360± 21 74	±	13* 62 ±	14* 105 ±	20* 197 ±	31*,**,*** 241	±	15*,**,***,****

WBC, mean, ×103/µL 6.4	(1.8-	10.2) 9.5	(1.8-	374) 2.2*,**	(0.3-	22.4) 0.9*,** (0.2- 2.5) 2.0*,** (0.3- 19.3) 5.4**,***,**** (1.2- 11.6)

Neutrophils, ×103/µL 2240	(980-	7830) 138*	(0-	14	980) 210* (100- 3810) 720 (73- 1175) 1280	(50-	4030) 2816**,*** (120- 5308)

Lymphocytes, ×103/
µL,check stat with 
median

3420	±	415 9243	± 5081 1046	±	501*,** 573 ±	107*,** 891 ±	205*,** 1382 ± 235

Monocytes,	×103/µL 460	(220-	900) 100 (20- 1350) 20* (0- 670) 46*	(7-	470) 160 (32- 3090) 328***,****	(46-	4140)

Blasts, ×103/µL 0 5* (0- 278) 0 0 0 0

Plasma prothrombin, 
µg/mL

206 ±	24 216 ±	68.4 226 ± 23.2 227 ± 23.2 222 ±	14.5 ND

Serum PAI- 1, ng/mL 38.8 ±	1.4 21.3 ±	3.6* 17.8 ±	3* 28.2 ±	3.4 37.1 ±	2.4**,*** ND

Note: Data	sets	showing	Gaussian	distribution	are	presented	as	Mean	± standard error and were analyzed using one- way analysis of variance with 
Tukey’s test for multiple comparisons. Data sets showing a non- Gaussian distribution are presented as median (range) and were analyzed using the 
Kruskal-	Wallis	test	with	Dunn’s	test	for	multiple	comparisons.
Abbreviations: ALL, acute lymphoblastic leukemia; ND, not done; PAI- 1, plasminogen activator inhibitor- 1; WBC, white blood cell count.
aWeek	0	baseline	sample	was	collected	within	24	h	before	starting	the	chemotherapy.
*P <	.05	vs	healthy	controls;	**P <	.05	vs	baseline;	***P <	.05	vs	week	1	of	induction	therapy;	****P < .05 vs week 2 of induction therapy.
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F I G U R E  1 Persistence	of	increased	endogenous	thrombin	potential	and	elevated	plasma	cell-	free	DNA	(cfDNA)	levels	during	induction	
chemotherapy in patients with acute lymphoblastic leukemia (ALL). Thrombin generation potential and components of extracellular traps 
were	measured	in	plasma	samples	from	healthy	pediatric	controls	and	patients	with	deep	vein	thrombosis	(DVT),	sepsis,	or	ALL	at	diagnosis	
(baseline)	and	during	1	to	4	weeks	of	induction	chemotherapy.	(A)	Endogenous	thrombin	potential	(ETP);	(B)	lag	time;	(C)	peak	thrombin	
generation; (D) cfDNA. (E) nucleosomes; (F) citrullinated histone H3 (H3Cit). One- way analysis of variance with Tukey’s test for multiple 
comparisons was used to analyze ETP, peak thrombin and cfDNA and individual data points are presented as well as mean ± standard error. 
Data	for	lag	time,	nucleosome,	and	H3Cit	are	presented	as	median	and	were	analyzed	using	the	Kruskal-	Wallis	test	with	Dunn’s	test	for	
multiple	comparisons.	*P < .05; #P < .01, and $P < .0001 vs healthy controls and @P < .05 vs week 1
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or sepsis (Figure 1B,C). Peak thrombin was significantly higher 
than healthy controls in patients with sepsis (P < .05) but not in 
patients	with	ALL	or	DVT	 (Figure	1C).	The	observation	 that	ETP	
was increased in ALL is consistent with previous observations 
that indirect markers of thrombin generation, such as thrombin- 
antithrombin complexes, are elevated in the plasma of patients 
with ALL at diagnosis and during treatment.3,4 The enhanced 
thrombin generation potential in ALL cannot be attributed to 
changes in plasma prothrombin concentration, which was similar 
in all patient groups (Table 1). Unlike some prior studies in which 
elevated levels of PAI- 1 were reported in children with ALL,3,4 we 
found that patients with ALL had 50% lower plasma levels of PAI- 1 
at baseline compared to healthy controls, and that PAI- 1 increased 
toward normal during induction therapy, reaching control levels by 
week 3 (Table 1). This suggests that elevation of PAI- 1 is not medi-
ating the increase in ETP.

We next measured plasma levels of components of extracellular 
traps, including cfDNA, nucleosomes, and H3Cit, which have been 
reported to be elevated in humans with some types of cancer.15–	17 
The prevalence of these biomarkers and their contribution to throm-
bogenesis in childhood ALL is not known. cfDNA is known to pro-
mote blood coagulation via activation of factor XII, and histones 

may promote thrombosis indirectly by activating platelets or inhib-
iting thrombomodulin- mediated protein C activation.7,18 We found 
that, compared with healthy controls, patients with ALL had signifi-
cantly higher plasma levels of cfDNA at baseline and during the first 
3 weeks of induction therapy, with the highest levels observed at 
week 1 (P <	 .0001)	(Figure	1D).	By	week	4,	plasma	concentrations	
of cfDNA declined to levels similar to those in healthy controls and 
were significantly lower than at week 1 (P < .05). Levels of plasma 
cfDNA	also	were	significantly	elevated	in	patients	with	DVT	or	sepsis	
when compared to healthy controls (P < .01) (Figure 1D). In contrast, 
plasma levels of nucleosomes (Figure 1E) and H3Cit (Figure 1F) did 
not differ significantly between healthy controls and patients with 
ALL at any time point. We also did not observe significant elevations 
of	nucleosomes	or	H3Cit	in	children	with	DVT	or	sepsis.	Our	findings	
of elevation in plasma cfDNA, but not nucleosomes or H3Cit, may 
suggest that circulating cfDNA in patients with ALL may arise not 
only from extracellular traps but also from apoptosis or necrosis of 
leukemic blasts or other cells.

To define the mechanistic role of cfDNA in mediating enhanced 
thrombin generation potential in patients with ALL, we treated 
plasma samples with DNase 1 prior to measuring thrombin genera-
tion. In samples from healthy controls, treatment with DNase 1 did 
not affect ETP (Figure 2). In contrast, in samples from patients with 
ALL, treatment with DNase 1 decreased ETP significantly at base-
line and also - throughout induction therapy, indicating that much 
of the ETP is mediated by prothrombotic DNA. Our findings are in 
agreement with prior work, demonstrating that the prothrombotic 
phenotype in certain animal models of cancer can be reversed by 
treatment with DNase 1.19–	21

We also examined the relationship between cfDNA, ETP, and pe-
ripheral	white	blood	cell	counts	during	the	4	weeks	of	induction	ther-
apy (Figure 3A,B). As expected, peripheral blast cells disappeared by 
week 1 and remained undetectable thereafter. Neutrophils, mono-
cytes, and lymphocytes decreased during the first 2 weeks and then 
increased	 to	 near	 normal	 counts	 by	 week	 4.	 In	 contrast,	 cfDNA	
remained significantly elevated for 3 weeks before declining mod-
estly	at	week	4	(Figure	3A),	and	ETP	was	elevated	at	all	time	points	
(Figure 3B). Thus, we did not observe a direct correlation between 
peripheral blast cell counts and cfDNA or thrombin generation and 
it remains uncertain whether the elevated cfDNA in patients with 
ALL was derived from neutrophils, lymphoblasts, or other cells such 
as endothelial cells. We also did not observe significant differences 
in the time course of plasma cfDNA or ETP between patients with 
different subtypes of ALL (Figure 3C- H), although patients with T- 
cell ALL had slightly higher levels of cfDNA at week 1 compared to 
patients with pre- B ALL (Figure 3C).

One limitation of our study is that the relatively small sample size 
limited our ability to assess associations between thrombin genera-
tion, cfDNA, and clinical thrombosis. None of our ALL patients de-
veloped	a	clinically	significant	thrombotic	event	during	the	4-	week	
induction	phase	of	therapy,	and	only	three	developed	CVL	malfunc-
tion, which can be a surrogate of underlying venous thrombosis.22–	24 
We could not rule out subclinical thrombosis since surveillance 

F I G U R E  2 Increased	thrombin	generation	potential	in	patients	
with acute lymphoblastic leukemia (ALL) is mediated through 
cfDNA. Platelet- poor plasma collected from the patients at baseline 
or	during	1	to	4	weeks	of	induction	therapy	was	treated	with	
20 µg of DNase 1 (Worthington Biochemicals) or heat- inactivated 
DNase	1	(control)	at	37°C	for	60	min	prior	to	assay,	following	
which thrombin generation was measured. Endogenous thrombin 
potential (ETP) is presented as mean ± standard error. N = 6. 
*P < .05, @P < .01, and #P < .0001 vs heat- inactivated DNase 1 at 
respective time points, analyzed using multiple t test with two- 
stage linear step- up procedure
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ultrasound or venography was not done.2 Therefore, we were un-
able to assess relationships between thrombin generation potential 
or biomarkers with symptomatic or asymptomatic thrombosis. We 
also did not address the potential role of platelets in the prothrom-
botic milieu during ALL induction therapy. It is possible that platelet 
activation and microvesicle formation may contribute to thrombin 
generation and that this effect might vary during induction therapy 
as patients become thrombocytopenic. Another limitation could be 
that we measured PAI- 1 in serum that may contribute to an artifac-
tual elevation due to platelet activation and thus limited the ability 

to detect associations with thrombin generation. Future studies are 
needed to address the clinical correlations of ex vivo thrombin gen-
eration, platelet- derived microvesicles, and other thrombotic bio-
markers in this patient population.25–	27

In summary, our findings demonstrate that a prothrombotic state 
manifested by increased thrombin generation potential exists in pe-
diatric patients with ALL at baseline and throughout the induction 
phase of chemotherapy. Importantly, we found that the increased 
thrombogenic potential can be reversed by treatment with DNase 
1, which suggests a direct mechanistic pathway and a potential 

F I G U R E  3 Pattern	of	cellular	changes	during	induction	therapy	in	relation	to	plasma	cell-	free	DNA	(cfDNA)	levels	and	thrombin	
generation potential and acute lymphoblastic leukemia (ALL) subtypes. Weekly changes in leukocyte counts in relation to plasma cfDNA (A) 
and	endogenous	thrombin	potential	(ETP)	(B)	is	depicted	as	line	graph	(Mean	± standard error) using dual Y-	axis	plot.	*P < .05 vs week 1 and 
$P < .05 vs baseline. Two- way analysis of variance, mixed effects with Tukey’s analysis. (C- H) Weekly changes in plasma cfDNA, ETP, blast 
cells, neutrophils, monocytes, and lymphocytes in ALL subtypes: pre- B ALL, standard risk (SR; N = 10); pre- B ALL, high risk (HR; N =	4);	and	
T- cell ALL (N = 3), depicted as line graph (mean ±	standard	error).	*P < .01 vs baseline for pre- B ALL, SR, #P < .05 vs week 1 for pre- B SR, 
and $P < .05 vs pre- B SR and pre- B HR at week 1. Two- way analysis of variance with Tukey’s analysis
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approach to prevention and treatment of thrombotic complications 
in patients with ALL. This approach may prove to be feasible in the 
clinic, since DNase 1 is also under development as a therapeutic ap-
proach in other conditions such as cystic fibrosis,28 Alzheimer dis-
ease,29 and coronavirus disease 2019.30 Our findings also raise some 
interesting mechanistic questions for future study, including:

1. Is the protective effect of DNase 1 on thrombin generation 
mediated by nucleolytic degradation of both cfDNA and histone- 
bound DNA (both of which are known to have prothrombotic 
properties31?)

2. What are the cellular sources of elevated cfDNA in patients with 
ALL?

3. How much cfDNA is derived from nuclear chromatin versus mito-
chondrial DNA?

It also will be interesting in future studies to measure cfDNA and 
thrombin generation during subsequent postinduction courses of 
ALL chemotherapy, since it is likely that a subset of patients may 
remain at risk for thrombotic episodes after induction therapy is 
completed.
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