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There is growing interest in whether the myelinated nerve fiber acts as a

dielectric waveguide to propagate terahertz to mid-infrared electromagnetic

waves, which are presumed stable signal carrier for neurotransmission. The

myelin sheath is formed as a multilamellar biomembrane structure, hence

insights into the dielectric properties of the phospholipid bilayer is essential

for a complete understanding of the myelinated fiber functioning. In this work,

by means of atomistic molecular dynamics simulations of the

dimyristoylphosphatidylcholine (DMPC) bilayer in water and numerical

calculations of carefully layered molecules along with calibration of optical

dielectric constants, we for the first time demonstrate the spatially resolved (in

sub-nm) dielectric spectrum of the phospholipid bilayer in a remarkably wide

range from terahertz to mid-infrared. More specifically, the membrane head

regions exhibit both larger real and imaginary permittivities than that of the tail

counterparts in the majority of the 1–100 THz band. In addition, the spatial

variation of dielectric properties suggests advantageous propagation

characteristics of the phospholipid bilayer in a relatively wide band of

55–85 THz, where the electromagnetic waves are well confined within the

head regions.
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Introduction

The electromagnetic spectrum from terahertz to mid-infrared region is vital to living

organisms since the collective vibrations of most biomacromolecules (e.g., DNA and

protein) fall within this frequency range, where many significant physiological

phenomena and biomedical applications have been reported (Barone et al., 2005;

Kitagawa et al., 2006; Rodrigo et al., 2015; Cheon et al., 2016; Turker-Kaya and Huck,
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2017; Mittal et al., 2018; Zhu et al., 2021; Zhang et al., 2021; Li

et al., 2021; Li et al., 2022; Sun et al., 2022). In addition, the

spectra of the optical constant (refractive index and extinction

coefficient), and the dielectric constant (real and imaginary parts

of the permittivity) of all biomaterials contain the inherent

information of their internal molecules, atoms and chemical

bonds, and hence could be utilized as the functional

biosignatures (Pethig and Kell, 1987; Parthasarathy et al.,

2005; Davidov et al., 2021). A recent experimental study finds

that the frog sciatic nerve shows distinct refractive indexes

measured at different spots in the terahertz to mid-infrared

band, suggesting that the myelinated nerve fiber might act as

a decent dielectric waveguide (Liu et al., 2019). Although this

finding is a major step forward in supporting that terahertz/mid-

infrared electromagnetic waves might be information carriers for

neural signal propagation, a question is still left unanswered:

what is the specific frequency band for the best information

propagation? Intuitively, this band should possess the following

features:

1) The band should be continuous and broad. In other words,

the frequencies of the electromagnetic waves for the neural

signal propagation cannot be a single frequency or some

isolated frequencies. This feature contributes to provide a

stable and robust communication capability.

2) The refractive index, or the real part of the permittivity, of the

myelin sheath should be obviously higher than that of the

axon and the extracellular fluid. This feature guarantees that

the electromagnetic waves cannot spread to the extracellular

fluid and propagate primarily through the myelin sheath

rather than the axon.

3) The extinction coefficient, or the imaginary part of the

permittivity, of the myelin sheath should be small enough.

This feature manifests that the electromagnetic waves can

propagate through a considerable long myelin sheath without

getting weaker.

In order to answer the above questions, the optical/dielectric

properties of the myeline sheath and the axon in the frequency

range from terahertz to mid-infrared must be investigated

primarily. Researchers have attempted to directly measure the

optical/dielectric properties of the myelinated nerve fiber by

experiments. Antonov et al. carried out the first in vivo

measurement of the refractive index of a peripheral nerve

fiber of the sciatic nerve in Rana temporaria using

holographic interference microscopy, and the constant

refractive indexes of the myelin sheath and the axon in the

visible were obtained (Antonov et al., 1983). Rahman et al.

measured the frequency-dependent refractive index and

extinction coefficient of the sciatic nerve of Xenopus laevis

in vitro for the first time based on a spectrophotometer

working in the wavelength range of 860–2,250 nm (Rahman

et al., 2018). Tayebi et al. analyzed the refractive index

dispersion of an individual nerve fiber in striatal medium

spiny neurons using a triple-wavelength diffraction phase

interferometer (473, 589 and 685 nm) (Tayebi et al., 2019).

We find that the related experimental studies are extremely

rare due to the limitation of the existing practical techniques

and measuring instruments. Currently, to the best of our

knowledge, there is no ready-to-use and abundant measured

data which could reveal the optical/dielectric properties of the

myeline sheath and the axon in the terahertz to mid-infrared

spectrum.

It is well known that the myelin sheath and the axon mainly

consist of the biomembrane and the intracellular fluid,

respectively (Kolb and Whishaw, 1980; Rinholm and

Bergersen, 2012; Fields, 2014). As the phospholipid bilayer

and the water are respectively the major constituents of the

biomembrane and the intracellular fluid, the optical/dielectric

properties of the phospholipid bilayer and the water are thus

reasonable indicators of those of the myeline sheath and the

axon, respectively. The optical/dielectric constants of the water

over a wide frequency range from direct current to ultraviolet at

various temperature have been thoroughly investigated, and

plenty of theoretical and experimental data can be acquired

from the available literature (Hale and Querry, 1973;

Segelstein 1981; Buchner et al., 1999; Praprotnik and Janežič,

2005; Heyden et al., 2010; Midi et al., 2014; Rowe et al., 2020;

Krishnamoorthy et al., 2021). The studies on the biomembrane

or phospholipid bilayer also have been started for long. Zhou

et al. applied the linear response theory to estimate the

susceptibilities across a dilauroylphosphatidylethanolamine

(DLPE) bilayer (Zhou and Schulten, 1995). Stern et al.

established a rigorous expression to calculate the permittivity

of a dipalmitoylphosphatidylcholine (DPPC) by combining

statistical mechanics and continuum electrostatics (Stern and

Feller, 2003). Tanizaki et al. proposed a three-layered model with

different dielectric constants as hydrocarbon, ester group and

water based on the generalized Born formalism (Tanizaki and

Feig, 2005). Hishida et al. focused on the hydration state of the

lipid membrane with techniques of terahertz time-domain

spectroscopy and small-angle X-ray scattering, and the

dielectric constants of dimyristoylphosphatidylcholine

(DMPC) solutions in the frequency range of 0.5–2.6 THz were

measured (Hishida and Tanaka, 2011). Hielscher et al. measured

the absorbance spectra of six different types of phospholipids in

the far-infrared region from 600 to 50 cm−1 using Fourier

transform infrared spectroscopy (Hielscher and Hellwig,

2012). Siddiquee et al. imaged dioleoylphosphatidylcholine

(DOPC) and DPPC membranes based on the local absorption

coefficients measured by a scanning near-field optical

microscopy system with 640 nm laser beam (Siddiquee et al.,

2019). In summary, although previous studies have made great

contributions to the frequency-dependent optical/dielectric

constants of the phospholipid bilayer, however, the dispersion

profiles obtained by both theoretical and experiment methods are
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almost narrowband spectra. In addition, it can be found that the

studies of the subnanometer resolution optical/dielectric

properties of the phospholipid bilayer are only focused on the

static permittivity. The broadband optical/dielectric properties of

the phospholipid bilayer in the frequency range from terahertz to

mid-infrared with subnanometer resolution are still unclear.

To verify whether the myelinated nerve fiber is an applicable

candidate for terahertz/mid-infrared electromagnetic

propagation, herein, we theoretically investigate the spatially

resolved dielectric properties of the phospholipid bilayer

broadly ranging from 1 to 100 THz via molecular dynamics

(MD) simulations for the first time. A membrane-water system

based on DMPC molecules is constructed, and the space-

frequency distribution of the dielectric properties in terms of

the equilibrated membrane-water system is computed. The

optimal band for electromagnetic propagation through the

myelinated nerve fiber is discussed, and the real and

imaginary permittivities across the equilibrated membrane-

water system in this band are presented.

Materials and methods

Material characteristics

For any homogeneous, linear and isotropic biomaterial, its

optical constant ~n and dielectric constant ~ε are frequency-

dependent and can be expressed as follows:

~n � n(ω) + iκ(ω) (1)
~ε � ε′(ω) + iε″(ω) (2)

where n(ω) and κ(ω) are respectively the refractive index and the
extinction coefficient at angular frequency ω, ε′(ω) and ε″(ω) are
respectively the real and imaginary parts of the permittivity at

angular frequency ω, and i is the imaginary unit. If the magnetic

properties of the biomaterial can be neglected, according to the

physical definitions of the optical and dielectric constants, the

following relation can be easily derived

~n2 � ~ε (3)

Substituting Eq. 1 and Eq. 2 into Eq. 3, we can obtain that

ε′(ω) � n2(ω) − κ2(ω) (4)
ε″(ω) � 2n(ω)κ(ω) (5)

Eq. 4 and Eq. 5 give rigorous mathematical relations between

the optical constant and the dielectric constant. The values of

ε′(ω) and ε′′(ω) can be determined by the values of n(ω) and
κ(ω), and vice versa. Therefore, if we have obtained the

frequency-dependent dielectric properties of the biomaterial,

its frequency-dependent optical properties are also known to

us. Moreover, the values of ε′(ω) and ε′′(ω), or n(ω) and κ(ω),
are interrelated as well. In the case of ε′(ω) and ε′′(ω),

Kramers–Kronig relations establish their relations as follows

(Bertie and Zhang, 1992):

ε′(ω) � ε∞ + 2
π
P∫∞

0

ω′ε′′(ω′)(ω′)2 − ω2
dω′ (6)

ε′′(ω) � −2
π
P∫∞

0

ωε′(ω′)(ω′)2 − ω2
dω′ (7)

where ε∞ is the optical dielectric constant equal to the real part of

the permittivity at infinite frequency and the symbol P denotes

the Cauchy principal value which indicates that the integration

range is cut open at the point where the integrand is singular. The

relations of n(ω) and κ(ω) show the similar expressions as Eq. 6

and Eq. 7 and will not be listed here.

Phospholipids, the main components in biological

membranes, are a sort of important biomaterial. A

phospholipid molecule is basically composed of carbon,

hydrogen, oxygen, nitrogen and phosphorus, and should be

divided into two parts according to the different chemical

characteristics: the hydrophilic head and the hydrophobic tail.

The hydrophilic head includes the polar phosphatidylcholine

while the hydrophobic tail includes the non-polar aliphatic chain.

For this reason, under liquid condition phospholipids exist in the

form of the double layer structure with their hydrophilic heads

outside and hydrophobic tails inside, which is known as the

phospholipid bilayer. Related studies have confirmed that

biological membranes often in the liquid crystalline state in

order to maximize their functional roles (Molugu et al., 2017;

Paracini et al., 2018). Most naturally occurring phospholipids

(such as DMPC, DPPC, etc.) behave slight differences in the

length of the hydrophobic tails (Guo et al., 2014), and thus their

optical and dielectric properties should vary little. Herein, we use

DMPC for our study as the mammalian membranes contain

abundant amounts of this type of phospholipid (Jurczak et al.,

2021). It should be noted that the DMPC membrane has a phase

transition temperature about 23–24°C, meaning that the

membrane is in the gel (liquid crystalline) state exhibiting

immobile (fluidic) feature below (above) this temperature

(Kučerka et al., 2011).

Model and MD simulation

MD simulation is a powerful technique to understand the

physical basis of the structure as well as the function of

biomacromolecules (Karplus and McCammon, 2002). It is

applicable to simulating the dynamic motions of a number of

biological systems at atomic or near-atomic level of detail

(Brandman et al., 2012; Zhao et al., 2013). Herein, we

perform the MD simulation with GROMACS, which is one of

the most widely used MD package (Abraham et al., 2015). As

illustrated in Figure 1, we place a single DMPC molecule along
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FIGURE 1
Model of the membrane-water system based on DMPC molecules for the MD simulation.

FIGURE 2
Position of the dividing line between the hydrophilic head and the hydrophobic tail in a DMPC molecule.

TABLE 1 Chemical units used for the hydrophilic head of a DMPC molecule.

Chemical unit Number R (468.3 nm) R (589.3 nm) R (653.3 nm)

CH3 3 5.719 5.653 5.636

CH2 5 4.695 4.647 4.624

COO 2 6.261 6.200 6.173

C 1 2.601 2.591 2.572

H 1 1.043 1.028 1.026

PO4 1 10.821 10.769 10.733

N 1 2.820 2.744 2.698
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the z direction and use it as the smallest unit. Amembrane bilayer

is then built by replicating this smallest unit in both x and y

directions and inverting in the z direction. The completed

membrane bilayer is composed of 128 DMPC molecules with

64 per leaflet, orienting parallel to the x-y plane with the normal

in the z direction. The equivalent area per DMPC molecule is

0.606 nm, which is consistent with the experimental values

(Wohlert and Edholm, 2006). The distance between two

phosphorus atoms which are inverted relative to each other is

3.3 nm. Finally, a membrane-water system is constructed by

adding 6,968 water molecules on both sides of the membrane

bilayer to well hydrate it, which satisfies the actual state of

biological membranes (Park et al., 2020). The dimension of

the membrane-water system is approximately 6.23 nm ×

6.23 nm × 9 nm.

Before conducting the MD simulation, it is worth noting that

the periodic boundary condition is used to avoid edge effects

owing to the finite size of the constructed membrane-water

system. In addition, the all-atom CHARMM36 force field and

the TIP3P water model are used to achieve high-accuracy

computation, and the Particle Mesh Ewald method is used for

high-efficiency computation of the long-range electrostatic

interactions. We keep the simulation temperature at 310 K

which is above the phase transition temperature of the DMPC

membrane by applying Nosé-Hoover thermostat algorithm.

After energy minimization, NVT and NPT ensembles, an

equilibrium system can be established and its equilibrated

data of the atoms such as charges, velocities and positions can

be collected for post-processing.

The frequency range of the spectrum computed by

GROMACS is determined based on the sampling theorem as

2
T
≪f≪

1
2dt

(8)

where f � ω/2π is the frequency, T is the length of the simulation

time and dt is the timestep. It can be inferred from Eq. 8 that the

frequency resolution of the computed spectrum should be 2/T.

Theoretically, a longer simulation time can result in a more

accurate spectrum. However, as the simulation time increases the

computational burden should be aggravated dramatically, and

hence a compromise between the simulation accuracy and cost is

inevitable. Herein, we set the values of T and dt to be respectively

1 ns and 1.5 fs in our simulation to investigate terahertz to mid-

infrared dielectric spectra of the phospholipid bilayer.

Subnanometer-scale dielectric spectra
computation

We attempt to slice the equilibrium system along the z

direction into multi-layered structures with subnanometer

resolution and compute the dielectric spectra for each layer

which can be treated as a homogeneous, linear and isotropic

material. Based on the linear response theory (Iftimie and

Tuckerman, 2005), the following relation can be derived for

each layer

n(ω)α(ω) � 1
6cε0VkBT

∫∞

−∞
dte−iωt

dM(0)
dt

· dM(t)
dt

(9)

where α(ω) is the absorption coefficient at angular frequency ω

which is equal to 2κ(ω)ω/c, c is the velocity of light, ε0 is the

vacuum permittivity, V is the volume, kB is Boltzmann constant

and T is the temperature. The angular brackets represent an

ensemble average taken over all time origins and dM(0)/dt and

TABLE 2 Chemical units used for the hydrophobic tail of a DMPC molecule.

Chemical unit Number R (468.3 nm) R (589.3 nm) R (653.3 nm)

CH3 2 5.719 5.653 5.636

CH2 23 4.695 4.647 4.624

FIGURE 3
Final structure of the equilibrated membrane-water system.
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dM(t)/dt are respectively the time derivatives of the total dipole

moment at times 0 and t. According to the physical definition of

the dipole moment, it can be easily derived that

dM(0)
dt

· dM(t)
dt

� ∑N

j�1qjvj(0) ·∑N

k�1qkvk(t) (10)

where N is the number of all atoms, qj is the charge of jth atom,

qk is the charge of kth atom, vj(0) is the velocity of jth atom at

time 0 and vk(t) is the velocity of kth atom at time t. We note that

the right-hand side of this equation represents the electrical flux-

flux correlation function, which can be directly computed using

the equilibrated data generated by the MD simulation.

Substituting Eq. 5 and Eq. 10 into Eq. 9, we can obtain that

ε″(ω) � 1
6ε0VkBTω

∫∞

−∞
dte−iωt∑N

j�1qjvj(0) ·∑N

k�1qkvk(t)
(11)

After the imaginary part of the frequency-dependent

permittivity for each layer is computed, the real part ε′(ω)
can be obtained by using Eq. 6 and then the subnanometer

FIGURE 4
Label and the corresponding ordinal number for each heavy atom in a DMPC molecule.

FIGURE 5
Average vertical position versus ordinal number for each
heavy atom in the equilibrated DMPC bilayer.
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resolution dielectric spectra of the phospholipid bilayer are

determined.

Optical dielectric constant estimation

We can see from Kramers–Kronig relations that it is

enough to know ε′(ω) to determine ε″(ω) while insufficient

to compute ε′(ω) just by ε″(ω) due to the existence of the

unknown optical dielectric constant ε∞. Actually, for

transparent materials such as the phospholipid molecule

their vibrational and electronic absorptions are both very

weak in the range from near-infrared to near-ultraviolet,

and consequently no optical absorption can be seen in their

extinction coefficient spectra and the corresponding refractive

index spectra demonstrate a feature of the normal dispersion.

In this frequency range, the refractive index varies little and

can be used to estimate the value of ε∞. Based on Cauchy

dispersion model (Cauchy 1830), the optical constant of a

phospholipid molecule from near-infrared to near-ultraviolet

region can be well described as

n(λ) � A + B

λ2
+ C

λ4
(12)

κ(λ) � 0 (13)

where n(λ) and κ(λ) are the refractive index and the extinction

coefficient at wavelength λ, respectively. The parametersA, B and

C are fit coefficients. It can be found that A is dimensionless and

mainly contributes to the near-infrared region of the refractive

index spectrum. Theoretically, n(λ) tends to be A when λ

approaches infinity. The units of B and C are nm2 and nm4,

respectively. These two parameters contribute to the visible and

near-ultraviolet regions of the refractive index spectrum,

respectively.

In order to determine Cauchy dispersion model of the

phospholipid molecule, we need to know the values of its fit

coefficients. It can be easily solved if we know three pairs of values

of wavelength and refractive index. Herein, we use Vogel method

FIGURE 6
Details of layering for the equilibrium system.

FIGURE 7
Refractive index n and real part of the permittivity ε′ at near-infrared frequency f for the hydrophilic head (A) and the hydrophobic tail (B) of a
DMPC molecule through the Cauchy dispersion model and the Vogel method.
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and Lorentz-Lorenz equation to achieve this (Vogel 1948; Cao

et al., 2009). Based on Vogel method, a molecule under

investigation is divided into many chemical units (atoms,

structures and groups) with known molar refractions at 468.3,

589.3 and 653.3 nm. By adding up the molar refractions of all the

chemical units, the molar refractions of a molecule at these three

wavelengths are obtained, and the corresponding refractive

indexes are calculated using Lorentz-Lorenz equation:

n(λ) �
������������
M + 2ρ · R(λ)
M − ρ · R(λ)

√
(14)

where R(λ) is the molar refraction at wavelength λ, M is the

molecular weight and ρ is the density. At this point we have

known three pairs of values of wavelength and refractive

index, and substituting these values into Eq. 12 we can

compute the values of the fit coefficients in Cauchy

dispersion model.

Generally speaking, it is expected that the dielectric

properties for the hydrophilic head and the hydrophobic tail

of a phospholipid molecule should behave differently owing to

their obvious difference in chemical constituent. Therefore, we

separately calculate the optical dielectric constants of the

hydrophilic head and the hydrophobic tail and use them as

reference values for the optical dielectric constants of all

sublayers in the hydrophilic head and the hydrophobic tail.

For a DMPC molecule, the dividing line between its

hydrophilic head and hydrophobic tail is demonstrated in

Figure 2. The chemical units used for the hydrophilic head

and the hydrophobic tail are listed in Tables 1, 2.

Results and discussion

The final structure of the equilibrated membrane-water

system is displayed in Figure 3, where we can find that the

hydrophobic tails of all phospholipid molecules are contracted as

well as disordered. Herein, the equilibrium system is layered

based on the average vertical position of each heavy atom (non-

hydrogen atom) in the phospholipid bilayer. In total, there are

46 heavy atoms in a DMPC molecule. We label these atoms as

shown in Figure 4, and then assign each label a specific ordinal

number. Figure 5 gives the result of the average vertical position

versus ordinal number for each heavy atom in the equilibrated

DMPC bilayer. It is noted that for the pair of heavy atoms with

the same ordinal number which are respectively located at the top

and bottomDMPCmolecules, their average vertical positions are

substantially symmetric about the plane of z = 0. The thickness of

the DMPCmonolayer is approximately 2 nm, with 0.8 nm for the

FIGURE 8
MD simulation results of the dielectric spectra in the frequency range from terahertz tomid-infrared for two regions of hydrophilic head and the
hydrophobic tail in the equilibrated DMPC monolayer (A) Real part of the permittivity for the head region, (B) real part of the permittivity for the tail
region, (C) imaginary part of the permittivity for the head region, and (D) imaginary part of the permittivity for the tail region.
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hydrophilic head and 1.2 nm for the hydrophobic tail. In order to

study the subnanometer resolution dielectric properties of the

biomembrane, we use 0.2 nm thickness as spacing of layers and

finally slice the phospholipid bilayer into 20 layers, as shown in

Figure 6.

We conduct the theoretical estimation of the refractive

index n (real part of the permittivity ε′) for the hydrophilic

head and the hydrophobic tail of a DMPC molecule

through Cauchy dispersion model as well as Vogel

method, and the corresponding near-infrared spectra are

shown in Figure 7. For both the hydrophilic head and the

hydrophobic tail, their n and ε′ vary little in the near-infrared

region, and the hydrophilic head has higher amplitudes

than the hydrophobic tail. Herein, the values of ε′ at

300 THz for the hydrophilic head and the hydrophobic

tail are adopt as the optical dielectric constants of all

sublayers in the hydrophilic head and the hydrophobic

tail, respectively.

The dielectric spectra in the frequency range from terahertz

to mid-infrared for two regions of the hydrophilic head and the

hydrophobic tail in the equilibrated DMPC monolayer are

studied by MD simulation, and the results are shown in

Figure 8. The original data is smoothed based on the moving

average window to offer the readers a clearer view of the variation

trends of the dielectric spectra. The imaginary parts of the

permittivity ε″ for the head and tail regions are first

computed, and the real parts ε′ are then obtained through

Kramers–Kronig relations. It should be noted that the near-

infrared data are also included in the spectra which agree well

with the results of theoretical estimation, indicating the validity

of MD simulation. In most cases, both the values of ε′ and ε″ for
the head region are higher than those for the tail region, and only

at some limited frequencies the head region shows lower

amplitudes. This is mainly caused by the high polarity of the

head region. In addition, it can be seen that there are many

characteristic peaks in the spectra, which is due to the effects of

the chemical bond vibration such as C-H stretching and COO

stretching.

Results of the subnanometer resolution dielectric spectra in

the frequency range from terahertz to mid-infrared (1–100 THz)

in terms of the equilibrated membrane-water system are shown

in Figure 9. The layered data have been further interpolated to get

a smooth dielectric spectrum landscape. We can obviously see

that the dielectric properties of the equilibrated phospholipid

FIGURE 9
Dielectric spectra of the equilibrated membrane-water system in the range of 1–100 THz (A) Real part of the permittivity in the range of
1–100 THz (left), 10–100 THz (middle) and 55–85 THz (right) and (B) imaginary part of the permittivity in the range of 1–100 THz (left), 10–100 THz
(middle) and 55–85 THz (right). The dashed rectangles are used to outline the regions we are interested. Each region is further enlarged and redrawn
in its right adjacent subfigure.
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bilayer are also substantially symmetric about the plane in which

the vertical position of the slice is 0. In the range of 1–10 THz, the

values of ε′ of the head region can be up to about 7 at some

specific slice positions and frequencies, while in these cases the

corresponding values of ε″ are also very large. Furthermore, the

characteristic peaks of the head and tail region can be found to be

mainly concentrated in the range of 1–55 THz. Overall, the

frequency range of 1–55 THz might not be an ideal band for

electromagnetic propagation through the myelinated nerve fiber.

This band not only cannot meet the requirements of continuity

and width for robust electromagnetic propagation, but also

cannot support the long-distance electromagnetic propagation

due to the severe attenuation caused by the large values of ε″. In
addition, when the frequency is below 20 THz or above 85 THz,

the values of ε′ of the head region can be lower than those of the

water region, which can lead to the electromagnetic waves

spreading to the region outside the myelinated nerve fiber.

Actually, the band of 55–85 THz can be a good frequency

window in which all the conditions for electromagnetic

propagation within the myelin sheath are satisfied. Figure 10

shows the dielectric properties across the equilibrated

membrane-water system at different frequencies chosen from

the range of 55–85 THz. We can clearly see that the values of ε′ at
the head layers are larger than those at the tail and water layers,

and the values of ε″ at both the head and tail layers are trivial.

Therefore, it can be inferred that the electromagnetic waves

working at this band mainly propagate along the head regions

of the phospholipid bilayer of the myelinated nerve fiber.

Conclusion

In this work, to explore the possibilities of the myelinated

nerve fiber acting as a terahertz/mid-infrared dielectric

waveguide, we for the first time construct the spatially sub-nm

resolved dielectric spectrum in a frequency band widely ranging

from 1 to 100 THz regarding a membrane-water system, where

the phospholipid bilayer is the major constituent of the myelin

sheath. According to calculations on roughly divided head and

tail regions of the bilayer, we find that the head region shows

higher values of ε′ and ε″ compared with the tail region in the

majority of the band. After a fine layering, the membrane-water

system is further analyzed in terms of the space-frequency

dielectric distribution. Clearly, the head layers possess larger ε′
values than those of the tail and water layers in 55–85 THz, while

the ε″ values at both the head and tail layers are trivial. This

suggests a long-distance electromagnetic propagation within the

myelin sheath especially the head regions of the phospholipid

bilayer in this specific band. Our finding could be a theoretical

evidence that the mid-infrared electromagnetic waves could serve

as a type of highly stable information carrier for neural signal

propagation.

FIGURE 10
Dielectric properties across the equilibrated membrane-water system at frequencies in the range of 55–85 THz (A) Real part of the permittivity
versus slice position at 55 THz (left), 70 THz (middle) and 85 THz (right) and (B) imaginary part of the permittivity versus slice position at 55 THz (left),
70 THz (middle) and 85 THz (right).
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