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Objectives: Semi-quantitative image analysis methods in Alzheimer’s Disease (AD) require 

normalization of positron emission tomography (PET) images. However, recent studies have 

found variabilities associated with reference region selection of amyloid PET images. Haralick 

features (HFs) generated from the Gray Level Co-occurrence Matrix (GLCM) quantify spatial 

characteristics of amyloid PET radiotracer uptake without the need for intensity normalization. 

The objective of this study is to calculate several HFs in different diagnostic groups and deter-

mine the group differences.

Methods: All image and metadata were acquired through the Alzheimer’s Disease Neuroimaging 

Initiative database. Subjects were grouped in three ways: by clinical diagnosis, by APOE e4 

allele, and by Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-Cog) score. 

Several GLCM matrices were calculated for different direction and distances (1–4 mm) from 

multiple regions on PET images. The HFs, contrast, correlation, dissimilarity, energy, entropy, 

and homogeneity, were calculated from these GLCMs. Wilcoxon tests and Student t-tests 

were performed on Haralick features and standardized uptake value ratio (SUVR) values, 

respectively, to determine group differences. In addition to statistical testing, receiver operat-

ing characteristic (ROC) curves were generated to determine the discrimination performance 

of the selected regional HFs and the SUVR values.

Results: Preliminary results from statistical testing indicate that HFs were capable of distin-

guishing groups at baseline and follow-up (false discovery rate corrected p,0.05) in particular 

regions at much higher occurrences than SUVR (81 of 252). Conversely, we observed nearly 

no significant differences between all groups within ROIs at baseline or follow-up utilizing 

SUVR. From the ROC analysis, we found that the Energy and Entropy offered the best per-

formance to distinguish Normal versus mild cognitive impairment and ADAS-Cog negative 

versus ADAS-Cog positive groups.

Conclusion: These results suggest that this technique could improve subject stratification in 

AD drug trials and help to evaluate the disease progression and treatment effects longitudinally 

without the disadvantages associated with intensity normalization. 
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Introduction
Regional and voxel-based semi-quantitative image analysis methods in Alzheimer’s 

Disease (AD) research require normalization of positron emission tomography 

(PET) images before data analysis. Most amyloid-PET (Aβ-PET) studies in AD 

use cerebellum as the reference region,1–4 however, recent research has found vari-

abilities associated with the cerebellar normalization of amyloid PET images.5–8 
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White matter (WM) can be used for Aβ-PET normalization 

to reduce longitudinal variability,5 increase association to 

clinical decline7 and cerebrospinal fluid levels of Aβ
1–42

8 as 

well enhance discrimination power between subject groups.6 

However, other recent studies have found impaired amyloid 

PET radiotracer uptake in damaged areas of WM.9 WM 

injury is common in aging and dementia.10–13 Therefore, 

the utility of WM as a reference region may depend on its 

structural and functional integrity, which can vary among 

individual subjects.

Based on these findings, we have identified that the 

amyloid PET normalization process poses a critical challenge 

for semi-quantitative PET studies in AD. In this work, we 

evaluate a different semi-quantitative PET approach that does 

not require the intensity normalization of Aβ-PET activity to 

a reference region activity. This method is based on Haralick 

features (HFs) that can be calculated from the Gray Level 

Co-occurrence Matrices (GLCMs) of Aβ-PET images to 

provide a statistical description of the spatial characteristics 

of amyloid PET.14 The objective of this study is to determine 

whether higher-order texture-based features derived from 

the GLCMs of [18F]-Florbetapir-PET images can identify 

statistically and clinically significant differences between 

subject groups without using a reference region for PET 

intensity normalization.

Methods
Alzheimer’s disease neuroimaging 
initiative
The data presented in this study were acquired from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-

base (adni.loni.usc.edu). The ADNI was launched in 2003 

as a public-private partnership, led by Principal Investigator 

Michael W Weiner, MD. The primary goal of ADNI has 

been to test whether serial magnetic resonance imaging 

(MRI), PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure 

the progression of mild cognitive impairment (MCI) and 

early AD.

Subjects
The key eligibility criteria of ADNI subject recruitment are 

available on the ADNI website (http://www.adni-info.org). 

Briefly, enrolled ADNI subjects were between the ages of 55 

and 90, had a study partner able to provide an independent 

evaluation of functioning, and spoke either English or 

Spanish. All subjects gave written, informed consent before 

participation through their local Institutional Review Board. 

All images and metadata for 30 subjects (17 male, 13 female) 

were acquired from the ADNI database. Selected subjects for 

this study had undergone longitudinal [18F]-florbetapir PET 

scans with concurrent T1-weighted MRIs at baseline and 

24-month follow-up. In addition, scores from the neurop-

sychological assessment Alzheimer’s Disease Assessment 

Scale-cognitive subscale (ADAS-Cog)15 were collected and 

time-matched to the nearest Aβ-PET acquisition. Table 1 

illustrates the demographic and clinical data for selected 

subjects. The 30 subjects were stratified three ways: by 

clinical diagnosis (15 normal versus 15 MCI), by APOE e4 

allele carrier status (14 non-carriers versus 16 carriers), and 

by ADAS-Cog score defined as positive by a threshold $9 at 

baseline or follow-up (16 negative versus 14 positive).

[18F]-florbetapir PET data acquisition
All participating sites acquired the [18F]-florbetapir16 PET 

imaging according to standardized ADNI protocols (http://

adni.loni.usc.edu/methods/pet-analysis/pre-processing/). 

Serial PET images for our study were acquired at 13 different 

centers, and the data were obtained following the dynamic 

protocol of and preprocessed by ADNI. Dynamic scans were 

30-min 6-frame scans acquired 30–60 min after injection. 

All frames were coregistered to the first frame, summed, and 

averaged to create a single image volume.

[18F]-florbetapir PET pre-processing
We employed SPM12 (Wellcome Department of Cognitive 

Neurology) for image pre-processing. The gray matter frac-

tions of 7 anatomic regions were extracted and utilized for 

ROI analysis: Combined precuneus/posterior cingulate cortex 

Table 1 Demographic Alzheimer’s disease neuroimaging initiative subject data for this study

Stratification Normal MCI APOE non 
carrier

APOE 
carrier

ADAS-Cog 
negative

ADAS-Cog 
positive

Number of subjects 15 15 14 16 16 14
Female (male) 8 (7) 5 (10) 8 (6) 5 (11) 6 (10) 7 (7)
Age (mean ± SD) 74.7±4.3 73.6±8.7 77.4±7.4 74.6±6.7 74.7±4.9 77.2±9.0
ADAS-Cog (mean ± SD) 6.7±4.2 12.7±7.7 9.9±8.1 9.6±5.7 5.4±2.3 14.6±7.0

Abbreviations: ADAS-Cog, Alzheimer’s Disease Assessment Scale-cognitive subscale; MCI, mild cognitive impairment.

www.dovepress.com
www.dovepress.com
www.dovepress.com
mailto:adni.loni.usc.edu
http://www.adni-info.org
http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/
http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/


Clinical Interventions in Aging 2017:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2079

Application of HFs in brain [18F]-florbetapir PET

(PCC), left & right frontal lobes (LFL & RFL), left & right 

parietal lobes (LPL & RPL), left & right temporal lobes 

(LTL & RTL), and cerebellum for reference region normal-

ization. For each subject, baseline T1-weighted MR image 

volumes defined the anatomical ROIs in native space using a 

maximum probability tissue labels derived from the Medical 

Image Computing and Computer Assisted Interventions Con-

ference 2012 Grand Challenge and Workshop on Multi-Atlas 

Labeling and provided by Neuromorphometrics, Inc.17–19

Gray level co-occurrence matrix
The GLCM texture analysis is a method for evaluating 

higher-order statistical methods in two-dimensional (2D) 

images. First-order statistics metrics from histograms evalu-

ate only pixel intensities, while GLCM assesses their spatial 

associations. To generate the GLCM, pixel intensities within 

2D images were first discretized. The GLCM was then cal-

culated by tabulating the occurrences of a combination of 

pixel values between a reference and neighboring pixels for 

a particular distance and direction. 

We used the graycomatrix() function in MATLAB (The 

MathWorks, Inc., Natick, Massachusetts, USA) to generate 

all GLCMs. The GLCM was calculated by specifying an 

offset or displacement vector and counting all pairs of 

voxels separated by this offset having intensity levels i and j. 

By default, the graycomatrix function in MATLAB calcu-

lates the GLCM based on the horizontal proximity of the 

pixels: (0 1). That is the pixel next to the pixel of interest 

on the same row. However, other voxel spatial relationships 

can be specified by using the “Offsets” parameter as input. 

This approach allows for multiple GLCMs with different 

directions and distances to be generated from a single image. 

Figure 1 highlights this process for creating representa-

tive GLCMs from a sample image. For each axial slice, 

34 GLCMs were calculated for different offsets (Figure 1A). 

Then, an average GLCM (GLCM_avg) was calculated from 

Figure 1 (A) The coordinates of 34 offsets with respect to (0, 0). These 34 different offsets were used to calculate 33 gray level co-occurrence matrices (GLCMs) for 
each axial slice of a regional positron emission tomography image. (B) A representative image where two sample voxel pairs for two different offsets, (0°, distance =1) 
and (135°, distance =1) are highlighted. The discrete image voxel values are 1, 2, 3, and 4. (C) GLCM of image (B) for (0°, distance =1). The x and y axis represent the 
ordered (from low to high) voxel values of image (B). The z values represent the number of occurrences of a specific pair of voxel values (eg, 3 and 2) for a given offset 
(0°, distance =1). (D) GLCM of image (B) for (135°, distance =1). The x and y axis represent the ordered (from low to high) voxel values of image (B). The z values represent 
the number of occurrences of a specific pair of voxel values (eg, 3 and 2) for a given offset (135°, distance =1).
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these individual GLCMs. The HFs were calculated from 

each GLCM_avg, and then the features were averaged over 

multiple axial slices. The calculation of the GLCM was 

performed in 2D mode because the graycomatrix() function 

requires 2D images.

Haralick features (HFs)
Following six HFs20,21 were calculated from the GLCM_avg 

matrices:
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where i and j are the pixel indices and p(i, j) represents the 

GLCM pixel intensities. Briefly describing the HFs, Contrast 

measures the local variations in the GLCM. Correlation 

measures the linear dependence of the pixel intensity related 

to its position in the image. Dissimilarity is akin to Contrast 

with measuring local variations, however, it has a linear 

dependent off-diagonal of the GLCM. Energy is associated 

with local homogeneity in the image. Entropy, similar to 

how it is defined in physics, measures the spatial disorder 

in the GLCM. Finally, Homogeneity measures how similar 

the pixel intensities of the GLCM are, and thus, is akin to 

a measure of uniformity. It is our hypothesis that HFs may 

be sensitive to changes in spatial distribution and amyloid 

activity among different subject groups.

For this study, GLCMs were generated from the largest 

five axial slices through the PCC, LFL, RFL, LPL, RPL, 

LTL, and RTL. Before generating the GLCM, each axial 

slice was discretized into 128 intensity bins. For each slice, 

GLCMs were generated for each distance between 1 and 

4 pixels at angles between 0 and 165 degrees. The average 

of these GLCMs was used to calculate HFs. As a standard 

method for comparison, the semi-quantitative regional SUVR 

values were calculated by normalizing the images to the 

cerebellar activity.

Statistical analysis
Statistical testing was performed to determine if the SUVR 

measurements and the selected HFs provide significant 

differences between stratified groups (normal versus MCI; 

APOE-ε4 non-carriers versus carriers; ADAS-Cog negative 

versus positive) at baseline and 24-month follow-up for each 

ROI structure. Unpaired, nonparametric Wilcoxon statistical 

tests were employed to compare HFs, while unpaired, 

Student’s t-tests were utilized for comparing SUVR mea-

surements. A 95% CI was set, correlating to p-values ,0.05 

required for significant differences between stratified groups. 

Between 3 stratifications of groups, 7 ROIs, and two time 

points, 42 Student’s t-tests for SUVR were conducted, and 

using six different HFs, 252 total Wilcoxon tests were per-

formed. For a group of ROIs and HFs, we controlled False 

Discovery Rate (FDR) at 0.05 level to deal with multiple 

comparisons.

In addition to statistical testing, receiver operating char-

acteristic (ROC) curves were generated to determine the 

discrimination performance of the selected regional HFs and 

the SUVR values. Groups were stratified as described previ-

ously except that data from HFs and SUVR from baseline 

and 24-month follow-up were combined. The Area under the 

Curve (AUC) was used to quantitatively characterize each 

generated ROC curve.

Results
Gray Level Co-occurrence matrices were generated for slices 

through predefined brain structures. Shown in Figure 2 are 

a representative slice of the discretized PCC from a normal 

and MCI subject used in the GLCM creation. Qualitatively, 

the PCC of the normal subject has a lower intensity than the 

PCC of the MCI. Accompanying each PCC slice are their 

GLCMs, averaged over our distance and direction range. 

In the representative case shown, we observe a greater degree 

of clustering in the normal GLCM versus the MCI GLCM, 

which exhibits a larger spread along its diagonal. Comparing 

the GLCM of normal and MCI subjects, we observed GLCMs 

with more occurrences at greater discretized intensities for 

MCI subjects.

Results from the Student’s t- and Wilcoxon tests are 

displayed in Tables 2–4 with boxplots comparing the HFs 

www.dovepress.com
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and SUVRs for the precuneus and PCC shown in Figure 3. 

Overall, the HFs were capable of distinguishing groups at 

baseline and follow-up (at FDR =0.05 level) in particular 

regions. In total, 124 out of 252 Wilcoxon tests showed sig-

nificant differences between stratified groups. The majority 

of these differences were exhibited in the subjects grouped 

by diagnosis at both baseline and 24-month follow-up. Spe-

cifically, Energy and Entropy were capable of distinguishing 

normal and MCI subjects in all brain regions at baseline and 

nearly all structures at follow-up (except for Energy in the 

LFL). For the APOE and ADAS-Cog stratified groups, fewer 

HFs were capable of distinguishing groups in specific brain 

regions. However, we found significant differences in these 

groups using Energy and Entropy in the PCC at baseline for 

ADAS-Cog in Table 4 and follow-up for APOE in Table 3. 

Conversely, we observed no significant differences between 

all groups and ROIs at baseline or follow-up utilizing SUVR 

(0 of 42 performed tests).

ROC curves for the PCC and all AUC values are dis-

played in Figure 4. The ROC AUCs are presented in Table 5, 

Table 2 FDR-adjusted p-values of HFs and SUVR group difference (N, MCI) at baseline and follow-up

Feature Normal vs MCI at baseline Normal vs MCI at follow-up

PCC LFL RFL LPL RPL LTL RTL PCC LFL RFL LPL RPL LTL RTL

Contrast 0.0506 0.0163 0.0118 0.0245 0.0049 0.1576 0.4649 0.3589 0.0391 0.0871 0.0259 0.0044 0.8188 0.981
Correlation 0.0353 0.0506 0.0317 0.0689 0.0868 0.0049 0.0118 0.0044 0.0608 0.1917 0.8983 0.1141 0.174 0.1118
Dissimilarity 0.0749 0.0184 0.0245 0.0298 0.0049 0.2251 0.3836 0.3907 0.0397 0.0572 0.0229 0.0044 0.6403 0.7915
Energy 0.0049 0.0406 0.0082 0.0049 0.0049 0.0381 0.0381 0.0044 0.0259 0.0082 0.0044 0.0044 0.3589 0.0381
Entropy 0.0049 0.0698 0.014 0.0049 0.0049 0.014 0.0082 0.0044 0.0423 0.0151 0.0044 0.0044 0.0622 0.0082
Homogeneity 0.3099 0.0245 0.0385 0.0245 0.0049 0.1987 0.1566 0.5098 0.0533 0.0392 0.0175 0.0044 0.168 0.315
SUVR 0.385 0.6054 0.6338 0.74 0.74 0.7319 0.5245 0.2688 0.4134 0.4163 0.6292 0.5994 0.4709 0.3055

Note: Controlling for FDR at 0.05, the adjusted p-values smaller than 0.05 (blue color) indicate significant group differences.
Abbreviations: FDR, false discovery rate; HFs, Haralick features; LFL, left frontal lobe; LPL, left parietal lobe; LTL, left temporal lobe; MCI, mild cognitive impairment;  
PCC, posterior cingulate cortex; RFL, right frontal lobe; RPL, right parietal lobe; RTL, right temporal lobe; SUVR, standardized uptake value ratio.

Figure 2 Representative axial slices of Aβ-PET images in PCC from (A) single normal subject and (B) single MCI subject. Accompanying each PCC slice are their gray level 
co-occurrence matrices, normal (C) and MCI (D), averaged over a range of distances and directions.
Abbreviations: MCI, mild cognitive impairment; PCC, posterior cingulate cortex; PET, positron emission tomography.
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respectively. From Figure 4A and C, we observed that the 

Energy and Entropy offered the best performance to distin-

guish Normal versus MCI and ADAS-Cog negative versus 

ADAS-Cog positive groups. Conversely, SUVR and Entropy 

provided the best methods APOE-ε4 carriers versus non-

carriers, as viewed in Figure 4B, while Energy exhibited 

lower performance. From Table 5, we observed that several 

metrics were best for differentiating stratified groups. For the 

classifications based on clinical diagnosis and ADAS-Cog, 

Energy gave the best performance across all ROIs. For 

the APOE-ε4 classification, Entropy performed the best, 

followed by SUVR and Dissimilarity as secondary metrics. 

Homogeneity ranked as the second best metric for the ADAS-

Cog classification. Several other HFs exhibited AUC values 

close to 0.5, considerably not better than random guessing. 

Discussion
The objective of this study was to determine whether higher-

order texture-based features derived from the GLCMs of 

[18F]-Florbetapir-PET images can identify statistically sig-

nificant differences between subject groups without using a 

reference region for PET intensity normalization. Subjects 

were classified with respect to their clinical diagnosis, 

APOE-ε4 status, and ADAS-Cog score to make a comparison 

between Haralick texture features and the conventional 

SUVR approach.

The results of the statistical and diagnostic testing revealed 

that the HFs Energy and Entropy provide the best descriptor 

for distinguishing normal and MCI subjects across all brain 

structures of interest. There was statistically significant sepa-

ration in Energy and Entropy between the normal and MCI 

subject populations in the majority of ROIs at baseline and 

24-month follow-up. Energy and Entropy also offered the 

largest AUC values for accurately classifying subjects with 

respect to their clinical diagnosis (Normal versus MCI) or 

ADAS-Cog status (negative versus positive).

An interesting consequence observed from the results is 

the apparent disconnect between the statistical testing and 

ROC diagnostic performance. Results from the Student’s 

t-tests determined that no significant differences were exhib-

ited in SUVR for each stratified group in all ROIs. However, 

ROC curve analysis verified SUVR’s capability to distin-

guish populations, specifically in the RTL. This diagnostic 

capability also extended to all brain regions for the APOE 

Table 3 FDR-adjusted p-values of HFs and SUVR group difference (APOE-negative, APOE-positive) at baseline and follow-up

Feature APOE-E4 carriers vs non-carriers at baseline APOE-E4 carriers vs non-carriers at follow-up 

PCC LFL RFL LPL RPL LTL RTL PCC LFL RFL LPL RPL LTL RTL

Contrast 0.3185 0.5641 0.2646 0.5488 0.5641 0.5042 0.0926 0.28 0.385 0.0716 0.5278 0.2096 0.4883 0.968
Correlation 0.0858 0.2321 0.1895 0.273 0.147 0.2321 0.3308 0.6995 0.5278 0.0098 0.2838 0.0098 0.0882 0.0612
Dissimilarity 0.3185 0.5488 0.1895 0.4807 0.5673 0.4237 0.1029 0.1729 0.3524 0.0381 0.5278 0.1729 0.3739 0.9606
Energy 0.0858 0.5641 0.3383 0.3185 0.2321 0.0327 0.022 0.0392 0.8501 0.5278 0.8929 0.2838 0.0098 0.0098
Entropy 0.0858 0.5673 0.3383 0.3163 0.2321 0.049 0.022 0.049 0.8542 0.5278 0.8501 0.3018 0.0098 0.0122
Homogeneity 0.4083 0.4805 0.049 0.3185 0.8014 0.3308 0.1069 0.0122 0.2254 0.0122 0.5814 0.0882 0.2254 0.6995
SUVR 0.5837 0.4805 0.4083 0.918 0.7079 0.3379 0.1895 0.8501 0.6486 0.573 0.9606 0.8969 0.5278 0.2838

Note: Controlling for FDR at 0.05, the adjusted p-values smaller than 0.05 (blue color) indicate significant group differences.
Abbreviations: FDR, false discovery rate; HFs, Haralick features; LFL, left frontal lobe; LPL, left parietal lobe; LTL, left temporal lobe; PCC, posterior cingulate cortex; 
RFL, right frontal lobe; RPL, right parietal lobe; RTL, right temporal lobe; SUVR, standardized uptake value ratio.

Table 4 FDR-adjusted p-values of HFs and SUVR group difference (ADAS-Cog-negative, ADAS-Cog-positive) at baseline and 
follow-up

Feature ADAS-Cog negative vs positive at baseline ADAS-Cog negative vs positive at follow-up

PCC LFL RFL LPL RPL LTL RTL PCC LFL RFL LPL RPL LTL RTL

Contrast 0.1994 0.1994 0.0754 0.1315 0.0686 0.1315 0.1994 0.2554 0.3369 0.294 0.1102 0.091 0.091 0.127
Correlation 0.6136 0.7809 0.4923 0.3127 0.3416 0.686 0.3127 0.091 0.4477 0.5484 0.2292 0.1102 0.1903 0.1102
Dissimilarity 0.2282 0.1994 0.0754 0.1315 0.07 0.1446 0.1994 0.343 0.3237 0.2554 0.1102 0.091 0.091 0.1823
Energy 0.049 0.446 0.1994 0.1315 0.0754 0.049 0.2282 0.1102 0.2292 0.1449 0.1102 0.1102 0.1102 0.2292
Entropy 0.049 0.4139 0.1994 0.1315 0.0754 0.049 0.1994 0.1102 0.2292 0.1213 0.1102 0.1102 0.091 0.1674
Homogeneity 0.3416 0.1994 0.0754 0.0754 0.07 0.1315 0.2282 0.6064 0.3205 0.2292 0.1102 0.091 0.1102 0.3205
SUVR 0.3668 0.4957 0.4923 0.4923 0.6032 0.818 0.5891 0.3205 0.357 0.3292 0.3829 0.4676 0.666 0.453

Note: Controlling for FDR at 0.05, the adjusted p-values smaller than 0.05 (blue color) indicate significant group differences.
Abbreviations: ADAS-Cog, Alzheimer’s Disease Assessment Scale-cognitive subscale; FDR, false discovery rate; HFs, Haralick features; LFL, left frontal lobe; LPL, left 
parietal lobe; LTL, left temporal lobe; PCC, posterior cingulate cortex; RFL, right frontal lobe; RPL, right parietal lobe; RTL, right temporal lobe; SUVR, standardized uptake 
value ratio.
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stratified group, with AUC values .0.5, including the PCC, 

as seen in Figure 4B. Recall that AUC can be interpreted as 

diagnosis accuracy as a percentage, where 0.5 represents 

50% accuracy. Even though SUVR appears to be a sensitive 

metric for differentiating APOE populations, other texture 

features perform better with respect to the two other clas-

sification schemes.

HFs are abstract mathematical models that are used in 

many different applications. The innovative aspect of this study 

was to utilize these features for characterizing abnormal Aβ 

pathology from non-normalized florbetapir-PET images. 

From early post-mortem studies,22 we know that over time the 

progressive Aβ accumulation encompasses a greater extent of 

cerebral cortical laminae. The same pattern of spatial spread 

is observed in Aβ-PET images.23 These spatial changes can 

affect the local disorder, homogeneity, variation, and similarity 

of pixel intensities, which can be captured by HFs.

One of the limitations of this study is the small sample 

size, which limits the interpretation regarding diagnostic 

capabilities. However, the overall objective was to compare 

a new image analysis method with a standard technique. The 

outcomes of our study indicate that, for the same sample size, 

our new method shows more significant group differences 

than the SUVR values.

Conclusion
In this pilot study, a novel texture-based approach to assess-

ing diagnostic statuses of amyloid burden was evaluated. 

Figure 3 Boxplots of measured metrics for the combined precuneus and posterior cingulate cortex.
Notes: (A) Contrast, (B) Correlation, (C) Dissimilarity, (D) Energy, (E) Entropy, (F) Homogeneity, (G) SUVR. Metrics with statistically significant differences are shown 
with corresponding p-values ,0.05.
Abbreviations: MCI, mild cognitive impairment; SUVR, standardized uptake value ratio.
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We demonstrated that HFs, specifically Energy, could be 

used to effectively classify patients with respect to their 

clinical diagnosis, APOE-ε4 status, and ADAS-Cog score, 

compared to SUVR. These results suggest that this technique 

has potentials to improve subject stratification in AD drug 

trials and help evaluate the disease progression and treatment 

effects longitudinally without the potential biases associated 

with the reference region normalization.
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