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ABSTRACT

With the growing number of available microbial
genome sequences, regulatory signals can now be
revealed as conserved motifs in promoters of
orthologous genes (phylogenetic footprints). A next
challenge is to unravel genome-scale regulatory
networks. Using as sole input genome sequences,
we predicted cis-regulatory elements for each gene
of the yeast Saccharomyces cerevisiae by discover-
ing over-represented motifs in the promoters of
their orthologs in 19 Saccharomycetes species. We
then linked all genes displaying similar motifs in
their promoter regions and inferred a co-regulation
network including 56 919 links between 3171 genes.
Comparison with annotated regulons highlights the
high predictive value of the method: a majority of
the top-scoring predictions correspond to already
known co-regulations. We also show that this
inferred network is as accurate as a co-expression
network built from hundreds of transcriptome
microarray experiments. Furthermore, we experi-
mentally validated 14 among 16 new functional
links between orphan genes and known regulons.
This approach can be readily applied to unravel
gene regulatory networks from hundreds of
microbial genomes for which no other information
is available except the sequence. Long-term
benefits can easily be perceived when consider-
ing the exponential increase of new genome
sequences.

INTRODUCTION

The analysis of gene regulatory networks is a key to under-
stand gene function and genome evolution. Bioinformatics
methods have been developed to infer gene regulatory
networks, on the basis of high-throughput data sets such
as microarray expression profiles (1–4) or starting from
some prior knowledge, e.g. a library of known transcrip-
tion factor (TF) binding motifs (5). However, such
approaches are restricted to organisms in which prior in-
formation about gene regulation is available. Given the
ever-increasing pace of sequencing, a great challenge for
modern biology will be to infer genetic networks on the
sole basis of genome sequences, by using ab initio methods
to discover cis-regulatory elements in the promoters of
all genes.

Several motif discovery algorithms have been developed
to detect over-represented motifs in promoters of
co-regulated genes of a single organism (6–10) and have
also been applied at a multi-genome level to detect phylo-
genetic footprints, i.e. motifs conserved across promoters
of orthologous genes (11–20). The discovered motifs can
then be clustered using specific algorithms (21,22), or
be used to establish pairwise relationships between genes
(23–25). Such regulon inference approaches have initially
been tested with the very few genomes available at that
time, and the results have been shown to match known
regulons or functional classes (21,22). A systematic assess-
ment of the predictive power of such network inference
methods is however still missing. In addition, previous
approaches were essentially producing groups of genes
based on motif clustering, and thereby failed to capture
the complexity of regulatory networks, where genes can be
regulated by multiple factors. In addition, novel
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regulations predicted in those studies have not been
submitted to experimental validation.

In this article, we propose a new method to directly
infer co-regulation networks from genome sequences
without any prior knowledge about regulation: we first
apply a footprint discovery algorithm (20) to predict TF
binding motifs for each gene of a genome, we then infer a
co-regulation network by linking genes with similar foot-
prints. We performed a systematic in silico evaluation of
the results by comparing the co-regulations predicted in
the genome of Saccharomyces cerevisiae to three reference
data sets: annotated regulons (26,27), a co-expression
network derived from microarray data (28) and physical
associations between TF and their target promoters
detected by ChIP-on-chip (29). We further proceed to
the experimental validation of a selected set of predictions.
The high predictive value of the method opens promising
perspectives for the discovery of regulatory interactions in
poorly characterized organisms.

METHODS

Genomes

Fungal genomes (Supplementary Table S1) were down-
loaded from National Center for Biotechnology
Information (NCBI) (http://www.ncbi.nlm.nih.gov/),
from the web site maintained by Jason Stajic (http://
fungal.genome.duke.edu/) and from the BROAD institute
web site (http://www.broad.mit.edu/). All genomes were
made available on the Regulatory Sequence Analysis
Tools (RSAT) web site (http://rsat.ulb.ac.be/rsat/) (30).

Ortholog detection

Pairwise similarities between gene products were detected
by running BLAST with all the translated sequences
of S. cerevisiae (‘query organism’) against those of
each genome of the reference taxonomical group
(Saccharomycetes, ‘reference taxon’). The bi-directional
best hits (BBHs) are considered as putative orthologs
with an E-value smaller than 10�5.

Phylogenetic footprint discovery

Starting from a set of input genes and their orthologous
clusters, the upstream sequences were collected from the
start codon up to the upstream neighbor gene, with a
maximal length of 800 bp. These distances were chosen
based on our previous analysis (9) of the distributions of
annotated sites in the TRANSFAC database (26).

For each gene of S. cerevisiae, we collected the pro-
moters of all orthologs in 19 species belonging to the
class Saccharomycetes. Promoter sequences were purged
to mask redundant fragments among the promoters of
orthologs of a single gene. A fragment is defined as redun-
dant if it matches a previous segment of the same
promoter set over at least 40 bp, with at the most three
substitutions. These purged sequences were used to detect
over-represented motifs, using the pattern-discovery
program dyad-analysis (10). The program counts the
number of occurrences of each dyad, i.e. pair of

trinucleotides separated by a spacing comprised between
0 and 20 bp. All occurrences of each dyad are counted, in
order to account for the frequent existence of multiple TF
binding sites in a same promoter. Since dyads with a
spacing of 0 correspond to hexanucleotides, the method
is also able to discover non-spaced motifs. The program
dyad-analysis assesses the significance of each dyad by
comparing the observed occurrences in the orthologs of
a single gene with those expected by chance, according to
a given background model. For this analysis, we used the
‘taxfreq’ background model (20), where the prior prob-
ability of each dyad is estimated by computing the fre-
quency observed for this dyad in the promoters of all
genes of all organisms of the reference taxon. For each
dyad, the risk of false positive (nominal P-value) is
computed using the binomial distribution.
A multi-testing correction is then applied by computing

an E-value (Eval=Pval�D), where D is the number
of distinct dyads analyzed in one set of orthologous pro-
moters, and the E-value is converted to a significance score
sigB=�log10(Eval). For each gene, we selected all the
dyads with sigB� 0, which corresponds to an upper
threshold of 1 on the E-value.
An organism-specific filtering was applied by consider-

ing only the dyads found in the promoter of S. cerevisiae.
For each query gene, the analysis is thus restricted to a few
tens or hundreds of dyads instead of the 43 680 possible
dyads. This option has a double effect of lowering the rate
of false positives (by filtering out dyads that are irrelevant
for the promoter of the query organism) and increasing
the sensitivity (by strongly lowering the correction term
D in the computation of the E-value).

Alternative metrics for measuring the similarity between
dyad significance profiles. A motif involved in the
binding of a given TF will also be occasionally discovered
in promoters of other genes. We thus need to define a
criterion to infer co-regulation between genes based on
the similarities between dyad significance profiles, that
emphasizes the most significant motifs (supposedly cis-
regulatory signals), while minimizing spurious motifs
(noise). Four alternative metrics were evaluated to score
the similarity between dyad significance profiles: Jaccard
similarity (JS), Hypergeometric significance (sigH), mu-
tual information (MI), and dot product bits (DPbits,
Figure 1E). The comparison between the different metrics
is presented in Supplementary Figures S2 and S3, showing
an almost perfect correspondence between MI and sigH,
and strong differences between all the other pairs of
metrics.

Notation: Let a and b be two genes. We denote hereafter
A and B as the sets of significant dyads [i.e. dyads
with a positive binomial significance (sigB)] in their
respective profiles, with Na= |A| and NB= |B| the
number of significant dyads. Let C be the intersection
between the sets A and B, with Nc= |C| be the number
of common dyads between profiles of genes a and b. We
further define ND as the total number of dyads in the sig-
nificance profiles of all the genes (ND= 22 565 for the
yeast data set).
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Figure 1. Description of the method to infer co-regulation networks by phylogenetic footprint discovery. (A) Over-represented dyads in promoters of
LYS1 (left) and LYS12 (right) orthologs in Saccharomycetes. Sig: binomial significance. Bold brown and green italics characters highlight the dyads
matching the motifs bound by Lys14p (WWWTCCRnYGGAWWW) and Gcn4 (TGAGTCA) (38). (B) Sequence logos built from the
over-represented dyads matching the Gcn4p and the Lys14p motifs compared to the reference motif (TRANSFAC). (C) Feature maps showing
the location of the over-represented dyads in the promoters of orthologs for LYS1 (left) and LYS12 (right). Each box indicates an exact match for a
dyad, with a height proportional to the binomial significance. (D) Subset of the dyad significance matrix selected for illustrating the correspondences
between dyads and genes. The full matrix comprises 3585 rows (genes) and 33 276 columns (dyads). Values indicate the binomial significance siggj of
each dyad (j) in the phylogenetic footprints of each gene (g). Negative significance values are denoted by a dot, and are replaced by a zero value for
further computation. Boxes highlight groups of dyads that match the motif annotated for a given regulator (Upc2p, Gcn4p, Leu3p and Lys14p). (E)
Detail of computation of the DPbits score. (F) Co-regulation network built by tracing an edge between each pair of genes having a strictly positive
DPbits score. Edge thickness and color gradient (yellow–red) are proportional to the DPbits.

6342 Nucleic Acids Research, 2011, Vol. 39, No. 15



Jaccard similarity. The Jaccard similarity (JS) is a classic-
al metric for comparing the two sets A and B. It is
computed as the ratio between the intersection and the
union of the two sets.

JSAB ¼
A \ Bj j

A [ Bj j

Hypergeometric significance. The hypergeometric P-value
(PvalH) indicates the probability to observe at least NC

dyads in common between two random selections of
sizes NA and NB, respectively.

PvalH ¼ PðX >¼ NcÞ ¼
Xmin NA,NBð Þ

i¼NC

Ci
NA
CNB�i

ND�NA

CNB

ND

where X is a random variable representing the number
of common dyads between two profiles, and Nc is the
actual value observed in a given comparison. PvalH can
be interpreted as the risk of false positive for one given
pair of genes, i.e. the risk to erroneously consider as sig-
nificant the intersection between the sets (A and B) of
dyads selected in their respective phylogenetic footprints.
Since the same significance test is performed successively
for each pair of genes, we perform a multi-testing correc-
tion by multiplying this nominal P-value by the number of
tests.

sigH ¼ � log10 EvalHð Þ ¼ � log10 TPvalHð Þ

where T is the number of pairwise comparison be-
tween gene profiles [T=NG(NG�1)/2=15 593 320],
NG=5585 being the number of genes in the dyad
profiles matrix.

Mutual information. The mutual information (MI)
is computed from the binary profiles indicating
whether a given dyad is significant in the promoters of
orthologs for a given gene. The mutual information
MI=I(A, B) is defined according to Shannon’s informa-
tion theory.

IðA,BÞ ¼ HðAÞ+HðBÞ �HðA,BÞ

In this formula, H(A) and H(B) are the entropies of gene
profiles A and B, respectively.

HðAÞ ¼ � PðAÞ log PðAÞð Þ � Pð:AÞ log Pð:AÞð Þ

HðBÞ ¼ � PðBÞ log PðBÞð Þ � Pð:BÞ log Pð:BÞð Þ

whereas H(A, B) is the joint entropy of A and B.

HðA, BÞ ¼�PðABÞ log PðABÞð Þ�PðA:BÞ log PðA:BÞð Þ

�PðB:AÞ log PðB:AÞð Þ�Pð:A:BÞ log Pð:A:BÞð Þ

The probability P(A) of profile A is computed as
the fraction of significant dyads in this profile
[PðAÞ ¼ Na=ND]. The other probabilities are estimated
in a similar way.

DPbits score. The dot product bits (DPbits) score is the
only metric that takes into account the actual values of
sigB (all the other considered metrics rely on binary

profiles). The dyad significance matrix (Figure 1D) was
built by collecting the significant dyads (columns)
detected in promoters of orthologs for each yeast gene
(rows).

x ¼ xgj

where xgj indicates the sigB of the dyad j for the gene g.
Negative significance values were replaced by 0 to
avoid masking the few significant dyads of each gene
by the negative contribution of the vast majority of
non-significant dyads. Taking into account the actual
values of the sigB returned by the dyad-analysis, we
computed the dot product between each pair of signifi-
cance profiles.

dpAB ¼
PD

j¼1

xAj xBj
� �

DPbitsAB ¼ log2 dpABð Þ

A dyad j will contribute to the dot product only if it
is significant in both genes A (xAj> 0) and B (xBj> 0).
The DPbits score requires not only for two genes to have
the same selection of dyads, but also to have a coincidence
between their highest-scoring sigB values.

Inference of a co-regulation network. In a co-regulation
network, each node represents a gene, and an edge is
added between genes sharing similar motifs. To detect
which gene pairs present similar motifs, we used the
program compare-classes (31) to compute the DPbits
score, as well as three various similarity metrics (see
above). The possible number of edges of this network
increases quadratically with the number of genes (N),
with a maximum of Emax=N(N� 1)/2 edges. Since the
yeast genome contains NG=5876 protein-coding genes,
the network can contain up to T=17 260 750 edges. A
co-regulation network was built by linking any pair of
genes having at least one significant (sigB� 0) dyad in
common. This network was used to evaluate the impact
of parameters on the sensitivity and false positive rate
(FPR) (see below).
After having evaluated the four alternative metrics, we

decided to use the DPbits score for further investigation.
The inferred co-regulation network was then generated by
linking pairs of genes having at least two dyads in
common and whose DPbits score is at least 1. The condi-
tion of having at least two dyads in common reduces the
sensitivity, but reduces the rate of false positives due to
spurious matches of a single dyad. This condition still
permits to detect pairs of genes having a single motif in
common, since the motifs returned by dyad-analysis are
generally composed of several mutually overlapping
dyads (10).

Reference networks. To assess the relevance of the
inferred co-regulation network, we performed network
comparisons with three reference networks, respectively.
(i) The annotated co-regulation network was built by
linking pairs of genes belonging to the same annotated
regulon. These regulons were collected from the
TRANSFAC database (26) complemented by Simonis
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et al. (27). For this collection, factor–gene interactions
were taken into consideration only if they had been
proven by individual experiments (in silico inferences
and high-throughput experiments were thus discarded).
(ii) The co-expression reference network was obtained
from the STRING database (http://string.embl.de) (32).
(iii) The co-binding reference network was derived from
a genome-wide location analysis characterized with the
ChIP-on-chip method (29), where we selected the gene/
TF associations with P< 0.001. This network was built
by linking any pair of genes whose promoters’ is bound
by the same TF.

Co-regulation network assessment. The program compare-
graphs (31) was used to calculate the intersection (in
terms of edges) between two graphs (e.g. inferred
co-regulation versus annotated regulons). The sizes of
these networks and the results of their comparison are
summarized in Table 1. Performance statistics (Sn,
PPV) were computed with the program roc-stats, which
takes as input a set of scored elements, each one annotated
as true positive (TP, i.e. elements present in both predic-
tions and reference), false positive (FP, i.e. predicted while
absent from the reference) or false negative (FN, i.e.
present in the reference but missing in the predictions).
After having sorted the predictions by score, the rates of
FP, TP and FN are computed for each possible score
value, and the program computes the derived validation
statistics. The Sensitivity is the proportion of the reference
set covered by the predictions (above a given score thresh-
old): Sn=TP/(TP+FN). The positive predictive value
(PPV) is the fraction of predicted elements supported by

the reference set: PPV=TP/(TP+FP). The FPR is the
fraction of non-reference elements erroneously predicted
as positive: FPR=FP/(FP+TN). For example, when
the inferred co-regulation network (predictions) is
compared to the annotated regulons (reference network),
TP is the number of predicted co-regulations whose genes
belong to a same regulon, FP is the number of predicted
co-regulations that are not found in a same annotated
regulon, FN is the number of annotated gene pairs missed
by the predictions and TN is the number of gene pairs that
are neither annotated nor predicted as co-regulated.
Performance curves (Sn/PPV, precision/recall, receiver
operating characteristic (ROC)) were drawn with the
statistical package R (http://www.r-project.org/).

The area under the curve (AUC) was computed for each
ROC curve using the trapezoidal approximation. As is
frequently the case with bioinformatics data, computing
an AUC of the full range of an ROC curve (FPR from 0
to 1) is misleading, because the majority of this range is
irrelevant for prediction purposes (33). We thus restricted
the computation of the AUC to informative values of FPR
(Table 2). The area under the ROC curve was computed
for FPR ranging from 0 to a given threshold (5� 10�4,
5� 10�3, 1� 10�2 or 1.5� 10�2), and divided by the
maximal area in the same range (the area that would be
obtained with a 100% sensitivity). Note that the AUC
values are very small by construction, since the computa-
tion is restricted to the left-bottom corner of the ROC
curve. The numbers should thus be interpreted as
relative values for comparing two metrics rather than as
absolute measures of the performances.

Table 1. Size of the inferred and annotated data sets

Discovered footprints

Coding genes (open reading frames) 5876
Genes with at least one significant dyad (sigB� 0) 5549
Genes with at least one high-confidence prediction (sigB� 3) 1644
Distinct dyads (dyads found significant in at least one gene) 33 276

Data set Nodes Edges

Factor–target gene networks

Annotated regulons 80 TF 612 genes 1172 TF–gene interactions
ChIP-on-chip co-binding (29) 155 TF 2655 genes 7266 TF–gene interactions

Inferred co-regulation
network

Annotated co-regulation
network

STRING
co-expression

ChIP-chip
co-binding

Nodes Edges Nodes Edges Nodes Edges Nodes Edges

Gene–gene networks

Size of the intersections between the subset
of the network (rows) restricted to genes
in a second network (columns)

3171 56 919 612 10 599 2895 92 770 2397 178 202

Inferred co-regulation network 3171 56 919 449 723 1572 9922 1490 3984
Annotated co-regulation network 612 10 599 410 794 403 1095
STRING co-expression 2895 92 770 1208 7465
ChIP-chip co-binding 2397 178 202

Discovered footprints (top), i.e. motifs over-represented in the promoters of orthologous genes. Reference data sets indicating interactions between
TFs and their target genes (middle). Annotated regulons were used to build the co-regulation network, whereas the ChIP-on-chip results were used to
build the co-binding network. Comparison between inferred and reference networks (bottom). The diagonal indicates the size (nodes and edges) of
each network; the other cells indicate the size of the pairwise intersections between networks.
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Random controls. Two types of negative controls were
performed: (i) motif permutations, by shuffling the rows
and columns of the dyad significance matrix; and (ii)
network permutation, by shuffling the edges of inferred
or reference networks. For the performance curves,
random expectation values were estimated by computing
networks from the permuted dyad significance matrix.
Network permutation was used when no matrix was avail-
able (e.g. for comparing STRING co-expression to
co-binding network).

Functional enrichment. The program compare-classes
was used to compare the clusters of direct neighbors
of unknown genes to Gene Ontology (GO) functional
classes.

RNA preparation and quantitative reverse transcription–
PCR. The yeast strains and oligonucleotide primers
used in this study are provided in Supplementary Table
SIII. Total RNA was purified as previously described (34).
Quantitative reverse transcription–PCR (qRT–PCR) ex-
periments were carried out using the RT-RTCK05 and
RT-SN10-05 kits (Eurogentec, Belgium). We performed
three independent experiments and computed the mean
and standard error for each triplicate. Mean comparisons
between treated/mutant versus untreated/wild-type were
performed with the Student’s t-test (Prism 5.0 statistical
software; Graphpad, San Diego, CA, USA). Differences
were considered as significant when P< 0.05 (*) or
P< 0.01 (**).

Chromatin immuno-precipitation. Chromatin immuno-
precipitation (ChIP) was performed as previously
described (35). Mbp1-HA protein was immunopre-
cipitated with 12CA5 antibody bound to IgG magnetic
beads (Dynabead; Dynal Biotech ASA, Oslo, Norway).
Immunoprecipitated DNA was analyzed by quantitative
real-time PCR on an ABI Prism 7000 machine (Applied
Biosystems, Foster City, CA, USA). Relative quantifica-
tion using a standard curve method was performed and
the occupancy level for a specific fragment was defined as
the ratio of immunoprecipitated over total DNA. For this
we used the Platinum SYBR Green PCR Super Mix-UDG
with ROX (Invitrogen). The value 1.0 was arbitrarily
given to the reference signal provided by amplifying the
GAL1 gene used as negative control.

Availability. Bioinformatics analysis was performed by
combining the RSAT (30) and the Network Analysis
Tools (NeAT) (31). Supplementary methods, scripts
and results are available on the RSAT web server
(http://rsat.ulb.ac.be/rsat/data/published_data/coregulation_
networks/).

RESULTS

Gene-wise discovery of phylogenetic footprints

A crucial parameter for footprint discovery is the choice of
the appropriate taxonomical level. As previously observed
for bacteria (20), taxonomical levels that are too narrow
return a poor sensitivity. Whereas, taxonomical levels thatT
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are too wide reduce the signal-to-noise ratio, and may
increase the rate of false positives due to the heterogeneity
of the background sequences. We applied footprint
discovery at various taxonomical levels: Fungi,
Saccharomycetes, Saccharomycetales, Saccharomyce-
taceae, Saccharomyces. For each gene of S. cerevisiae,
we identified putative orthologs in the considered taxon
(Supplementary Table SI), collected their upstream
non-coding sequences and discovered phylogenetic foot-
prints by detecting over-represented spaced motifs (dyads)
(20) with all possible spacing values from 0 to 20. Spaced
motifs are of particular importance for microbial regula-
tion, since they are characteristic of several classes of
TFs, such as the fungal Zn(2)–Cys(6) binuclear cluster,
covering 56 TFs in S. cerevisiae (36) or the bacterial
Helix-Turn-Helix, found in more than 150 TF in
Escherichia coli (37). The footprint discovery method
based on dyad detection was validated in a previous
study (20), where we predicted cis-regulatory motifs for
each gene of E. coli by detecting footprints at all taxonom-
ical levels, and identified the optimal parameters for
detecting relevant motifs. An important strength of
the approach is that the sigB returned by the footprint
discovery algorithm provides a reliable estimate of the
risks of false positive, thereby enabling application of
stringent criteria to select the most reliable motifs.
The most significant footprints were found at the level
of Saccharomycetes, and we retained this taxon for
further analysis.
To illustrate the method, Figure 1A–C shows the sig-

nificant dyads found in the promoters of orthologs for
the genes LYS1 and LYS12. Both genes are involved in
lysine biosynthesis. Dyads are grouped by pairs of reverse
complements, because yeast cis-regulatory elements are
generally strand-insensitive. Among the 43 680 possible
dyads, only 30 reach a positive sigB score (sigB� 0) for
LYS1, and 24 for LYS12. For LYS1, the most significant-
ly over-represented dyad (GACTCA | TGAGTC) reaches
a significance of 9.3, corresponding to an E-value of
10�9.3=5.01� 10�10. At this level of significance, the
random expectation is of one false positive every
5.01� 10�10 trials. The dyads detected in the LYS12 foot-
prints are less significant, but still very unlikely to result
from chance (sigB=3.5, corresponding to an E–value of
3.16� 10�4). For both genes, the top-scoring dyads match
either the canonical Lys14p binding motif
WWWTCCRnYGGAWWW (38) (third dyad for LYS1
and first for LYS12) or the motif bound by Gcn4p (TG
AGTCA), the general amino acid controlling factor (the
two top-scoring dyads for LYS1; the third dyad for
LYS12). As already shown in our previous publications,
the dyad-analysis program generally returns groups of
mutually overlapping dyads that can be assembled to
form a larger motif (10). Figure 1B shows the sequence
logos of the position-specific scoring matrix obtained by
assembling the dyads detected in the promoters of the
LYS1 and LYS12 orthologs. The multi-genome feature
maps (Figure 1C) show that the significant dyads are gen-
erally found in clusters of mutually overlapping instances,
indicating that the individual dyads reveal complementary
fragments of a same motif.

In summary, the most significant dyads discovered in
these two LYS genes correspond to sub-sequences of the
motifs bound by the TFs lysine regulator (Lys14p) and the
general control of amino acid metabolism (Gcn4p).
However, the footprints of those two genes show some
differences in the precise composition and significance
of the individual dyads. In the next section, we introduce
a new method for detecting similarities between phylo-
genetic footprints defined as partly overlapping sets
of score-associated dyads such as those shown in
Figure 1A.

Unraveling the co-regulation network by linking genes
with similar footprints

Gene-wise discovered footprints can be summarized in a
matrix of dyad significance profiles, where each cell gives
the binomial significance (sigij) of a given dyad (column j)
for a given gene (row i). The values are left blank for
dyads falling below the significance threshold (sigB� 0)
for a given gene. The fragment of this gene/dyad matrix,
shown in Figure 1D, illustrates that genes involved in a
similar function (e.g. ergosterol, lysine or histidine biosyn-
thesis) are generally characterized by similar dyads, al-
beit with different significance values. We tested four
alternative metrics to measure the similarity between
the phylogenetic footprints of two genes, in terms of
dyad composition (Jaccard similarity, mutual informa-
tion, hypergeometric significance) or dyad significance
(DPbits) and evaluated the respective performances of
those metrics (Figure 2). When the inferred network is
compared to either the annotated regulons (Figure 2A
and B) or the ChIP-on-chip data (Figure 2E and F), the
DPbits and Jaccard index outperform the hypergeometric
P-value and the Mutual Information (see Table 2 for
quantitative comparisons). In contrast, when the inferred
co-regulation network is compared to the STRING
co-expression network (Figure 2C and D), the DPbits
score has a lower sensitivity than the other metrics. We
performed a negative control by measuring the same
metrics in randomized dyad significance matrices (50 per-
mutations per control, dotted curves in Figure 2). As
expected, the negative controls are aligned along the
diagonal of the ROC curves (grey lines). The choice
among those metrics is not trivial, since their respective
performances vary depending on the reference set.
However, since our goal is to predict co-regulation (i.e.
the fact that two genes are recognized and regulated by
the same TFs), we tend to consider the annotated regulons
and co-binding networks as more directly related to the
question. Thus, we finally retained the DPbits score. A
reason for the relatively good performances of the
DPbits score may be that it takes into account the sigB
score of the dyads, whereas the three other metrics only
consider the presence or absence of a dyad in the foot-
prints of a given gene.

Figure 1E shows how the DPbits score is computed
between a pair of rows (genes) of the significance matrix.
The DPbits score is computed in the same way for each
pair of genes. In the sub-network linking, the subset of
genes of Figure 1, groups of functionally related genes
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are densely interconnected by highly weighted edges
(Figure 1F). Interestingly, the inferred network also
contains inter-module connections revealing the general
control of three amino acid pathways (leucine, histidine
and lysine) by the TF Gcn4p. This small sample network,
thus, reflects the capability of our approach to detect
relationships between genes regulated by multiple TFs.
We also notice a separate module regrouping three ERG
genes with the orphan gene YHL026C indicating that
these genes may be regulated by the same factor. The
latter gene is annotated in SGD as ‘Putative protein of
unknown function’. The similarity between its

phylogenetic footprints and those of three ERG genes
suggest that YHL026C may be transcriptionally
controlled by sterols, a hypothesis that has been tested
experimentally (see below).
When the same procedure is applied to each of the

5876 protein-coding genes of S. cerevisiae, the footprint
discovery algorithm returns at least one significant dyad
(sigB� 0) for 5585 genes (95%), among which 1638
(27.8%) have a high-confidence prediction (sigB� 3).
The complete co-regulation network derived from this sig-
nificance matrix (5585 genes� 33 276 dyads) links 3171
genes by 56 919 predicted co-regulations (Figure 3).

Figure 2. Comparison between scoring metrics. The ability of different scoring metrics to predict co-regulation is evaluated by comparing their
performances on receiver operating characteristic (ROC) curves (A, C, E) and precision-recall curves (B, D, F), using the different reference networks:
annotated regulons (A, B), STRING co-expression (C, D) or ChIP-on-chip co-binding (E, F), respectively. Each curve represents one of the metrics
used for comparing dyad profiles. Dotted lines: negative controls performed by permuting the cells of the dyad significance matrix (50 permutations
per curve). Orange curves indicate the correspondences between the STRING co-expression network and the annotated regulons (A, B) or
ChIP-on-chip co-binding network (D, E), respectively. The STRING network interactions are weighted according to their co-expression score
derived from Pearson’s correlation coefficient (L. J. Jensen, personal communication). For the STRING co-expression network, the negative
control was performed by permuting the edges of the original network (50 repetitions).
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Reference networks: co-regulation (regulons),
co-expression (microarrays) and co-binding
(ChIP-on-chip)

To evaluate the reliability of the predicted network, we
compared it to three reference networks (Table 1)
obtained from complementary types of information.
The first reference network was built from a collection
of annotated regulons (i.e. lists of target genes regulated
by each TF). Annotated regulons were collected from
the TRANSFAC database (26) and complemented by lit-
erature searches as described in a previous work (27).
For the sake of comparison with the inferred (gene–
gene) co-regulation network, the factor–gene interaction
network (list of regulons) was converted into a gene–gene
interaction network (hereafter called annotated
co-regulation network) by linking any pair of genes
regulated by the same TF.

The second reference network, called the co-binding
network, was derived from a genome-wide detection of
binding sites for 155 TFs, performed with the ChIP-
on-chip technology (29), by linking pairs of genes whose
promoters are bound by common TFs. This network is
in principle more comprehensive than the annotated
co-regulation network, but it is also more likely to
contain false positive relationships, since it results from
a systematic application of a high-throughput technology.
Furthermore, the binding of a TF in the upstream region
of a gene does not always correspond to a bona fide regu-
latory effect (e.g. the factor may bind in the intergenic
region of two divergently transcribed genes, but regulate
only one of them).

A third reference network has been extracted from the
STRING database (28). This network was built by linking
genes having similar expression profiles in a compendium
of microarray experiments.

It should be noted that the three reference networks
represent different types of information (protein–DNA
binding or expression) and have different levels of reliabil-
ity. The annotated regulons cover a subset of the known
regulations found in the literature, which themselves rep-
resent a subset of the existing interactions. In addition, we
only retained the annotations reporting individual
experiments, and discarded in silico predictions and
high-throughput experiments. This data set thus repre-
sents a ‘high-confidence’ subset of the existing regulatory
interactions, and we should expect that predictive methods
would reveal true interactions that are missing in this ref-
erence collection (and thus improperly considered as ‘false
positives’). In contrast, the co-binding network relies on
high-throughput detection of TF binding regions, which is
known to return a non-negligible rate of false positives.
Using this data set as the golden standard will thus lead to
an over-estimation of the rate of false negative (inter-
actions present in the annotations, but not predicted).
This remark holds true for the co-expression network,
which was built from gene expression data.

For the first two reference networks, it is of note (29)
that the conversion from a set of factor–gene interactions
(regulons or binding targets) to a gene–gene network has
an important effect (Supplementary Figure S1): as the

number of edges per regulon increases in a quadratic
way with the number of regulated genes, highly connected
TFs (global TFs) generate very large cliques. For example,
the 54 targets of Zap1p are linked by (54� 53)/2=1431
edges. In total, the three most pleiotropic TFs (Msn2p,
Msn4p and Zap1p) cover 14% of the nodes (genes) and
34% of the edges (co-regulations) in the annotated
co-regulation network.

Top-scoring predictions correspond to annotated regulons

For the sake of comparison with the annotated network,
we selected all co-regulations predicted between the 612
genes found in at least one annotated regulon (for non-
annotated gene, it is not possible to estimate whether
predictions are correct or not). Among those, three-
quarters of the 60 most significant gene pairs (44/
60=73%) are already annotated as members of the
same regulon. As a negative control, we performed 50
random permutation tests of the dyad significance
matrix, derived a co-regulation network from each
permuted matrix and compared the 60 top-scoring gene
pairs of with the annotated regulons. Only 8 out of those
50 control networks contained one annotated pair of
co-regulated genes, and none contained more than one.
In addition, 13 other gene pairs (22%) are involved in

some common function, suggesting they may correspond
to actual co-regulations, despite not being annotated
in the regulon data set (Table 3). Only 3 (5%) of the
60 top-scoring predictions have no prior evidence of
co-regulation. These may either correspond to false
predictions, or to actual regulations not yet documented.
Noticeably, two out of these three gene pairs (LEU1-
TPO1 and LEU1-ACO1) include LEU1, a target gene of
the Leu3p TF, and the high significance score of the Leu3p
binding motif in the footprints of two other genes
make them potential new targets of leucine regulation.
In summary, almost all of the 60 top-scoring predictions
correspond to valid pairs of co-regulated genes.

Inferred co-regulations have a good PPV

We applied a systematic evaluation of the predicted
co-regulations by estimating the sensitivity (Sn, i.e. the
fraction of known co-regulations covered by the predic-
tions) and the PPV (i.e. the fraction of predictions corres-
ponding to actual co-regulations). For this evaluation, we
selected the 4121 links having a DPbits score of at least
1 between the 612 genes of the annotated regulons, and
compared this network to the three reference networks.
It should be noted that TF databases only cover a
subset of the published literature, which itself reflects
a part of existing regulations. Thus, it is likely that a
fraction of our predictions are unduly counted as false
positives in our evaluation. The PPV curves should be
considered as lower bounds for the actual PPV. The
number of predicted co-regulations decreases rapidly
when the threshold on DPbits increases (Figure 4A).
Interestingly, the number of true predictions decreases
slower than the false predictions. The reliability (PPV)
of predicted co-regulations increases with the DPbits
score, at the cost of sensitivity (Sn): when the threshold
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Table 3. Top-ranking predicted co-regulations

Gene 1 Gene 2 DPbits Jaccard, % Hypersig Mutual
info

Annotated
regulon

Co-expression Similar function

LEU2 LEU1 10.2 16.2 22.7 0.00203 LEU3
RNR1 RAD27 10.0 12.2 12.3 0.00129 DNA replication and repair
RNR1 CDC21 9.9 9.8 4.6 0.00077 MBP1
SWI4 RNR1 9.6 4.9 1.5 0.00035 SWI6
RNR1 CDC6 9.3 3.9 2.3 0.00029 MBP1
LEU1 BAT1 9.3 11.5 13.1 0.00135 1 Branched amino acid metabolism
RNR1 RAD53 9.2 13.7 9.9 0.00114 SWI6
YKR075C HXT3 9.2 4.9 6.0 0.00085 Regulated by glucose
ZRT2 ZPS1 9.2 27.1 25.5 0.00221 ZAP1
YKR075C HXT2 9.2 11.0 29.4 0.00246 MIG1
GAL10 GAL1 9.1 39.7 53.2 0.00413 GAL4 1
SST2 FUS1 9.0 14.7 5.7 0.00085 MOT3 1
RNR1 CLB5 8.9 1.7 4.0 0.00017 SWI6
PCK1 FBP1 8.8 5.8 8.2 0.00100 CAT8 1
RAD27 CDC21 8.7 7.4 1.8 0.00058 1 DNA replication and repair
SWI4 RAD27 8.7 4.8 1.6 0.00035 DNA replication and cell cycle regulation
FTR1 FIT2 8.7 4.2 2.8 0.00063 Iron transport and homeostasis
HIS7 ARG3 8.6 5.9 0.3 0.00047 GNC4
RNR1 ABF1 8.6 6.4 2.8 0.00064 DNA replication and repair
TPO1 LEU1 8.6 3.2 1.4 0.00035
LEU1 ILV5 8.6 5.7 3.2 0.00066 LEU3
MEP2 DUR1,2 8.6 23.8 7.2 0.00095 GLN3
ZRT3 ZRT2 8.6 10.9 5.5 0.00083 ZAP1
MEP2 DAL1 8.6 4.5 1.3 0.00037 GLN3
DAL4 DAL1 8.5 23.6 38.3 0.00309 GLN3
GAL2 GAL1 8.5 4.1 1.2 0.00036 GAL4
SWI4 CDC21 8.5 25.0 10.0 0.00115 SWI6
RAD27 CDC6 8.5 6.5 1.7 0.00056 DNA replication and repair
LEU1 GDH1 8.4 6.2 9.8 0.00111 LEU3 1
DUR1,2 DAL1 8.4 9.4 6.3 0.00089 GLN3
LEU1 ILV3 8.4 7.6 5.6 0.00083 LEU3 1
MEP2 DAL4 8.3 4.8 1.2 0.00037 GLN3
SWI4 CDC6 8.3 8.0 1.3 0.00054 SWI6
RNR1 CLB6 8.3 6.3 1.5 0.00055 DNA replication and repair
HXT3 HXT2 8.3 5.8 5.2 0.00080 CYC8
PCK1 ICL1 8.2 6.7 9.2 0.00107 CAT8
RAD53 RAD27 8.2 9.1 4.1 0.00073 DNA repair
CDC6 CDC21 8.2 7.0 0.4 0.00043 SWI6
HIS1 ARG3 8.2 7.0 1.5 0.00056 Amino acid metabolism
PCK1 MDH2 8.2 6.7 10.0 0.00113 CAT8
RNR3 RNR1 8.2 6.2 10.4 0.00116 TUP1
LEU1 ILV2 8.2 6.1 2.9 0.00064 LEU3 1
RAD27 ABF1 8.2 37.8 61.5 0.00470 DNA replication and repair
GAL2 GAL10 8.1 4.9 0.5 0.00042 GAL4
HXT4 HXT2 8.1 6.9 10.2 0.00114 MIG1
ZRT2 ZRT1 8.1 12.2 6.1 0.00087 ZAP1
DUR1,2 DAL4 8.1 10.0 6.5 0.00090 GLN3
RAD53 CDC21 8.1 26.3 7.6 0.00099 MBP1
ZRT2 VEL1 8.0 9.1 3.1 0.00066 ZAP1
HXT6 HXT2 8.0 6.7 6.5 0.00089 Hexose transporters
SWI4 RAD53 8.0 10.3 0.2 0.00047 SWI6
LEU1 ACO1 8.0 1.8 4.7 0.00013
LEU4 LEU1 8.0 5.1 2.5 0.00061 LEU3 1
LEU1 BAP2 8.0 2.4 2.9 0.00025 LEU3 1
PRB1 MEP2 7.9 0.9 4.7 0.00014 GLN3
YKR075C HXT4 7.9 3.8 2.6 0.00061 MIG1
CLB5 CDC6 7.9 2.5 2.2 0.00030 SWI6
PDE2 DED1 7.9 21.4 41.3 0.00330
TRP3 ARG3 7.9 6.9 1.4 0.00055 GCN4
CLB5 CDC21 7.9 2.2 2.1 0.00031 SWI6

Top-ranking predictions of co-regulation in Saccharomyces cerevisiae, ordered by DPbits score, completed with the alternative scores (Jaccard,
hypergeometric significance and mutual information). Gene pairs regulated by a same TF (annotated regulons) are highlighted in bold. Italics
indicate gene pairs that are not annotated as regulated by a common TF, but which are involved in similar functions. Note that in our quantitative
evaluation, these pairs are labeled as ‘false positive’ (FP), despite their very likelihood to be co-regulated. White background corresponds to gene
pairs with no evidence of co-regulation or functional relationship.
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on DPbits increases from 1 to 5, the number of predicted
co-regulations drops from 4121 to 798, but the PPV rises
from 27% to 53% (Figure 4B). Altogether, the evaluation
shows that the DPbits score is positively correlated with
PPV and thus provides a good estimation of the reliability
of predicted co-regulations. Since the PPV reaches
50% for the high-scoring predictions (DPbits� 5) of the
evaluation set (annotated regulon), we are highly confi-
dent that a substantial fraction of the 13 060 high-scoring
predictions inferred in the whole genome correspond to
actual co-regulations.

The sensitivity of the predictions strongly depends
on regulon size

At first sight, the sensitivity seems rather weak (Figure
4B): even with the lowest score threshold (DPbits� 0),
the inferred network covers no more than 10.5% of the
edges derived from annotated regulons (1117 in 10 599).
This apparent lack of sensitivity is largely due to a few
highly connected TF, which generate large cliques in
the reference network (e.g. Zap1p, Gcn4p in Figure 5A;
Table 4). However, regulon inference does not require a
full coverage of all the edges between genes regulated by a

same TF: a partial coverage of the intra-regulon edges
may already provide sufficient information to collect a
good fraction or even all of its nodes. For example, the
Met4p regulon encompasses 10 genes, which can be linked
by a maximum of 45 co-regulation edges (Figure 5A).
Footprint detection only covers 31 (69%) of those edges,
but these are sufficient to establish a dense network linking
the 10 target genes of Met4p. Similarly, the Gcn4p regulon
includes 40 genes that can be linked by 780 edges. Even
though no more than 103 (13%) of those edges are
detected by footprint detection, these edges link 27 of
the 40 target genes (67%). In complement to the
edge-wise sensitivity (Figure 5B), we define a node-wise
sensitivity (Figure 5C) indicating, for each TF, the
fraction of its target genes linked to another of its target
genes by at least one edge. Both edge-wise and node-wise
estimations plots show that the sensitivity strongly de-
creases when regulon size increases. Not surprisingly,
node-wise sensitivity gives much higher estimates than
edge-wise sensitivity (Table 4). Of course, the random ex-
pectation is also higher for node-wise than for edge-wise
sensitivity, as confirmed by our negative controls (tri-
angles in Figure 5C). However, since the primary goal of
the method is to predict regulons, the node-wise sensitivity

Figure 4. Correspondences between inferred co-regulation network and three ‘reference’ networks: annotated regulons, microarray co-expression
(STRING) and co-binding (ChIP-on-chip), respectively. (A) Impact of the score threshold on the size of the co-regulation network (restricted to the
subset of interactions between genes found in at least one annotated regulon) and on its correspondence with annotated regulons. Note that some of
the ‘false positives’ may correspond to actual co-regulations not yet documented in the database. (B) Sn and PPV curves as a function of the DPbits
score of the predicted interactions. Inferred co-regulation versus annotated regulons. (C) Inferred co-regulation versus STRING co-expression. (D)
Inferred co-regulation versus ChIP-on-chip. (E) STRING co-expression versus annotated regulons. (F) STRING co-expression versus ChIP-on-chip.
Dotted lines: negative controls performed by permuting the cells of the dyad significance matrix (50 permutations per curve) (A–D) or by permuting
the edges of the original network (50 repetitions) (E–F).
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can be considered as a more direct estimate of the per-
formances than edge-wise sensitivity.
All these observations confirm that our method better

predicts the cis-regulatory elements bound by specific than
by global TFs.

The inferred co-regulation network is as accurate as a
co-expression network derived from hundreds of
microarray experiments

We extended the evaluation of the inferred co-regulation
network by comparing it with the STRING co-expression
network. Before interpreting the results, it should be
stressed that co-regulation and co-expression reflect
distinct aspects of transcriptional regulation. Two genes

are considered co-regulated if they are direct targets of
the same TF(s). Co-expression denotes expression
under similar conditions, and may result from a direct
co-regulation, or from more complex causes such as an
action of independent factors, regulation cascades, etc.
Thus, the co-expression network cannot be considered as
a golden standard for inferred co-regulation. Nevertheless,
it is interesting to analyze the overlap between those two
networks.

When the inferred co-regulation network is compared
either to the STRING co-expression network (Figures 2C,
3D and 4C) or to the co-binding network (Figures 2E, 3F
and 4D), the same general trends are observed as discussed
above for the annotated co-regulation network: a rather

Figure 5. Impact of regulon size on sensitivity. (A) Gene–gene cliques generated by specific (GAL4, MET4) and global (GCN4, ZAP1) TFs.
Correctly predicted co-regulations (true positives) are highlighted in green, with edge thickness proportional to the DPbits score. Orange edges
indicate false negatives (FN), i.e. existing co-regulations missing from the predicted co-regulation network. Edge-wise sensitivity (Esn) is the fraction
of correctly predicted edges. Node-wise sensitivity (Nsn) is the fraction of target genes linked by at least one prediction. (B, C) Impact of regulon size
(abscissa) on edge-wise (b) and gene-wise (c) sensitivity, respectively. All numerical values are provided in Table 4.
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weak overall sensitivity, but fairly good PPV. Here as
well, the PPV of the predicted co-regulation increases
with the DPbits score, showing that similarities between
predicted phylogenetic footprints reliably predict
co-expression.
It is well known that transcriptome data might be noisy,

and there are many issues with the choice of normaliza-
tion, similarity measurements and clustering procedures.
We wondered to which extent the STRING co-expression
data set would correspond to the annotated co-regulation
network. Interestingly, the STRING co-expression
network shows similar figures of merit as our inferred
co-regulation network (Figures 2A and B, 4B and E):
the PPV of the STRING network is reasonably good
(41% fits some annotated regulon), and increases with
the score, whereas the sensitivity is rather poor (7.5%
for the whole network) and rapidly drops when the
STRING score increases above 170 (Figure 4E). It thus
seems that our network inferred only by in silico analysis
of phylogenetic footprints gives as good results as a
network derived from several hundreds of microarray
experiments.
When the chip-on-chip ‘co-binding’ network is used

as reference to evaluate the inferred co-regulation
(Figure 4D) or the STRING co-expression (Figure 4F)
networks—the sensitivity (�4%) is still lower than that
for the annotated regulons, which is not surprising since
the high-throughput ChIP-on-chip data produce a huge
co-binding network of 178 202 edges, i.e. �17 times
larger than the annotated co-regulation network
(Table 1). Despite the low sensitivity, the PPV shows a
regular increase with the DPbits score (Figure 4D), con-
firming the interest of this metric to estimate the reliability

Table 4. Coverage of co-regulation interactions per annotated regulon

Regulon Nodes
(target
genes)

Maximum
edges

Edges Edge
Sn,
%

Random
edge Sn,
%

Node
Sn,
%

Random
node Sn,
%

ACE2 5 10 5 50 8 100 28
GRR1 5 10 6 60 0 80 0
HMRA1 5 10 0 0 2 0 8
MET31 5 10 8 80 6 100 24
NRG1 5 10 1 10 0 40 0
RFA2 5 10 1 10 0 40 0
RFX1 5 10 1 10 0 40 0
RGT1 5 10 6 60 0 80 0
SOK2 5 10 0 0 0 0 0
SWI1 5 10 3 30 2 60 8
XBP1 5 10 0 0 0 0 0
CYC8 6 15 7 47 0 83 0
DAL82 6 15 7 47 7 83 30
MBP1 6 15 10 67 1 83 7
RTG3 6 15 3 20 0 50 0
SKN7 6 15 0 0 0 0 0
SNF2 6 15 3 20 3 50 13
TYE7 6 15 1 7 3 33 13
HAC1 7 21 1 5 0 29 0
HAP1 7 21 0 0 3 0 17
IME1 7 21 3 14 1 57 6
RIM101 7 21 0 0 0 0 0
TUP1 7 21 4 19 2 86 11
HOG1 8 28 3 11 1 38 5
LEU3 8 28 28 100 3 100 20
PHO4 8 28 1 4 1 25 10
SWI4 8 28 5 18 3 63 18
SWI5 8 28 8 29 5 88 30
VID30 8 28 7 25 3 88 20
GAL4 9 36 10 28 4 56 29
GAT1 9 36 11 31 1 67 9
HAP5 9 36 0 0 1 0 4
MAC1 9 36 3 8 1 44 9
RCS1 9 36 4 11 3 44 27
THI2 9 36 0 0 0 0 0
UPC2 9 36 2 6 1 33 4
CAT8 10 45 32 71 3 100 20
DAL81 10 45 11 24 2 80 16
HAA1 10 45 1 2 0 20 0
MET4 10 45 31 69 4 100 36
PDR3 10 45 16 36 2 80 16
SWI6 10 45 19 42 2 100 20
ADR1 11 55 5 9 1 36 11
GCR2 11 55 3 5 1 45 13
NDT80 11 55 4 7 3 45 25
RPN4 11 55 23 42 1 73 15
SKO1 11 55 0 0 0 0 4
RTG1 12 66 5 8 0 58 3
STE12 13 78 4 5 1 31 9
HAP2 14 91 3 3 2 21 17
HAP4 14 91 2 2 1 21 14
MCM1 14 91 2 2 1 29 13
HAP3 15 105 3 3 2 20 19
MIG2 15 105 9 9 2 47 29
MOT3 15 105 16 15 2 80 25
ROX1 15 105 3 3 1 27 11
CBF1 16 120 26 22 2 56 25
PDR1 16 120 32 27 2 69 20
BAS1 17 136 32 24 3 100 35
GCR1 18 153 7 5 1 39 16
DAL80 19 171 41 24 3 79 37
INO2 19 171 17 10 1 47 18
INO4 19 171 17 10 1 47 18
PIP2 19 171 9 5 1 32 21
REB1 19 171 7 4 1 53 17
HSF1 21 210 42 20 2 57 25

(continued)

Table 4. Continued

Regulon Nodes
(target
genes)

Maximum
edges

Edges Edge
Sn,
%

Random
edge Sn,
%

Node
Sn,
%

Random
node Sn,
%

PHO2 21 210 32 15 2 81 32
OAF1 24 276 9 3 2 25 29
RLM1 25 300 6 2 2 28 28
MIG1 26 325 37 11 1 58 31
UME6 26 325 13 4 1 42 17
GLN3 31 465 73 16 2 74 43
RAP1 32 496 9 2 1 31 28
YAP1 32 496 9 2 1 28 15
ABF1 37 666 14 2 1 43 36
GCN4 40 780 107 14 2 68 50
TEC1 42 861 7 1 0 24 15
ZAP1 54 1431 34 2 1 26 25
MSN2 56 1540 67 4 1 61 46
MSN4 58 1653 78 5 1 62 47

For each annotated regulon, the maximal number of intra-regulon
edges (M) is computed as M= n� (n1)/2, where n is the number of
genes (nodes) in the regulon. ‘Edge sensitivity’ indicates the fraction of
intra-regulon edges covered by the predictions. ‘Node sensitivity’ is the
fraction of nodes linked to at least one other gene of the regulon. The
random expectations were estimates by computing edge and node sen-
sitivity in a network randomized by shuffling edges between nodes (five
permutations). Color code for the background. Dark grey: >70%; light
grey: >40%.
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of predicted co-regulations. The ROC curves show that
the ChIP-on-chip network is better recovered by the
STRING co-expression data than by the inferred
co-regulation (Figure 2E and F, Table 2).
In summary, the co-regulation network inferred from

the sole analysis of genome sequences performs at least
as well as a microarray-derived co-expression network.
Interestingly, the predicted co-regulation and STRING

co-expression network recover different fractions of the
annotated regulons (Table 1C, Supplementary Figure
S4): whereas STRING recovers 794 of the annotated
co-regulations and 723 of our predictions, their intersec-
tion covers 175 annotated co-regulations only, i.e. 13% of
their union (1342 annotated co-regulation). The inference
of co-regulation and the analysis of co-expression thus
seem to reveal complementary parts of the annotated
co-regulation network.

Experimental tests confirm the links between fourteen
orphan genes and their regulatory family

After having verified that high-scoring predictions gener-
ally reveal pairs of co-regulated genes, we used the
complete inferred network to identify a reasonable set of
testable hypotheses about regulation. We selected genes of
unknown function (orphan), collected their direct neigh-
bors (i.e. the genes linked to them in the inferred
co-regulation network) and retained the neighbor sets sig-
nificantly enriched for some functional class of GO (39).
On this basis, we selected four co-regulation modules con-
taining one or more orphan genes, and carried out experi-
ments to validate their co-regulation experimentally
(Figure 6).
We first considered a neighbor set of 48 genes, 16

of which are involved in uptake and biosynthesis of
sterols (ERG genes) and 3 in sphingolipid biosynthesis
(Figure 6A). In cells deprived of sterols, these genes
are up-regulated by Upc2p, a TF binding to the sterol
response element (SRE) TCGTATA (40). The inferred
cluster included 12 ERG genes (Supplementary Table
SII), linked to several orphan genes among which
YDR531W, YHL026C and the pair of divergently
transcribed genes YML082W-YML083C. The most sig-
nificant footprints detected in these genes contain the
motif TCGTTTag, which corresponds to the annotated
SRE. The inferred co-regulation thus suggests that these
four orphan genes might be regulated by sterols. To test
this hypothesis, we grew wild-type and upc2D mutant
cells with or without lovastatin, a compound causing
sterol depletion, and used qRT–PCR to monitor the
relative RNA levels of these genes. An ERG2 was used
as a positive control and the actin gene (ACT1) as a
normalizing reference. The results clearly show Upc2-
dependent induction of ERG2 in response to lovastatin.
The four tested orphan genes displayed similar expression
changes, thereby indicating that they belong to the Upc2
regulon.
Rpn4p is a transcriptional activator binding to the GG

TGGCAAA sequence present in the upstream non-coding
sequence of most genes encoding proteasome subunits.
In an rpn4D mutant, the expression level of these

genes is typically reduced about twofold (41). The
inferred co-regulation network contains a cluster of
densely connected genes coding for proteasome subunit
genes, together with the two orphan genes YNL155W
and YOR052C (Figure 6B), and whose footprints
include the Rnp4p motif (Supplementary Table SII). The
qRT–PCR results clearly show that both genes are ex-
pressed in a manner very similar to the proteasomal
subunit RPN2 gene, with a reduced expression in the
rpn4D mutant (Figure 6B). Interestingly, both
YNL155W and YOR052C products contain a conserved
AN1-type zinc-finger motif also present in the human
protein AIRAP, an arsenite-inducible protein found to
be associated with, and to stimulate, the 19 S regulatory
particle of the proteasome, thereby counteracting the toxic
effect of arsenic on protein structure (42). Furthermore,
YNL155W is also up-regulated by arsenic (43). These
results strongly suggest that Ynl155wp and Yor052cp rep-
resent possible functional orthologs of AIRAP.

The expression of many genes involved in nitrogen ca-
tabolism decreases to low levels when good nitrogen
sources (e.g. glutamine) are provided in the growth
medium. This regulation termed the nitrogen catabolite
repression (NCR) is mediated by a combination of three
negative factors (Ure2p, Gzf3p and Dal80p) preventing
the trans-acting factors Gln3p and Nil1p from activating
transcription through cis-acting sequences containing GA
TAA motif (44). The neighborhood of NCR-target genes
in the inferred network includes two divergently
transcribed gene pairs each containing a known
NCR-target (GUD1 and CHA1). We were interested in
determining whether each associated gene (YDL237W
and VAC17) is also under NCR control as they had not
been fished out in any genome-wide inventory of NCR-
target genes (45–47). We used qRT–PCR to monitor the
relative RNA levels of the four genes (Figure 6C). As
expected, GUD1 and CHA1 were derepressed in ure2D
gzf3D dal80� triple mutant cells grown on glutamine,
an expression profile typical of NCR-target genes. The
VAC17 and YDL237W genes were also significantly dere-
pressed in the triple mutant strain, though to a lower
extent than the GUD1 and CHA1 genes. As Vac17p is a
vacuole-specific receptor for myosin (Myo2p), it remains
uncertain whether its apparent weak NCR control is
physiologically relevant.

Finally, we examined four other genes of an un-
known function (YDL010W, YDL012C, YJL181W and
YDL156W) from an inferred co-regulation set regrouping
several Mbp1 target genes (Figure 6D). Mbp1p is a
DNA-binding protein associating with Swi6p to form
the MBF complex [Mlu1 cell cycle box (MCB) binding
factor] involved in transcriptional control of several
genes during the G1/S transition (48). Although these
four genes have never been shown to be regulated by
Mbp1p, their expression profiles show similarities to
other genes under MBF control (49). To determine
whether these four genes represent actual MBF target
genes, we performed a ChIP–PCR analysis to monitor
their possible association with an HA-tagged Mbp1
protein. The RNR1 gene was used as positive control
(29) and GAL1 as a negative control. The results
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(Figure 6D) show that Mbp1p associates with the
upstream regions of RNR1, YDL156W and YJL181W,
possibly also YDL010W and YDL012C. These genes
thus represent probable new Mbf1p target genes, and
their products are possibly involved in G1/S transition.
We also tested the response to stress in amino acid for

a pair of divergently transcribed genes YHR020W and
DED81, which were grouped with many Gcn4p targets,
but the result was negative.
In summary, by combining predicted regulatory

elements and GO annotation, we could suggest a hypo-
thetical regulation for 16 orphan genes, 14 of which were
supported by experiments.

DISCUSSION

This study shows that a set of genome sequences from
related organisms can be used as sole input for predicting
cis-regulatory elements of individual genes and to
infer co-regulation between gene pairs. Importantly, the
method relies on ab initio pattern discovery in promoter
sequences of orthologous genes (phylogenetic footprint),
and does not require any prior knowledge about regula-
tion, such as annotated TF binding motifs or gene expres-
sion data. By comparing predicted groups of co-regulated
genes to functional classes (e.g. GO classes), a putative
function and regulation can further be assigned to
uncharacterized genes.
The co-regulation network inferred in the yeast

S. cerevisiae was extensively evaluated in various ways.
We first showed that almost all of the top-ranking predic-
tions correspond to pairs of genes previously known to be
co-regulated or involved in the same function (Table 3).
We then performed a systematic in silico validation of the
accuracy of the predictions, and showed that the DPbits
score gives a good indication of their reliability (Figure 4,
Table 4). The comparison between inferred groups of
co-regulations and annotated regulons showed a good
ability for inferring links between the target genes of
specific TFs, but a weakness for detecting large regulons
controlled by global TFs (Figure 5). It has been shown
recently that global regulators consistently display low
levels of binding specificity (50) and consequently the
binding sites of a given TF can differ from each other,
so that even if they were perfectly predicted, it might
still be very difficult to link them. Noticeably, although
our method relies only on genome sequences, its figures
of merit are comparable to those of the STRING
co-expression network derived from several hundreds of
microarray experiments. Finally, we selected 16 interesting
cases of orphan genes appearing to be linked to some
regulons, and 14 of these predictions were confirmed by
experimental testing. This experimental validation of
course concerns only a tiny fraction of the inferred
co-regulations network, which certainly contains many
more correctly predicted regulations. The validation
however demonstrates that the in silico method proposed
here not only re-discovers previously known interactions,
but also provides a valuable set of new hypotheses about

regulation, even for the genome of one of the best studied
model organism.

An important strength of our approach is that the sigB
returned by the footprint discovery algorithm provides a
reliable estimate of the risks of false positives (20),
enabling a more stringent criterion for selecting the most
reliable motifs. Similarly, we show that the DPbits score
ranks the infer co-regulations in a relevant manner, with a
steady enrichment of correct predictions with increasing
scores.

Our method can readily be applied to decipher the
wiring of transcriptional regulatory networks in hundreds
of microbial organisms for which no other information
is available than the raw genome sequence, and to
analyze the evolution of these networks. Its long-term
benefits can easily be perceived to catch the pace of the
exponential increase of genome and metagenome se-
quences that will result from the new high-throughput
sequencing technologies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online

ACKNOWLEDGEMENT

We thank Madan M. Babu for critically reading this paper
and for helpful suggestions.

FUNDING

R.J. and S.B. are supported by a doctoral grant from the
Fonds pour la Recherche dans l’Industrie et l’Agriculture
(FRIA) allowed by the Belgian Fond National de la
Recherche Scientifique (FNRS). R.J. is also supported
by a postdoctoral grant from the Wiener-Anspach
Foundation. S.B. is chargé de recherches at the FNRS
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