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Long Noncoding RNA MIR4435-2HG Suppresses
Colorectal Cancer Initiation and Progression By
Reprogramming Neutrophils
Hongfei Yu1, Chaoyi Chen1, Fengyan Han1, Jinlong Tang1, Mengli Deng1, Yumiao Niu1, Maode Lai2,3,4,5, and
Honghe Zhang1,3,4

ABSTRACT
◥

MIR4435-2HG, also known as LINC00978, has previously
been described as an oncogenic long noncoding RNA (lncRNA).
However, we show here that Mir4435-2hg depletion promoted
colorectal tumorigenesis and progression in in vivo models of
colitis-associated colorectal cancer, spontaneous intestinal ade-
nomatous polyposis, and subcutaneous tumors. Alteration of
MIR4435-2HG in colorectal cancer cells did not change the
potential for cell proliferation, migration, or invasion in vitro.
RNAscope assays showed that most MIR4435-2HG was located
in the tumor stroma, which caused high expression of MIR4435-
2HG in colorectal cancer tumor tissue. Transcriptome analysis of
colorectal cancer tissues from wild-type and Mir4435-2hg–defi-
cient mice revealedMir4435-2hg as a tumor suppressor gene that
regulated the immune microenvironment. Loss of Mir4435-2hg

led to a decline in neutrophils and elevation of polymorpho-
nuclear myeloid-derived suppressor cells (PMN-MDSC). In
tissue-specific Mir4435-2hg knockout mice, we confirmed that
Mir4435-2hg depletion in neutrophils, but not in intestinal
epithelial cells, promoted colorectal cancer progression. Mech-
anistically, Mir4435-2hg depletion enhanced the immunosup-
pressive ability of PMN-MDSCs by disturbing their fatty acid
metabolism. These findings suggest that MIR4435-2HG is a
tumor-suppressing lncRNA whose deficiency could increase
tumor-infiltrating PMN-MDSCs and enhance the immunosup-
pressive potential of PMN-MDSCs to promote colorectal cancer
development. This provides a theoretical basis for further illus-
trating the pathogenesis of colorectal cancer and a potential anti-
tumor immunotherapy target.

Introduction
Long noncoding RNAs (lncRNA) are a class of over 200 nucle-

otide transcripts without protein-coding capacity (1). Various
studies demonstrate the vital roles of lncRNAs in tumorigenesis,
proliferation, metastasis, angiogenesis, and regulation of the immune
microenvironment (2, 3). As the third leading cause of malignant
cancer in the world (4), colorectal cancer is regulated at the initiation
and progression stages by the aberrant expression and mutations of
lncRNAs. Our previous studies demonstrate that LINC01133 can

inhibit colorectal cancer epithelial–mesenchymal transition and
metastasis by interacting with Serine And Arginine Rich Splicing
Factor 6 (SRSF6; ref. 5), and high expression of the lncRNA CYTOR
in tumor cells drives colorectal cancer progression (6). We also
found that another novel lncRNA, MIR4435-2HG, which is highly
homologous to CYTOR (7), is upregulated in colorectal cancer
tumor tissue. An increasing number of publications have since then
reportedMIR4435-2HG as an oncogene in multiple tumor types, such
as lung cancer (8, 9), hepatocellular carcinoma (10, 11), gastric cancer
(12), breast cancer (13, 14), prostate cancer (15, 16), and colorectal
cancer (17–19). These results were derived from analyses of clinical
tissue samples or public databases and gain- or loss-of-function
assays in in vitro tumor cell lines, but the roles of MIR4435-2HG in
the tumor stroma or microenvironment, and its detailed regulatory
mechanisms, remain unknown.

Myeloid-derived suppressor cells (MDSC) are a heterogeneous
population of cells, including pathologically activated monocytes and
relatively immature neutrophils, that are generated from many path-
ological conditions, such as infection, inflammation, and cancer.
MDSCs consist of polymorphonuclear MDSCs (PMN-MDSC) and
monocyte MDSCs (M-MDSCs), whose morphology and phenotype
are similar to those of neutrophils andmonocytes, respectively (20, 21).
PMN-MDSCs are the prevalent population ofMDSCs inmost types of
cancer, including lung, breast, colon, and pancreatic cancer (22, 23).
The salient feature of MDSCs is their inhibition of T-cell proliferation
and activation by inducing arginase-1 (Arg1), reactive oxygen species
production, and nitric oxide production, which culminate in the
promotion of tumor progression (24, 25). MDSCs have also been
reported to produce prostaglandin E2, calcium-binding proteins
S100A8/S100A9, matrix metalloproteinases, IL10, TGFb, and other
cytokines to promote angiogenesis, tumor proliferation, and meta-
stasis (26). Clinical investigation has shown that the accumulation of
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MDSCs positively associates with advanced cancer stage and meta-
static burden in patients with colorectal cancer (27, 28).

So far, some lncRNAs, such as PVT1 (29), lnc-C/EBPb (30), and
lnc-chop (31), have been identified to regulate the immunosup-
pressive activity of MDSCs. However, the roles of lncRNAs in
MDSCs have still not been clarified in detail. In this study, our find-
ings repositioned MIR4435-2HG as a tumor-suppressing lncRNA in
colorectal cancer.Mir4435-2hg depletion increased tumor-infiltrating
PMN-MDSCs and promoted lipid accumulation in MDSCs, thus
enhancing the immunosuppressive function of MDSCs and pro-
moting tumorigenesis and progression in both colitis-associated and
Apcmin/þ spontaneous colorectal cancer mousemodels. These findings
imply that we need to reexamine the conclusions drawn from previous
MIR4435-2HG expression data and experiments in vitro.

Materials and Methods
Cell lines and culture

Colorectal cancer cell lines DLD1, HCT8, HT29, HCT116, RKO,
SW480, SW620, and CT26 were purchased from the ATCC in 2011.
The MC38 cell line was kindly provided by Cell Bank/Stem Cell
Bank, Chinese Academy of Sciences (Shanghai, China) in 2015.
DLD1, HCT8, HCT116, HT29, SW480, SW620, CT26 cells were
cultured in RPMI1640 (Gibco) and RKO, MC38 cells were cultured
in DMEM (Gibco) medium according to the manufacturer’s ins-
truction, with 10% FBS (Gibco) and 1% penicillin–streptomycin
(Biosharp, catalog no. BL505A) in a humidified atmosphere at 37�C
with 5% CO2. All cells were frozen at passages 2 to 5 after purchase.
Experiments were performed using passages 3 to 20 after removal
from liquid nitrogen. Mycoplasma was test routinely using GMyc-
PCR Mycoplasma Detector Kit (Yeasen). The most recent cell line
authentication was in September 2018 by short tandem repeat (STR)
analysis in Forensic Science Center, Zhejiang University, Hangzhou,
China.

Transfection of vectors and siRNA
For overexpressing MIR4435-2HG in DLD1 and HCT116

or Mir4435-2hg in MC38 and CT26 cells, plasmids containing
MIR4435-2HG (NR_015395.2) orMir4435-2hgvariant1 (NR_028589.1),
variant 2 (NR_028590.1), variant 3 (NR_028591.1), respectively,
were constructed on the basis of pCDH empty backbone (WZ Bio-
sciences Inc.) using ClonExpress II One Step Cloning Kit (Vazyme,
catalog no. C112). pCDH empty vector was used as control.
Plasmids were then transfected into DLD1, HCT116, MC38 or
CT26 by lipo2000 (Invitrogen, catalog no. 11668019) according to
the manufacturer’s instructions. siRNAs targeting MIR4435-2HG
(synthesized in Gemma, Supplementary Table S1) were transfected
into SW480 and RKO cells using the Genmute siRNA transfection
reagent (SignaGen, catalog no. SL100568) according to the man-
ufacturer’s instructions. The overexpressing or silencing effects
were confirmed by RNA isolation and quantitative PCR, as detailed
below.

Construction of knockout cell lines via CRISPR/Cas9
To construct MIR4435-2HG-deficient SW480 cells and Mir4435-

2hg–deficientMC38 cells, 2mg pSpCas9-BB-2A-GFP plasmid contain-
ing two sgRNAs (purchased from Genscript; sgRNA sequences are
listed in Supplementary Table S1) were transfected to cells at 50%
confluence in a 6-well plate by Lipofectamine 2000 according to the
manufacturer’s instructions. After one week, single GFPþ cells were

selected by Beckman moflo Astrios EQ into wells of a 96-well plate.
These single-cell clones were cultured as detailed above, and knockout
was confirmed by PCR and RT-qPCR at the genome and transcrip-
tional level. The clones without editing by Cas9 were used as mock
cells. sgRNA sequences and PCR primers are listed in Supplementary
Table S1.

Mice and colorectal cancer tumor models
Mir4435-2hgþ/�, Mir445-2hgflox/þ, Villin-Cre, S100a8-Cre mice

were constructed through CRISPR/Cas9 and pronuclear microinjec-
tion techniques by GemPharmatech Co., Ltd, as indicated in Supple-
mentary Figures. Apcmin/þ mice were a gift from Dr. Rongpan Bai,
Zhejiang University School of Medicine. Primer sequences for PCR
genotyping are listed in Supplementary Table S1. All mice were
C57BL/6J background which were bred and maintained under path-
ogen-free conditions at the laboratory animal center, Zhejiang Uni-
versity. All mice were monitored every day by the staffs of the
laboratory animal center and twice one week by the authors. The
protocol (ZJU20160023) for this study was approved by the Institu-
tional Animal Care and Use Committee at Zhejiang University.

For the azoxymethane (AOM)/dextran sulfate sodium (DSS)-
induced colorectal cancer model, 6-week male wild-type (WT),
Mir4435-2hg�/�, Mir445-2hgflox/flox, Mir445-2hgflox/flox Villin-Cre,
Mir445-2hgflox/flox S100A8-Cre mice were injected intraperitoneally
with 10mg/kgAOM(Sigma-Aldrich, catalog no.A5486), and after one
week, they were fed on and off 1.5% DSS (MPbio, catalog no. 160110)
in the drinking water. One week of 1.5% DSS in the drinking water,
followed 2 weeks of normal water constituted one DSS cycle. As
indicated figures, mice were euthanatized after two DSS cycles for
the short-term cohort or after three DSS cycles for the classical term
cohort. For the long-term cohort, mice were fed with normal water for
another 15 weeks after three DSS cycles before euthanasia. In the
cohort for survival analysis, mice were fed with normal water after
three DSS cycles until death. The colon was harvested, cut open along
the main axis, washed with saline, and tumor numbers were counted.
Tumor size was defined as the tumor diameter measured by a caliper,
and tumor burden was defined as the summation of total tumor
volume. Histologic examination was performed on paraffin-
embedded sections after hematoxylin and eosin (H&E) staining, as
detailed below.

For spontaneous intestinal adenomatous polyposis, Apcmin/þ mice
were sacrificed at 4 months old. Small intestines and colons were
longitudinally cut open to count tumor numbers. Histologic exami-
nation was performed on paraffin-embedded sections after H&E
staining, as described below.

For subcutaneous tumor models, male WT, Mir4435-2hg�/�,
Mir445-2hgflox/flox,Mir445-2hgflox/flox S100A8-Cre mice aged 6–8 weeks
were subcutaneously injected in the right flank with 1�105 WT MC38
cells. For Supplementary Fig. S5D, 1�106, 1�104, or 2�103 WTMC38
cell were injected as indicated in the figure. In Fig. 2H, 1�105 mock or
KOMC38 cells were injected as indicted in thefigure. Tumor length and
width were measured with a Vernier caliper every three days. Tumor
volume was calculated as length � width2/2.

For verifying tissue-specific depletion of Mir4435-2hg, neutro-
phils and intestinal epithelial cells were collected from na€�ve
Mir445-2hgflox/flox, Mir445-2hgflox/flox Villin-Cre and Mir445-
2hgflox/flox S100A8-Cre mice. Neutrophils were collected from
bone marrow (as described below) by flow cell sorter (Beckman
moflo Astrios EQ) as labeled CD11bþLy6Gþ cells (antibodies
list in Supplementary Table S2). Intestinal epithelial cells were
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collected by digesting colons using striping buffer containing
5 mmol/L EDTA (Invitrogen, catalog no. AM9260G), 1 mmol/L
DTT (Beyotime, catalog no. ST041), 5% FBS in HBSS (Beyotime,
catalog no. C0219), in 37�C 150 rpm for 40 minutes in the
MQW-63R shaker. RNA isolation and quantitative PCR were then
carried out as detailed below to verify the Mir4435-2hg depletion.

H&E staining
Brain, heart, kidney, liver, lung, spleen, stomach, small intestine,

colon tissues from na€�ve 8-week male WT andMir4435-2hg�/� mice,
colon tissues from AOM/DSS-induced colorectal cancer models, and
small intestine and colon tissues from 4-month Apcmin/þ mice were
fixedwith 10%neutral buffered formalin and paraffin embedded. After
being sectioned, deparaffinized, and rehydrated, 4-mm-thick sections
were stained with hematoxylin (Sigma-Aldrich, catalog no. H9627) for
10 minutes and eosin (Sigma-Aldrich, catalog no. 230251) for 2
seconds at room temperature. The slides were scanned using the
NanoZoomer digital slice scanner (Hamamatsu). Tissue alterations
were determined via tissuemorphology, structure and cellmorphology
by a pathologist.

IHC
Four-micron-thick paraffin-embedded colon sections from the

AOM/DSS-induced colorectal cancer models were deparaffinized in
xylene (Sinopharm) and rehydrated through a graded series of
ethanol solutions (Sinopharm). After blocking endogenous perox-
idase activity in 3% hydrogen peroxide (ZSGB-BIO) at room
temperature for 15 minutes, the tissue sections were treated with
0.01 mol/L citrate buffer (pH 6.0; OriGene) under high pressure in a
pressure cooker for 3 minutes to complete antigen retrieval. Block-
ing was performed with 10% bovine serum (Gibco) for 30 minutes
at room temperature, and then the sections were incubated with
primary antibodies to CD8a (1:500) and MRP8 (1:1,000) overnight
at 4�C (Supplementary Table S2), followed by incubation with 100
mL goat anti-rabbit secondary antibody (ZSGB-BIO, catalog no.
PV6001) at room temperature for 30 minutes. Staining was visu-
alized with 3,30-diaminobenzidine (DAB) (ZSGB-BIO, catalog no.
PV8000), and sections were counterstained with hematoxylin,
dehydrated, and covered with a coverslip. The slides were scanned
using the NanoZoomer digital slice scanner (Hamamatsu). Image
analysis and quantitation were performed with ImageJ (NIH,
Bethesda, MD).

Splenocytes and MC38 cell coculture assays
WT MC38 cells in logarithmic phase were trypsinized, washed

twice to remove residual FBS, and then stained with 5 mmol/L CFSE
(eBioscience, Cat# 65–0850) at room temperature for 10 minutes.
Labeling was stopped by adding 4 to 5 volumes of cold 1640
medium containing 10% FBS, and then cells were incubated on
ice for 5 minutes. After washing three times with complete medium,
2�105 CFSE-labeled MC38 cells were plated in 12-well plates with
splenocytes isolated WT or Mir4435-2hg�/� mice after erythrocytes
were lysed using RBC Lysis Buffer (Santa Cruz Biotechnology,
catalog no. sc-296258). After incubating for 40 hours, both sple-
nocytes and tumor cells were collected for flow cytometry analysis,
as described below.

Bone marrow–derived MDSCs
Tibias and femurs from WT and Mir4435-2hg�/� mice were

removed, and bone marrow (BM) cells were flushed from the bones
in PBS containing 5% FBS. Erythrocytes were removed using RBC

Lysis Buffer. A total of 1� 106/mLBMcells were plated in 6-well plates
in RPMI1640 complete medium containing 10% FBS, 1% penicillin–
streptomycin, and 20 ng/mL GM-CSF (BioLegend, catalog no.
576304). 25% (v/v)MC38/CT26 tumor cell culturemediumwas added
as required, which was prefiltered using 0.22-mm filters (Millipore).
After 3 days, BM-derived MDSCs were collected for flow cytometry
analysis, RNA isolation, and suppressive function assays, as detailed
below.

Flow cytometry analysis
Cells used for flow cytometry analysis were isolated from the

indicated tissues. Peripheral blood was collected from the retro-
orbital plexus or submandibular vein plexus. Splenocytes were
collected by dissociating the spleens with sterile forces and passing
through a 40-mm cell strainer (Biosharp). BM cells were collected
from tibias and femurs as described above. Erythrocytes in samples
were lysed using RBC Lysis Buffer. Tumor tissues from mice were
cut into small pieces and digested in RPMI1640 medium supple-
mented with 5% FBS, 1 mg/mL collagenase IV (Sigma-Aldrich,
catalog no. C5138), 20 mg/mL hyaluronidase (Solarbio, catalog no.
H8030) for 2 hours at 37�C in a shaker. Single-cell suspensions
were obtained by passing through a 40-mm nylon cell strainer.
Single-cell suspensions were first stained with Fc block (Biolegend,
catalog no. 101320) and then treated with the indicated antibodies
for 30 minutes in 4�C in the dark. All antibodies used are listed in
Supplementary Table S2. 7-AAD (BD Biosciences, catalog no.
559925) was used to exclude dead cells. For intracellular staining,
the Fix & Perm Kit (Multi Science, catalog no. GAS005) was used
following the manufacturer’s instructions. For lipid staining
after surface staining, cells were resuspended in 500 mL of BODIPY
493/503 (Invitrogen, catalog no. D3922) at 1 mg/mL for 20 minutes
at room temperature in the dark, and then washed three times
with PBS. For reactive oxygen species (ROS) analysis, surface-
stained cells were incubated with 10 mmol/L DCFH-DA probe
(Beyotime, catalog no. S0033S) for 20 minutes at 37�C, and then
washed three times with PBS before detection. Cells were run on
Beckman CytoFLEX LX, and the data were analyzed by FlowJo
10.4 (Tristar).

RNA isolation and qPCR
Total RNA from cells or mouse colon tissues were isolated using

TRIzol reagent (Invitrogen, catalog no. 15596018). Mouse colon
tissues were homogenized by grinding in liquid nitrogen. For
nuclear and cytoplasmic RNA fractionation, the PARIS Kit
(Ambion, catalog no. AM1921) was used according to the man-
ufacturer’s instruction. cDNA was synthesized by HiScript II
Reverse Transcriptase (Vazyme, catalog no. R223–01) and quanti-
tative PCR analysis was performed by SYBR qPCR Master Mix
(Vazyme, catalog no. Q711–02) according to the manufacturer’s
instruction in LightCycler 480 (Roche). GAPDH was detected in
each experimental sample for normalization. Fold-change was
calculated using the 2�DDCt method. Three independent experi-
ments were performed in triplicate. Genes and primers are listed in
Supplementary Table S1.

Cell proliferation, migration, and invasion assay
Cell proliferation was measured by CCK8 reagent (Boster, catalog

no.AR1160) according to the manufacturer’s instructions. Briefly,
2,000 cells were seeded in 96-well plates and incubated with 100 mL
culture medium. An aliquot of 10 mL CCK8 was added and incubated
for 2 hours. The absorbance at 450 nm was measured to calculate the
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numbers of viable cells. Migration and invasion assays were performed
with transwell and Matrigel chamber plates (24-well format; 8-mm
pore size; Corning Costar, catalog no. 3422) as described previous-
ly (32). ImageJ software was used tomeasure the cell area in the bottom
chamber to quantify the cells that migrated across the filter. Each
measurement was performed in triplicate, and the experiments were
repeated three times.

Suppressive function assay
Splenocytes were isolated from spleens of wild-type C57BL/6 mice,

and erythrocytes were lysed by RBC Lysis Buffer. Splenocytes were
stained with 5 mmol/L CFSE (eBioscience, catalog no. 65–0850), and
then 3�105 CFSE-labeled splenocytes were cocultured with 3�104

WT orMir4435-2hg�/� MDSCs in a round-bottom 96-well plate pre-
coated with 5 mg/mL anti-CD3 (eBioscience, catalog no. 14–0031) and
5 mg/mL anti-CD28 (eBioscience, catalog no. 14–0281) at 4�C over-
night. After coculturing for 72 hours, T-cell proliferation was assessed
by CFSE dilution using Beckman CytoFLEX LX, and data were
analyzed in FlowJo 10.4.

GEO and TCGA databases analysis
The Gene Expression Omnibus (GEO) databases were sys-

tematically and comprehensively searched (up to October 16,
2017). The search details were ‘(colorectal [All Fields] AND
(adenoma [MeSH Terms] OR adenoma [All Fields]) AND
9[n_samples]:1000[n_samples]) AND “Homo sapiens”’. The inclu-
sion criteria were as follows: (i) datasets had paired clinical sample
tissues; (ii) experiment type was expression profiling. The exclusion
criteria were as follows: (i) spotted cDNA (two-channel ratio data)
array; (ii) patient had antitumor treatments. All available data were
included in processing and analysis. The selected gene expression
data were downloaded from the GEO database in SOFT format.
The SOFT files were reformatted to a table separate expression
matrix using a custom C script (https://github.com/wenjie1991/
GEO_parser). The expression data were annotated by the gene
information from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz). The Cancer
Genome Atlas (TCGA) colorectal cancer dataset was downloaded
fromUCSC Xena (https://xenabrowser.net/). ESTIMATE (Estimation
of STromal and Immune cells in MAlignant Tumor tissues using
Expression data; ref. 33) R package was used to calculate the immune
score in R software.

Colorectal cancer patient samples
Five colorectal cancer patient samples were used in the RNAscope

assay, which were obtained from Sir Run Run ShawHospital, Zhejiang

University in 2019 after informed consent by patients. The samples
were formalin-fixed immediately after removal from patients and then
dehydrated and paraffin-embedded. The collection and use of patient
samples were approved by the Ethics Committee of department of
Medicine, Zhejiang University (2016007).

RNAscope assay
The probe for MIR4435-2HG was synthesized by Advanced Cell

Diagnostics (ACD lnc.). Detection of MIR4435-2HG in formalin-
fixed paraffin-embedded (FFPE) human colorectal cancer tissues
was performed using the RNAscope 2.0 HD Reagent Kit-Brown
(ACD, catalog no. 322310) following the manufacturer’s instruc-
tions. Briefly, 4-mm FFPE sections were deparaffinized, boiled with
target retrieval reagent for 15 minutes, and then digested by pro-
tease at 40�C for 30 minutes, followed by hybridization for 2 hours
at 40�C with Probe-MIR4435-2HG. After six steps of amplification,
the probe was visualized with DAB, and cell nuclei were counter-
stained with hematoxylin. The slides were evaluated according to
manufacturer’s instructions by a pathologist.

RNA-sequencing, gene ontology functional analysis, and gene
set enrichment analysis

RNA of colorectal tumor tissues from WT and Mir4435-2hg�/�

long-term AOM/DSS mice, 4-month ApcMin/þ/WT, ApcMin/þ/
Mir4435-2hg�/� mice, and neutrophils from bone marrow of 8-week
WT and Mir4435-2hg�/� mice were extracted, sequenced, and ana-
lyzed by Bioacme. The tumor tissues were stored in RNA Keeper
(Vazyme, catalog no.R501) and neutrophils were stored in TRIzol
in �80�C and then shipped under the protection of dry ice. Three
biological replicates were used. Gene differential expression analysis
was performed using the Cuffdiff program in Cufflinks package
(https://github.com/cole-trapnell-lab/cufflinks) (34). The Benjamini–
Hochberg false discovery rate method was applied to correct for
multiple hypothesis testing. The genes with adjust P < 0.05, fold
change > 1.5 or < 0.67 were defined as differentially expressed genes
and were candidates for further analysis. A gene expression heat-
map was generated with Heatmapper (http://www.heatmapper.ca/).
Gene ontology enrichment analysis was performed using the
online tool DAVID (https://david.ncifcrf.gov/). The results were
visualized using the R package ggplot2 in R software. Gene set
enrichment analysis (GSEA) was applied to the H (hallmark) gene
sets. The gene set collection database MSigDBv7.2 (http://www.
gsea-msigdb.org/gsea/downloads_archive.jsp) was used and sets
with size of 15 to 500 were selected. Permutation of genes was used
to generate null distribution, and all other parameters were kept as
default.

Figure 1.
Mir4435-2hg deletion promotes colorectal tumorigenesis and progression. A, Meta-analysis for the expression of MIR4435-2HG in colorectal cancer tumor tissues
compared to paired adjacent normal tissues for 10 datasets from TCGA and GEO. B, RNAscope assay for detecting the sublocation of MIR4435-2HG in human
colorectal cancer tissues. Brown dots represent MIR4435-2HG (data representative of n ¼ 5). Scale bar, 200 mm; zoomed, 50 mm. C, Schematic of three cohorts of
AOM/DSS-induced colorectal cancer using wild-type (WT) and Mir4435-2hg�/� mice. W, week; i.p., intraperitoneal injection. D, Representative H&E staining of
colorectum fromWTandMir4435-2hg�/�mice in the short-termAOM/DSSmodel. Scale bar, 2.5mm; zoomed, 250mm.Quantification of adenomas (E) and lymphoid
follicles (F) in the colorectum, counted from three different H&E staining sections of one sample. Each spot represents one mouse, n¼ 9/group. Gross view (G) and
representative H&E staining (H) of colorectum fromWT and Mir4435-2hg�/� mice in the classical term AOM/DSS model, n¼ 6/group. Scale bar, 2.5 mm; zoomed,
250 mm.Quantification of colon tumor number (I), tumor size (J), and tumor burden (K). For I andK, each spot represents onemouse. For J, each spot represents one
tumor. Gross view (L) and representative H&E staining (M) of colorectum fromWT and Mir4435-2hg�/� mice in long-term AOM/DSS model, n ¼ 5 for each group.
Scale bar, 1 mm; zoomed, 250 mm. N, Quantification of colon tumor number. Each spot represents one mouse.O, Quantification of tumor size. Each spot represents
one tumor.P, Percentage ofmicewith invasive adenocarcinomas in long-termAOM/DSSmodel.Q, Survival analysis ofWT andMir4435-2hg�/�micewith AOM/DSS
treatment, n¼ 10 per group. R, Quantification of tumor number from intestine and colorectum of 4-month ApcMin/þ/WT and ApcMin/þ/Mir4435-2hg�/�mice. Each
spot represents one mouse, n ¼ 13–14/group. S, Survival analysis of ApcMin/þ/WT and ApcMin/þ/ Mir4435-2hg -/- mice, n ¼ 10–11/group. Data are presented as
mean�SD; statistical significance was assessed by an unpaired t test (E, F, I, J, K, N, O, R) or log-rank test (Q and S; ns, P > 0.05; � , P < 0.05; �� , P < 0.01).
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Statistical analysis
A two-tailed Student t test was used to test for significant dif-

ferences between two groups in GraphPad v6.0 (GraphPad Soft-
ware) or SPSS v23 (SPSS Inc.). Kaplan–Meier survival analysis
was performed using the software IBM SPSS Statistics v23 with
the Log-rank (Mantel–Cox) test. Data in this article are presented
as mean � SD. P-value <0.05 was considered statistically significant
(�, P < 0.05; ��, P < 0.01; ���, P < 0.001; ����, P < 0.0001).

Data availability
All data that support the findings of this study are available

from the corresponding authors upon reasonable request. The
raw RNA-sequencing (RNA-seq) data have been submitted to the
National Center for Biotechnology Information (accession number:
PRJNA777810, PRJNA779546, PRJNA779548).

Results
MIR4435-2HG within tumor cells has no biological effect on
colorectal cancer cells in vitro

To explore the function of MIR4435-2HG in colorectal cancer, we
analyzed 10 public datasets from The Cancer Genome Atlas (TCGA)
and eligible Gene Expression Omnibus (GEO) databases (including
more than 10 paired normal–tumor colorectal cancer samples), which
showed that MIR4435-2HG was upregulated in tumor tissues com-
pared with paired adjacent normal tissues in 7 datasets but not in the
other 3 datasets (Supplementary Fig. S1A). Therefore, we performed a
meta-analysis to confirm that MIR4435-2HG was overexpressed
in colorectal cancer (Fig. 1A). Survival meta-analysis conducted
on 8 datasets revealed no significant relationship between the expres-
sion of MIR4435-2HG and overall patient survival when we set the
cut-off value as the Youden index or median (P50; Supplementary
Fig. S1B–S1E).

Next, we detected the expression and subcellular localization of
MIR4435-2HG in colorectal cancer cell lines (Supplementary
Fig. S2A). MIR4435-2HG had relatively high expression in both the
nucleus and cytoplasm of SW480 and RKO cells (Supplementary
Fig. S2B). We knocked-out MIR4435-2HG through CRISPR/Cas9 in
SW480 cells (Supplementary Fig. S2C) and knocked-downMIR4435-
2HG by siRNA in SW480 and RKO cells (Supplementary Fig. S2D).
Neither knockout nor knockdown of MIR4435-2HG in colorectal
cancer cells had an effect on proliferation (Supplementary Fig. S2E
and S2F), migration, or invasion (Supplementary Fig. S2G and S2H).
Consistent with these findings, ectopic expression ofMIR4435-2HG in
DLD1 and HCT116 cells (Supplementary Fig. S2I) did not change
their proliferation (Supplementary Fig. S2J), migration, or invasion
(Supplementary Fig. S2K). RNA scope showed high expression of
MIR4435-2HG in the tumor stroma but very low expression in
colorectal cancer cells and adjacent normal epithelial cells
(Fig. 1B), which might clarify why MIR4435-2HG had high
expression in tumor tissues but had no biological effect within
colorectal cancer cells.

Mir4435-2hg deletion promotes colorectal tumorigenesis and
progression

It remains unknown whether MIR4435-2HG in the tumor stroma
plays biological roles in colorectal cancer development. We generated
Mir4435-2hg–deficient mice by deleting the Mir4435-2hg locus
through CRISPR/Cas9 (Supplementary Fig. S3A–3C). Consist with
a former report (35), loss of Mir4435-2hg led to a decline of neutro-
phils, monocytes, and eosinophils but not lymphoid cells (Supple-

mentary Fig. S3D–S3F). No other obvious alterations in major organ
development or dyslipidemia were observed after deletingMir4435-
2hg (Supplementary Fig. S4A and S4B). We then divided the mouse
colitis-associated (AOM/DSS) colorectal cancer model into three
cohorts, including short-term, classical term, and long-term tumor
models (Fig. 1C), which resemble human colorectal cancer pro-
gression at the molecular level, including Apc mutations and
b-catenin translocation (36, 37). Although the adenoma in the
colorectum from the short-term tumor model was not large enough
for gross observation, H&E staining showed that Mir4435-2hg�/�

mice carried more colorectal adenomas and lymphoid follicles than
wild-type (WT) mice (Fig. 1D–F). Through gross observation and
H&E staining of the classical term model, we found more tumors,
larger tumor sizes, and higher tumor burdens in Mir4435-2hg�/�

mice than WT mice (Fig. 1G–K). However, neither gross obser-
vation nor H&E staining of the long-term model presented a
significant difference in the tumor number or tumor size between
Mir4435-2hg�/� mice and WT mice (Fig. 1L–O). Further histologic
analysis (Fig. 1M) showed that all tumors from Mir4435-2hg�/�

mice, but only 40% from WT mice, had penetrated through the
muscularis mucosae into the submucosa (Fig. 1P). Another cohort
of the AOM/DSS model was subjected to survival analysis (at the
30th week), and the Mir4435-2hg�/� mice exhibited worse survival
(Fig. 1Q).

Next, ApcMin/þ mice, an animal model of spontaneous intestinal
adenomatous polyposis (38), were crossed with Mir4435-2hg�/�

mice to mimic spontaneous tumors. Higher Mir4435-2hg expres-
sion was detected in intestinal tumors than in normal tissues from
ApcMin/þ mice (Supplementary Fig. S4C). Nevertheless, more intes-
tinal tumors were observed in ApcMin/þ/Mir4435-2hg�/� mice
(Fig. 1R; Supplementary Fig. S4D and S4E). We also found that
ApcMin/þ/Mir4435-2hg�/� mice had worse prognosis than in
ApcMin/þ/WT mice (Fig. 1S). Taken together, these data suggest
that Mir4435-2hg depletion contributes to sporadic colorectal
tumorigenesis and progression and should be considered a tumor
suppressor lncRNA.

MIR4435-2HG regulates colorectal cancer development by
remodeling the immune microenvironment

To demonstrate how Mir4435-2hg regulated colorectal cancer
progression, we performed transcriptome analysis on tumor
tissues from WT and Mir4435-2hg�/� AOM/DSS mice by RNA-
seq. Mir4435-2hg deletion caused 92 genes to be significantly
upregulated and 138 genes to be significantly downregulated
(Fig. 2A), which were further validated for their representative
genes by qRT-PCR (Supplementary Fig. S5A). These differentially
expressed genes were mainly enriched in immune response biolog-
ical processes, including inflammatory response, neutrophil
chemotaxis, immune system process, antigen processing and pre-
sentation, according to Gene Ontology (GO) enrichment analysis
(Fig. 2B and C).

To exclude the side effects caused by AOM/DSS-induced colitis,
we also collected tumor tissues from ApcMin/þ/Mir4435-2hg�/� and
ApcMin/þ/WT mice for RNA-seq analysis. Consistent with the
AOM/DSS model, GO enrichment analysis of the upregulated genes
showed that most genes associated with tumor immune-related bio-
logical processes, such as lymphocyte chemotaxis, cellular response
to interferon-gamma, inflammatory response, and neutrophil chemo-
taxis (Supplementary Fig. S5C). These data further support that
Mir4435-2hg might function as a tumor suppressor by regulating the
immune microenvironment of colorectal cancer.
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Figure 2.

MIR4435-2HG regulates colorectal cancer development by remodeling the immunemicroenvironment.A,Heatmapof differentially expressed genes, determined via
RNA-seq, in long-term colitis-associated (AOM/DSS) colorectal cancer tumor tissue from WT and Mir4435-2hg�/� (knockout, KO) mice, n ¼ 3/group. B, Top
downregulated biological process terms regulated byMir4435-2hg depletion identified via gene ontology enrichment. C, Top upregulated biological process terms
regulated by Mir4435-2hg depletion. D, Tumor growth curves for the subcutaneous colorectal cancer model, n¼ 8/group. 1� 105 MC38 cells were subcutaneously
inoculated toWT andMir4435-2hg�/� (KO)mice.E, Tumors fromWT andMir4435-2hg�/�mice in day 22 for themodel inD.F,Quantification of tumorweight for the
model in D. G, Tumor growth curves for the subcutaneous colorectal cancer model, n ¼ 8/group. Control (mock) or Mir4435-2hg�/� (KO) MC38 cells were
subcutaneously inoculated toWT andMir4435-2hg�/�mice. H, Tumors fromWT andMir4435-2hg�/�mice for the model in G. I, Quantification of tumor weight for
the model in G. J, Flow cytometry analysis MC38 cell apoptosis after coculture with splenocytes from WT or Mir4435-2hg�/� mice at the indicated ratios.
K, Quantification of proportion of Annexin Vþ MC38 cells, n ¼ 3/group. J and K, Data are representative of three independent experiments. Data are presented as
mean � SD; statistical significance was assessed by an unpaired t test (ns, P > 0.05; � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001).
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To test this hypothesis, the syngeneic murine colorectal cancer
cell line MC38 was subcutaneously inoculated into Mir4435-2hg�/�

and WT mice. We found that tumors grew more rapidly in
Mir4435-2hg�/� mice (Fig. 2D). The volume and weight of tumors
inMir4435-2hg�/� mice were also significantly larger than those in
WT mice (Fig. 2E and F), and the tumor formation rate in
Mir4435-2hg�/� mice was significantly higher than that in WT
mice when the inoculated cells were diluted at different concen-
trations (Supplementary Fig. S5D).

To further demonstrate thatMir4435-2hg in the tumor stroma, but
not in tumor cells, regulated colorectal cancer development, we
knocked-outMir4435-2hg in MC38 cells with CRISPR/Cas9 (Supple-
mentary Fig. S5E). Mir4435-2hg knockout did not change their
proliferation, migration, or invasion (Supplementary Fig. S5F and
S5G). Overexpression of three Mir4435-2hg variants in MC38 and
CT26 cells also had little effect on proliferation and migration (Sup-
plementary Fig. S5H–S5J). Mir4435-2hg knockout MC38 and mock
knockout cells were synchronously injected intoMir4435-2hg�/� and
WT mice. Knocking out Mir4435-2hg in MC38 cells did not affect
tumor proliferation in either Mir4435-2hg�/� or WT mice; however,
the microenvironment ofMir4435-2hg�/� mice significantly promot-
ed tumor growth, not only of mock but also ofMir4435-2hg knockout
MC38 cells (Fig. 2G). A similar phenotypewas also observed for tumor
volume and weight (Fig. 2H and I). Next, we separated splenocytes
fromMir4435-2hg�/� and WT mice to coculture with MC38 cells. As
expected, the apoptosis of MC38 cells was greater when they were
cocultured with splenocytes, but the MC38 cell apoptosis rate was
decreased by the splenocytes from Mir4435-2hg�/� mice compared
with WT mice (Fig. 2J and K).

We also reanalyzed survival data from TCGA and GEO databases.
The ESTIMATE algorithmwas used to calculate the immune score for
each sample, and samples with an immune score higher than 1,000
were selected for survival analysis. In these high immune infiltrate
samples, higher expression ofMIR4435-2HG tended to associate with a
better prognosis, although not statistically significant (Supplementary
Fig. S6). Overall, these data indicated that MIR4435-2HG might play
an anticancer role by remodeling the colorectal cancer immune
microenvironment.

Mir4435-2hg depletion increases PMN-MDSCs in colorectal
cancer

Mir4435-2hg can control the lifespan of eosinophils, neutrophils,
and monocytes through allele-specific suppression of Bim expres-
sion (35). However, it remains unknown which type of cell in

the colorectal cancer stroma expresses Mir4435-2hg. Therefore, we
performed an RNAscope assay in human colorectal cancer tissues,
which showed that MIR4435-2HG was mainly located in neutrophils
(Fig. 3A). Next, we monitored the number variations of main leuko-
cytes in peripheral blood during the growth of subcutaneous tumors.
Consistent with previous reports (39), neutrophils, monocytes, and
eosinophils were increased and lymphocytes were decreased in tumor-
bearing mice. Monocytes and eosinophils in Mir4435-2hg�/� mice
remained lower than those inWTmice, but the number of neutrophils
inMir4435-2hg�/�mice gradually reached the same frequency as that
in WT mice as tumors grew (Fig. 3B). A similar phenotype was
observed in splenocytes (Supplementary Fig. S7A).

Neutrophils in tumor-bearing mice are heterogenetic, including
both classical neutrophils and PMN-MDSCs (40, 41). From our data
above, we assumed thatMir4435-2hg could not control the lifespan of
PMN-MDSCs and that the elevated neutrophils in tumor-bearing
Mir4435-2hg�/� mice were mainly PMN-MDSCs. We, thus, detected
the apoptosis of neutrophils in tumor-free and tumor-bearingWT and
Mir4435-2hg�/� mice. Tumor-free Mir4435-2hg�/� mice had signif-
icantly more neutrophil apoptosis than the WT mice. However, in
tumor-bearing mice, neutrophil apoptosis was reduced in both
Mir4435-2hg�/� and WT mice, which may result from the GM-
CSF produced by MC38 cells (42), and in tumor-bearing Mir4435-
2hg�/� mice, neutrophil apoptosis rate was reduced to the same level
as that in tumor-bearing WT mice (Fig. 3C and D). In BM-derived
PMN-MDSCs, we also observed a decreased apoptosis rate after
treatment with MC38 tumor cell culture medium, especially in
Mir4435-2hg�/� cells (Fig. 3E).

Because Mir4435-2hg regulates neutrophil apoptosis by suppres-
sing Bim expression, we detected the expression of BIM protein in
neutrophils. BIM was upregulated in both tumor-free and tumor-
bearing Mir4435-2hg�/� mice, and bearing tumors did not alter the
expression of BIM (Fig. 3F and G; Supplementary Fig. S7B). The
Bcl2 family regulates apoptosis by forming homodimers or hetero-
dimers. Therefore, we detected alterations in all anti-apoptotic
Bcl2 family members. Among them, only Bcl2l1 in BM-derived
PMN-MDSCs from either WT or Mir4435-2hg�/� mice was upre-
gulated by stimulation with MC38 tumor cell culture medium
(Fig. 3H), whereas Bcl2 and Bcl2a1a were downregulated, and
Bcl2l2 and Mcl1 were unaltered (Supplementary Fig. S7C). Flow
cytometry also showed elevated expression of BCL2L1 in neutro-
phils from both WT and Mir4435-2hg�/� tumor-bearing mice
(Fig. 3I and J). These results indicated that the elevated expression
of BCL2L1 in PMN-MDSCs might antagonize the function of

Figure 3.
Mir4435-2hg depletion increases PMN-MDSCs. A, RNAscope assay showing MIR4435-2HG localization in tumor-infiltrating neutrophils in human colorectal
cancer tissues. Representative image of five samples. Neutrophils were identified by their polymorphonuclear morphology. Brown signals represent MIR4435-
2HG. Scale bar, 50 mm; zoomed, 10 mm. B, Variations in proportions of neutrophils, monocytes, eosinophils, and lymphocytes in peripheral blood of WT and
Mir4435-2hg�/� (KO) mice at the indicated timepoints for subcutaneous MC38 colorectal cancer tumors, n ¼ 3/group. C, Flow cytometry splenic neutrophil
apoptosis from tumor-free WT and Mir4435-2hg�/� (KO) mice, and subcutaneous MC38 tumor-bearing wild-type (WT_TB) and Mir4435-2hg�/� (KO_TB)
mice, pregated on CD11bþLy6Gþ cells. D, Quantification of Annexin Vþ neutrophils for mice in C, n¼ 3/group. E, Frequency of Annexin Vþ neutrophils in in vitro
cultured bone marrow (BM) cells from WT or KO mice with/without MC38 cultured medium (CM), n ¼ 3/group. F, BIM protein expression assessed by flow
cytometry in splenic neutrophils from tumor-free WT and Mir4435-2hg�/� (KO) mice, and subcutaneous MC38 tumor-bearing wild-type (WT_TB) and
Mir4435-2hg�/� (KO_TB) mice. G, Quantification of BIM mean fluorescence intensity (MFI) from mice in (F), n ¼ 3/group. H, Relative Bcl2l1 mRNA expression
in BM-derived MDSCs from WT or KO mice with/without MC38 CM, n ¼ 3/group. I, BCL2L1 protein expression assessed by flow cytometry in splenic
neutrophils from tumor-free WT and Mir4435-2hg�/� (KO) mice, and subcutaneous MC38 tumor-bearing wild-type (WT_TB) and Mir4435-2hg�/� (KO_TB)
mice. J, Quantification of BCL2L1 MFI for mice in (I), n ¼ 4/group. K, Representative flow cytometry of CD14þ neutrophils from spleen of tumor-free WT
and Mir4435-2hg �/� (KO) mice, and subcutaneous MC38 tumor-bearing wild-type (WT_TB), Mir4435-2hg�/� (KO_TB) mice, pregated on CD11bþLy6Gþ cells.
L, Quantification of CD14þ neutrophils from K, n ¼ 4 per group. B–L, Data are representative of three independent experiments. Data are presented as
mean � SD; statistical significance was assessed by an unpaired t test (ns, P > 0.05; � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001).
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the increased BIM inMir4435-2hg�/� mice, helping the neutrophils
in tumor-bearing Mir4435-2hg�/� mice recover to the same level as
in WT mice and leading to a higher proportion of PMN-MDSCs.

Single-cell RNA-seq analysis (43) has identifiedCD14 as amarker of
PMN-MDSCs for distinguishing classical neutrophils in tumor-
bearingmice. In our study, a significantly higher proportion of CD14þ

cells was observed in splenic neutrophils from tumor-bearing
Mir4435-2hg�/� mice than in those from WT mice. Even in tumor-
free mice, Mir4435-2hg�/� mice also carried a higher proportion of

CD14þ neutrophils than WT mice (Fig. 3K and L). We also inves-
tigated several types of tumor-infiltrating immune cells within sub-
cutaneous tumors by flow cytometry. A higher proportion of neu-
trophils was detected in Mir4435-2hg�/� mice than in WT mice
(Fig. 4A). Within the neutrophil compartment, the percentage of
CD14þ cells reached average 85.7% in WT mice and 93.0% in
Mir4435-2hg�/� mice (Fig. 4B), which demonstrated that tumor-
infiltrating neutrophils weremostly PMN-MDSCs that were increased
within the tumors ofMir4435-2hg�/� mice. In contrast, CD3þ T cells

Figure 4.

Mir4435-2hg depletion leads to increased tumor-infiltrating PMN-MDSCs and decreased T cells. Flow cytometry of tumor-infiltrating total neutrophils (A), CD14þ

PMN-MDSCs (B), CD3þ T cells (C), CD8þ T cells (D), monocytes/M-MDSCs (E), total CD45þ cells (F), macrophages (G), and M2 macrophages (H) in subcutaneous
MC38 tumors, n¼ 3–8/group. Data are representative of three independent experiments. I, Left, representative IHC of tumor-infiltrating PMN-MDSCs (S100a8) and
CD8þ T cells (CD8) in the long-termAOM/DSSmodel. Scale bar, 100 mm. Right, quantification, n¼ 5/group. Data are presented asmean� SD; statistical significance
was assessed by an unpaired t test (ns, P > 0.05; �, P < 0.05; �� , P < 0.01; ��� , P < 0.001).
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and CD8þ T cells were decreased (Fig. 4C and D). Monocytes/
M-MDSCs were also significantly decreased inMir4435-2hg�/� mice,
whereas total CD45þ cells, macrophages, and M2 macrophages
were unchanged (Fig. 4E–H). Similar results were observed in the
AOM/DSS colorectal cancer model; tumor-infiltrating PMN-MDSCs
were significantly increased, andCD8þT cells were decreased (Fig. 4I)
in Mir4435-2hg�/� mice compared with WT mice by IHC. In
the splenocytes/MC38 coculture system, we also observed that
PMN-MDSCs were increased in the Mir4435-2hg�/� group (Supple-
mentary Fig. S7D). These data demonstrate that loss of Mir4435-2hg
could cause an increase in PMN-MDSCs, which contribute to an
immunosuppressive environment.

Loss of Mir4435-2hg enhances the immunosuppressive
potential of PMN-MDSCs

To investigate the biological mechanism by which Mir4435-2hg
regulated PMN-MDSCs, we performed RNA-seq of neutrophils from
BM, which showed 429 downregulated genes and 336 upregulated
genes (Fig. 5A). GO enrichment analysis showed that the down-
regulated genes were enriched in mitosis-associated biological pro-
cesses, including cell division, mitotic nuclear division, and regulation
of mitotic centrosome separation (Supplementary Fig. S8A). Because
MDSCs are considered relatively immature myeloid cells, these results
might indicate a disordered process of neutrophil maturation in
Mir4435-2hg�/� mice, which provides another perspective from
which to understand the decline in neutrophils and the elevation of
PMN-MDSCs in Mir4435-2hg�/� mice.

Most upregulated genes associated with the cholesterol biosynthetic
process (Fig. 5B), and GSEA also showed that these genes were
enriched in cholesterol homeostasis and fatty acid metabolism
(Fig. 5C and D). Because accumulation of lipids is a critical regulator
of the immunosuppressive function of PMN-MDSCs (44, 45), we
presumed that higher lipid accumulation caused a stronger immuno-
suppressive effect of PMN-MDSCs inMir4435-2hg�/�mice. Through
BODIPY lipid staining, we observed an increasing trend of lipid
accumulation in neutrophils from tumor-free Mir4435-2hg�/� mice,
although the difference was not significant. Nevertheless, the
PMN-MDSCs from the spleens of tumor-bearing Mir4435-2hg�/�

mice had more lipids than those of WT mice (Fig. 5E and F).
Consistent with this, Mir4435-2hg�/� mouse BM-derived PMN-
MDSCs induced by CT26 and MC38 in vitro had more lipids than
those from WT mice (Fig. 5G). Mir4435-2hg�/� mouse-derived
PMN-MDSCs expressed higher Arg1, Nos2, Cox2, and ROS
(Fig. 5H–K), which resulted in a stronger inhibitory effect on the
proliferation of T cells (Fig. 5L). Altogether, these data illustrate
that loss ofMir4435-2hg enhances the immunosuppressive ability of
PMN-MDSCs.

Neutrophil-specific deletion of Mir4435-2hg promotes
colorectal cancer progression

To further confirm that Mir4435-2hg depletion in neutrophils,
but not in intestinal epithelial cells, caused the phenotypes observ-
ed in the mouse models, we generated conditional knockout
Mir4435-2hgflox/flox mice and crossed them with S100a8-Cre mice
or Villin-Cre mice to construct neutrophil- or intestine-specific
Mir4435-2hg deletion mice (Fig. 6A; Supplementary Fig. S8B and
S8C). Flow cytometry analysis of leukocytes in peripheral blood
showed a decrease in neutrophils inMir4435-2hgflox/flox S100a8-Cre
mice compared to Mir4435-2hgflox/flox and Mir4435-2hgflox/flox

Villin-Cre mice, and the number of eosinophils was also signifi-
cantly decreased in Mir4435-2hgflox/flox S100a8-Cre mice (Supple-

mentary Fig. S8D). The subcutaneous tumor model showed that
tumors grew significantly faster in Mir4435-2hgflox/flox S100a8-Cre
mice than in control mice (Fig. 6B), and tumor volume and weight
(Fig. 6C and D) were significantly increased in neutrophil-deficient
Mir4435-2hg mice. Consistent with the Mir4435-2hg�/� mice, we
found a higher lipid accumulation in the PMN-MDSCs from
tumor-bearing Mir4435-2hgflox/flox S100a8-Cre mice (Fig. 6E), as
well as in BM-derived PMN-MDSCs induced by MC38 cultured
medium in vitro (Fig. 6F).

In the AOM/DSSmodel,Mir4435-2hgflox/flox S100a8-Cremice devel-
oped more and larger tumors than Mir4435-2hgflox/flox Villin-Cre and
Mir4435-2hgflox/flox mice (Fig. 6G; Supplementary Fig. S8E). Although
the tumor counts were not significantly higher in Mir4435-2hgflox/flox

S100a8-Cre mice (Fig. 6H), the average tumor size and tumor burden
(Fig. 6I and J) were significantly increased in Mir4435-2hgflox/flox

S100a8-Cre mice. No obvious changes in tumor count, tumor size, or
tumor burden were observed between Mir4435-2hgflox/flox Villin-Cre
mice and Mir4435-2hgflox/flox mice. We also observed more tumor-
infiltrating PMN-MDSCs and fewerCD8þT cells inMir4435-2hgflox/flox

S100a8-Cre mice than in Mir4435-2hgflox/flox Villin-Cre mice and
Mir4435-2hgflox/flox mice (Fig. 6K). Overall, deletion of Mir4435-2hg
in neutrophils/PMN-MDSCs, but not in the intestinal epithelium,
promoted colorectal cancer progression.

Discussion
Here, genetically engineered mouse models demonstrated that

MIR4435-2HG suppressed colorectal cancer initiation and progression
by regulating the immunosuppressive activity of PMN-MDSCs. These
findings are a significant departure from the literature, especially the
colorectal cancer literature. Ouyang and colleagues (17) report
MIR4435-2HG as a poor prognostic marker in their analysis of TCGA
and two selected GEO databases. However, their analysis did not
consider the high homology of MIR4435-2HG with CYTOR, which
could have resulted in a false expression value forMIR4435-2HG that
included CYTOR expression (TCGA anlaysis). In the GEO database,
probe 232918_at is designed as a specific probe targeting MIR4435-
2HG, whereas probe 225799_at targets both MIR4435-2HG and
CYTOR. The previous study (17) used probe 225799_at to evaluate
the expression value ofMIR4435-2HG. In this study, we used the signal
value of 232918_at to determine expression ofMIR4435-2HG.We also
downloaded all eligible GEOdatabases as ofOctober 2017 to perform a
meta-analysis, and the results revealed no significant relationship
between MIR4435-2HG expression and overall survival. Shen and
colleagues (18) investigated MIR4435-2HG expression in clinical
colorectal cancer samples, but the primers utilized to detect
MIR4435-2HG do not matchMIR4435-2HG sequence. Another study
reports that MIR4435-2HG promotes colorectal cancer proliferation
and metastasis through the miR-206/YAP1 axis (19), but both the
primers and the shRNA targeting MIR4435-2HG used also target
CYTOR. Therefore, we believe the conclusions from these studies
may not reflect the true expression of MIR4435-2HG and that the
phenotypes observed may have been confounded by alterations in
CYTOR expression. Other studies of MIR4435-2HG in other types of
cancer may also need to be reexamined to verify whether off-target
effects occurred. In the meanwhile,MIR4435-2HG might have differ-
ent distribution and diverse functions in different tumor types.

In our study, we used specific CRISPR-Cas9/sgRNAs, siRNAs, and
an overexpression vector to alter the expression of MIR4435-2HG in
colorectal cancer cells, which did not affect CYTOR expression (Sup-
plementary Fig. S9). Alteration of MIR4435-2HG did not change the
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proliferation, migration, or invasion of human colorectal cancer cells.
The same phenotypes were also observed in colorectal cancer cell lines
from mice. In mice, CYTOR is deficient (no homologous sequence
found). Because of the high level ofMIR4435-2HG in the tumor stroma
and the loss of CYTOR in mice, we generated Mir4435-2hg–deficient
mice.Mir4435-2hg-specific depletion promoted colorectal tumorigen-
esis and progression in a colitis-associated colorectal cancer model,
spontaneous intestinal adenomatous model, and subcutaneous tumor
experiments. Although no significant change in the tumor number or
tumor size was observed in the long-term colitis-associated colorectal
cancer model usingMir4435-2hg�/� mice, H&E staining showed that
tumors in Mir4435-2hg�/� mice exhibited higher invasion potency.
The reason might be that tumor formation and proliferation reached
a maximum for long-term induction, but Mir4435-2hg depletion
still promoted colorectal cancer progression in later stages. In
Mir4435-2hg�/�mice, BIM upregulation caused neutrophil apoptosis,
but PMN-MDSCswith high BCL2L1 expression resisted BIM-induced
apoptosis. The increased lipid accumulation in Mir4435-2hg�/�

PMN-MDSCs enhanced their immunosuppressive activities. There-
fore, we observed higher infiltration of PMN-MDSCs and fewer
T cells in tumors from Mir4435-2hg�/� mice. In splenocyte/MC38
co-culture assays, we also observed increased PMN-MDSCs in the
Mir4435-2hg�/� group, but possibly due to the low cell population
and insufficient incubation time, no difference in T-cell number was
observed. Nevertheless, the increased number and enhanced immu-
nosuppressive activity of PMN-MDSCs in the Mir4435-2hg�/�

group might also suppress T-cell activity, which needs to be further
confirmed.

Hypercholesterolemia and dyslipidemia have previously been
associated with increased baseline inflammatory responses and
higher colorectal cancer incidence (46, 47). Mir4435-2hg depletion
only led to high lipid accumulation in MDSCs, with no obvious
alteration of plasma cholesterol and triglycerides (Supplementary
Fig. S4B) in our mouse models. Conditional knockout of Mir4435-
2hg in mice further confirmed that Mir4435-2hg depletion in
neutrophils and PMN-MDSCs, but not in intestinal epithelial cells,
promoted colorectal cancer development. All together, these data
showed that Mir4435-2hg depletion regulated not only the ratio of
neutrophils to PMN-MDSCs, but also the immunosuppressive
activity of PMN-MDSCs, which contributed to colorectal cancer
initiation and progression. Thus, we call for a rigorous reassess-
ment of the biological characterization and clinical significance of
lncRNA MIR4435-2HG.

Myelopoiesis is a structured process in which the commonmyeloid
precursors in the bone marrow differentiate into mature circulating
leukocytes. However, a variety of pathological conditions, such as
chronic inflammation, autoimmune diseases, and cancer, can induce

aberrantmyelopoiesis, causing the accumulation of immaturemyeloid
cells that diverge from the standard pathway of differentiation (48).
Neutrophil differentiation involves several stages, from hematopoietic
progenitor cells, common myeloid progenitors, and granulocyte-
macrophage progenitors to myeloblasts, myelocytes, metamyelocytes
and band forms, and then mature neutrophils (49). Under pathologic
conditions, some immaturemyeloid cells might expand and convert to
PMN-MDSCs (50). Consistent with a previous report (35), we
observed a decrease in neutrophils inMir4435-2hg�/�mice, andmany
differentially expressed genes regulated by Mir4435-2hg associated
withmitosis. It needs to be further investigatedwhether the decrease in
neutrophils in Mir4435-2hg�/� mice could increase conversion to
PMN-MDSCs. Classical neutrophils, monocytes, and pathologically
activated MDSCs coexist in humans and mice within tumors, and
MDSCs accumulate with tumor progression (50). Mouse PMN-
MDSCs are defined by the surface markers CD11bþLy6GþLy6Clo,
similar to classical neutrophils, which makes it difficult to distinguish
PMN-MDSCs from neutrophils. Therefore, all neutrophils from
tumor-bearing mice have been considered PMN-MDSCs for compar-
ison with neutrophils from tumor-free mice in most studies. CD80,
CD115, CD124, CD224, and PD-L1 are believed to be PMN-MDSC
markers due to their absence on neutrophils in some experimental
models (21, 51). However, these markers are not widely accepted.
Veglia and colleagues propose CD14 as a specific marker of
PMN-MDSCs to distinguish them from classical neutrophils using
scRNA-seq in a pure population of neutrophils (43). In our study,
we also observed a higher proportion of CD14þ cells among splenic
and tumor-infiltrating neutrophils in Mir4435-2hg�/� mice, which
represents a higher infiltration of PMN-MDSCs. However, whether
CD14 could become the gold standard to discriminate between
PMN-MDSCs and classical neutrophils needs further verification.
Tumor-associated neutrophils (TAN) are another, related defini-
tion of PMN-MDSCs. These comprise a heterogeneous population
that includes N1 TANs with antitumor properties and N2 TANs
with suppressive functions (52). N2 TANs have been considered
PMN-MDSCs (25, 53), and N1 TANs, as normally activated neu-
trophils, exert antitumor effects by activating unconventional T cells
and exerting direct cytotoxic activity against tumors and antimicrobial
activity (54). In this study, the decrease in neutrophils in Mir4435-
2hg�/� and Mir4435-2hgflox/flox S100a8-Cre mice might also contrib-
uted to cancer progression, especially at early-stage disease.

Henao-Mejia and colleagues first reported that murine Mir4435-
2hg (termed myeloid RNA regulator of Bim-induced death) could
regulate Bim and the short myeloid cell lifespan (35). They also
determined that Mir4435-2hg plays a vital role in viral infection
(55), leukemia (56–58), and stress-induced abnormalities and
clonal hematopoiesis (59). However, most studies on human

Figure 5.
Loss of Mir4435-2hg enhances the immunosuppressive potential of PMN-MDSCs. A, Heat map of differentially expressed genes, determined via RNA-seq, in
BM neutrophils from na€�ve 8-week WT and Mir4435-2hg�/� (KO) mice, n ¼ 3/group. B, Top upregulated biological process terms regulated by Mir4435-2hg
depletion in BM neutrophils. GSEA for cholesterol homeostasis (C) and (D) fatty acid metabolism. Flow cytometry (E) and quantification of lipid accumulation
(BODIPY staining; F) of splenic neutrophil from tumor-free WT and Mir4435-2hg�/� (KO) mice, and PMN-MDSCs from subcutaneous MC38 tumor-bearing
wildtype (WT_TB) and Mir4435-2hg�/� (KO_TB) mice 20 days after MC38 cells injected, n¼ 3/group, pregated on CD11bþLy6Gþ cells. MFI, mean fluorescence
intensity. G, Lipid accumulation (BODIPY staining) of WT and Mir4435-2hg�/� BM-derived PMN-MDSCs with or without the stimulation of CT26 or
MC38 cultured medium, n ¼ 3/group. Relative Arg1 (H), Nos2 (I), and Cox2 mRNA expression (J) in BM-derived MDSCs from cultures in G, assessed by
qRT-PCR, n ¼ 3/group. K, Flow cytometry of ROS (DCFH-DA probe) in BM-derived PMN-MDSCs from cultures in G, pregated on CD11bþLy6Gþ cells. L, CFSE
flow cytometry analysis of T-cell and CD8þ T-cell proliferation after coculture with WT or Mir4435-2hg�/� MDSCs for 72 hours, n ¼ 3/group. E–L, Data
are representative of three independent experiments. Data are presented as mean � SD; statistical significance was assessed by an unpaired t-test. ns,
P > 0.05, �P < 0.05, ��P < 0.01, ���P < 0.001, ����P < 0.0001.
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Figure 6.

Neutrophil-specific deletion of Mir4435-2hg promotes colorectal cancer progression. A, Relative Mir4435-2hg expression in neutrophils and intestinal
epithelial cells from na€�ve 8-week Mir4435-2hgflox/flox, Mir4435-2hgflox/flox Villin-Cre, and Mir4435-2hgflox/flox S100a8-Cre mice, n ¼ 2–3/group. B, Tumor
growth curves for the subcutaneous MC38 colorectal cancer model, n ¼ 8/group, tumors were harvested at day 22. C, Tumors from Mir4435-2hgflox/flox and
Mir4435-2hgflox/flox S100a8-Cre mice from B. D, Quantification of tumor weight from mice in B. E, Flow cytometry of lipid accumulation of splenic neutrophil
from tumor-free or subcutaneous MC38 tumor-bearing Mir4435-2hgflox/flox and Mir4435-2hgflox/flox S100a8-Cre mice, n ¼ 5/group. F, Lipid accumulation in
the bone marrow-derived PMN-MDSCs from the indicated mice with/without MC38 culture medium (CM), n ¼ 3/group. G, Gross view of colorectum from
Mir4435-2hgflox/flox, Mir4435-2hgflox/flox Villin-Cre, and Mir4435-2hgflox/flox S100a8-Cre mice in AOM/DSS model, n ¼ 6/group. H, Quantification of tumor
number from mice in (G); each spot represents one mouse. I, Quantification of tumor size from mice in G; each spot represents one tumor. J, Quantification
of tumor burden from mice in G; each spot represents one mouse. K, Left, representative IHC of tumor-infiltrating PMN-MDSCs (S100a8) and CD8þ T cells
(CD8). Scale bar, 100 mm. Right, quantification, n ¼ 5/group. (A, E, and F) Data are representative of three independent experiments. Data are presented
as mean � SD; statistical significance was assessed by an unpaired t test (ns, P > 0.05; � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001).
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MIR4435-2HG have focused on cancer biology. Reports analyzing
TCGA data for colorectal cancer (60), hepatocellular carcino-
ma (61), and pan-cancer (62) have revealed that MIR4435-2HG
associates with glycolysis and immune infiltration. Together, these
data and our data suggest that these correlations should be attrib-
uted to the high expression ofMIR4435-2HG in immune cells. High
immune infiltration leads to a high expression of MIR4435-2HG
in tumor tissues. MIR4435-2HG could activate oxidative phosphor-
ylation in myeloid dendritic cells (DCs) from HIV-1 elite control-
lers by regulating epigenetic modifications and facilitating the
transcription of Regulatory-Associated Protein of MTOR Complex
1 (RPTOR) (63). This emerging evidence implies that MIR4435-
2HG could also control other immune cells besides neutrophils and
PMN-MDSCs, such as DCs and eosinophils, to regulate tumor
progression. According to our data, Mir4435-2hg depletion almost
resulted in the absence of eosinophils. Higher eosinophil infiltration
is reported to associate with better prognosis in colorectal cancer
(64). Therefore, we did not exclude the tumor-suppressive roles of
eosinophils, which are worth further exploring.

In conclusion, our study demonstrates the unexpected role of
MIR4435-2HG using multiple mouse models. It functioned as a tumor
suppressor in the tumor stroma by remodeling the immune micro-
environment rather than as an oncogene in tumor cells. The deficiency
of MIR4435-2HG increased tumor-infiltrating PMN-MDSCs and
enhanced their immunosuppressive potential to promote colorectal
cancer development, further illustrating mechanisms behind the
pathogenesis of colorectal cancer and providing a potential antitumor
immunotherapy target.
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