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Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing.
It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accu-
racy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched
patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed
substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA
conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late
trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific
CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion
samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.

mice (patient-derived xenografts (PDXs)) have advantages preclinical drug efficacy studies because they allow researchers to

| | uman tumors engrafted into transplant-compliant recipient — genetically engineered mouse models™* and cancer cell lines’) for
over previous model systems of human cancer (for example,  directly study human cells and tissues in vivo'”’. Comparisons of
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genome characteristics and histopathology of primary tumors and
xenografts of various cancer types®'* have demonstrated that the
biological properties of patient-derived tumors are largely pre-
served in xenografts. A growing body of literature supports their
use in cancer drug discovery and development'*-"’.

A caveat to PDX models is that intratumoral evolution can occur
during engraftment and passaging'®-**. Such evolution could poten-
tially modify treatment response of PDXs with respect to the patient
tumors (PTs)'****, particularly if the evolution were to systemati-
cally alter cancer-related genes. Recently, Ben-David et al.” reported
extensive PDX copy number divergence from the PT of origin and
across passages, based mainly on large-scale assessment of copy
number alteration (CNA) profiles inferred from gene expression
microarray data. They raised concerns about genetic evolution in
PDXs as a consequence of mouse-specific selective pressures, which
could impact the capacity of PDXs to faithfully model patient treat-
ment response. Such results contrast with reports of observations
of genomic fidelity of PDX models with respect to the originating
PTs and from early to late passages by direct DNA measurements in
several dozen PDX models®'"*.

Here, we resolve these contradicting observations by sys-
tematically evaluating CNA changes and the genes they affect
during engraftment and passaging in a large, internationally col-
lected set of PDX models, comparing both RNA- and DNA-based
approaches. The data collected, as part of the US National Cancer
Institute (NCI) PDX Development and Trial Centers Research
Network (PDXNet) Consortium and EurOPDX Consortium,
comprises PT and PDX samples from >500 models. Our study
demonstrates that previous reports of systematic copy number
divergence between PTs and PDXs are incorrect, and that there
is high retention of copy number during PDX engraftment and
passaging. This work also finely enumerates the copy number pro-
files in hundreds of publicly available models, which will enable
researchers to assess the suitability of each for individualized
treatment studies.

Results

Catalog of CNAs in PDXs. We have assembled CNA profiles of
1,451 unique samples (324 PT samples and 1,127 PDX samples), cor-
responding to 509 PDX models contributed by participating centers
of the PDXNET, the EurOPDX Consortium and other published
datasets'** (see Methods, Supplementary Methods, Supplementary
Table 1 and Supplementary Fig. 1). We estimated the copy number
from five data types (single nucleotide polymorphism (SNP) array,
whole-exome sequencing (WES), low-pass whole-genome sequenc-
ing (WGS), RNA sequencing (RNA-seq) and gene expression array
data), yielding 1,548 tumor datasets including samples assayed on
multiple platforms (see Methods, Supplementary Methods and
Supplementary Data 1). Paired normal DNA, and in some cases
paired normal RNA, were also obtained to calibrate WES and
RNA-seq tumor samples.

The combined PDX data represent 16 broad tumor types
derived from American, European and Asian patients with can-
cer (see Methods), with 64% (n=324) of the models having their
corresponding PTs assayed and another 64% (n=328) having
multiple PDX samples of either varying passages (P0-P21) or
varying lineages from propagation into distinct mice (Fig. 1a and
Supplementary Table 2). The distributions of PT and PDX sam-
ples across different tumor types, passages and assay platforms
(Fig. 1b and Supplementary Figs. 2-12) show the wide spectrum of
this combined dataset, which, to the best of our knowledge, is the
most comprehensive copy number profiling of PDXs compiled to
date (Supplementary Note 1). Additionally, our data include seven
patients with multiple tumors collected either from different relapse
time points or different metastatic sites, resulting in multiple PDX
models derived from a single patient.
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Comparison of CNA profiles from SNP array, WES and gene
expression data. To compare the CNA profiles from different plat-
forms in a controlled fashion, we assembled a dataset with matched
measurements across multiple platforms (Supplementary Table 3
and Supplementary Figs. 13-17). Copy number calling has been
reported to be noisy for several data types®*, and we observed that
quantitative comparisons between CNA profiles are sensitive to: (1)
the thresholds and baselines used to define gains and losses; (2) the
dynamic range of copy number values from each platform; and (3)
the differential impacts of normal cell contamination for different
measurements. To control for such systematic biases, we assessed
the similarity between two CNA profiles using the Pearson correla-
tion of their log,[copy number ratio] values across the genome in
100-kilobase (kb) windows. Regions with discrepant copy number
were identified as those with outlier values from the linear regres-
sion model (see Methods).

CNAs from WES are consistent with CNAs from SNP array data.
As earlier studies reported that CNA estimates from WES data
have more uncertainties than those from SNP arrays®®, we
implemented a WES-based CNA pipeline and validated it against
SNP array-based estimates’*” for matched samples. Copy num-
ber gain/loss segments (see Methods) from SNP arrays were of a
higher resolution (Fig. 2a; median and mean segment sizes=1.49
and 4.05 megabases (Mb) for SNP and 4.70 and 14.6 Mb for WES,
respectively; P<2.2x107") and wider dynamic range (Fig. 2b;
range of log,[copy number ratio] =-8.62-2.84 for SNP and -3.04-
1.85 for WES; P<2.2x107'). The difference in range is apparent in
the linear regressions between platforms (Supplementary Fig. 18).
These observations take into account the broad factors affecting
CNA estimates across platforms, such as the positional distribution
of sequencing loci, the sequencing depth of WES and the superior
removal of normal cell contamination by SNP array CNA analysis
workflows using SNP allele frequencies™.

We observed strong agreement between SNP arrays and WES,
with significantly higher Pearson correlation coefficients on
matched samples than samples of different models (range=0.913-
0.957 for matched samples and 0.0366-0.354 for unmatched sam-
ples; P=1.02x107°), with the exception of two samples that lacked
CNA aberrations and were removed (Fig. 2c and Supplementary
Figs. 13, 18 and 19). The discordant copy number regions largely
correspond to small focal events (average size=1.53Mb) detect-
able by SNP arrays but missed by WES (Supplementary Fig. 18
and Extended Data Fig. 1a; see Methods). Hence, CNA profiling by
WES is reliable in most regions in this small dataset, with 99% of
the genome locations across the samples consistent with the values
from SNP arrays (Supplementary Note 2). These PT-based observa-
tions are also applicable to PDXs given that mouse DNA is absent in
SNP array signal and removed from WES reads™*.

Low accuracy for gene expression-derived CNA profiles. To com-
pare the suitability of gene expression for quantifying evolution-
ary changes in CNA, we adapted the e-karyotyping method*>*"*
for RNA-seq and gene expression array data (Supplementary Figs.
15 and 17; see Methods). Copy number segments calibrated by
non-tumor expression were of higher resolution (Fig. 2a; median
and mean segment sizes=36.0 and 51.9 Mb for RNASEQ NORM
versus 48.2 and 65.3Mb for RNASEQ TUM (P<2.2x107'°) and
62.0 and 72.4 Mb for EXPARR NORM versus 80.1 and 85.2 Mb for
EXPARR TUM (P=2.20%x1077), where RNASEQ and EXPARR
relate to RNA-seq and gene expression array, respectively, and
NORM and TUM relate to normalization by median expression of
normal and tumor samples, respectively) and a wider dynamic range
(Fig. 2b; range oflog,[copy number ratio] =-2.07-2.17 for RNASEQ
NORM versus -1.79-1.81 for RNASEQ TUM (P<2.2x107%) and
-1.40-1.89 for EXPARR NORM versus -1.13-1.59 for EXPARR
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Fig. 1| PDX datasets used for copy number profiling across 16 tumor types. a, Numbers of PDX models for each tumor type, with models also having
multiple PDX samples or having matched PT samples specified. b, Distributions of datasets by passage number and assay platform for PTs and PDX
samples, separated by tumor type. Late passages include P18, P19 and P21 samples.
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TUM (P=4.09%107)) compared with segments calculated by cali-
bration with tumor samples. These alternative expression calibra-
tions yielded biased gain and loss frequencies (Supplementary Note
3 and Supplementary Fig. 20) and strong variability (Pearson cor-
relation range =0.218-0.943 for RNASEQ NORM versus TUM and
0.377-0.869 for EXPARR NORM versus TUM) in the CNA calls
(Fig. 2c and Supplementary Fig. 21). This range of correlations
was far greater than was observed in comparisons between the
DNA-based methods (P=9.37x107° and P=3.28x1077 rela-
tive to SNP versus WES). This indicates the problematic nature of
RNA-based CNA calling with calibration by tumor samples, which
has been used when normal samples are not available.
Furthermore, expression-based calling had segmental resolu-
tion an order of magnitude worse than the DNA-based methods
(Fig. 2a and Supplementary Figs. 14-17; median and mean seg-
ment sizes=3.45 and 14.0 Mb for WES versus 36.0 and 51.9 Mb for
RNASEQ NORM (P<2.2x107%) and 1.73 and 5.18 Mb for SNP
versus 62.0 and 72.4Mb for EXPARR NORM (P<2.2x1071%)).
The range of detectable copy number values was also supe-
rior for DNA-based methods (Fig. 2b; range of log,[copy num-
ber ratio] =-6.00-5.33 for WES versus -2.07-2.17 for RNASEQ
NORM (P<2.2x107'%) and -9.19-4.65 for SNP versus —1.40-1.89
for EXPARR NORM (P<2.2x107'%)). In addition, there was a
lack of correlation between the expression-based and DNA-based
methods (range=0.0541-0.942 for WES versus RNASEQ NORM
and 0.00517-0.921 for SNP versus EXPARR NORM) (Fig.
2c and Supplementary Figs. 22 and 23). CNA estimates after
tumor-based expression normalization resulted in further discor-
dance with DNA-based copy number results (range = —0.182-0.929
(P=0.0468) for WES versus RNASEQ TUM and —0.0274-0.847
(P=2.20%x107°) for SNP versus EXPARR TUM). Many focal copy
number events detected by DNA-based methods, as well as some
larger segments, were missed by the expression-based methods
(Extended Data Fig. 1b-e). Representative examples illustrating the
superior resolution and accuracy from DNA-based estimates are
given in Fig. 2d (correlations are shown in Extended Data Fig. 2).

Concordance of PDXs with PTs and during passaging. Next,
we adopted a pan-cancer approach to elucidate potential tumor
type-independent copy number evolution in PDXs driven by the
mouse host. We tracked the similarity of CNA profiles during tumor
engraftment and passaging by calculating the Pearson correlation of
gene-level copy number for samples measured on the same platform
(see Methods, Extended Data Fig. 3 and Supplementary Figs. 24-60
and 62). All pairs of samples derived from the same PDX model
were compared, yielding 501 PT-PDX pairs and 1,257 PDX-PDX
pairs (Supplementary Note 4).

For all DNA-based platforms, we observed strong concor-
dance between matched PT-PDX and PDX-PDX pairs, and this
was significantly higher than between different models from the
same tumor type and the same center (P<2.2X107') (Fig. 3a-c
and correlation heatmaps in Supplementary Figs. 24-60). We
observed no significant difference in the correlation values between

PT-PDX and PDX-PDX pairs for SNP array data (median cor-
relation=0.950 for PT-PDX and 0.964 for PDX-PDX; P> 0.05),
although there were small but statistically significant shifts for
WES (PT-PDX=0.874; PDX-PDX=0.936; P=2.31%x107"%) and
WGS data (PT-PDX=0.914; PDX-PDX=0.931; P=0.000299).
PT samples have a smaller CNA range than their derived PDXs
(median ratios for PT/PDX and PDX/PDX, respectively =0.832 and
0.982 (P=0.000120) for SNP, 0.626 and 0.996 (P<2.2x107") for
WES and 0.667 and 1.00 (P<2.2x107') for WGS; Supplementary
Fig. 62b and Extended Data Fig. 4), which can be attributed to
stromal DNA in PT samples diluting the CNA signal. In PDXs, the
human stromal DNA is reduced'"”. The minimal effect for SNP
array data confirms this interpretation as human stromal DNA
contributions can be removed from SNP arrays based on allele fre-
quencies of germline heterozygous sites, while such contributions
to WES and WGS have higher uncertainties. We also performed
intra-model comparisons using RNA-based approaches, which
showed that the expression-based comparison of CNA profiles
between PTs and PDXs can lead to overestimation of copy number
changes during engraftment and passage (Supplementary Fig. 63
and Supplementary Note 5).

Late PDX passages maintain CNA profiles similar to early pas-
sages. Systematic mouse environment-driven evolution, if present,
should reduce copy number correlations at each subsequent pas-
sage. However, we observed no apparent effect during passaging
on the SNP, WES or WGS platforms (Fig. 3d-f and Extended Data
Fig. 5). For example, the SNP data showed no significant difference
between passages (Fig. 3d and Extended Data Fig. 5a). For those
models having very late passages, there was a small but statistically
significant correlation decrease compared with models with earlier
passages (P<8.98x107% Extended Data Fig. 6b), indicating that
some copy number changes can occur over long-term passaging
(Supplementary Fig. 35). However, even at these late passages, the
correlations with early passages remained high (median=0.896). In
any given comparison, only a small proportion of the genes were
affected by copy number changes (median=2.72%; range=1.03-
11.9%). Genes that are deleted and subsequently gained in the
later passages (top left quadrant of regression plots; Extended Data
Fig. 6a) suggest selection of pre-existing minor clones as the key
mechanism in these regions. For WES and WGS data, more vari-
ability in the correlations can be observed (Fig. 3e,f and Extended
Data Fig. 5b,c), probably due to a few samples having more stromal
contamination or low aberration levels (Supplementary Fig. 62b and
Extended Data Fig. 4). However, the lack of downward trend over
passaging was also apparent in these sets (Supplementary Note 6).

PDX copy number profiles trace lineages. Next, we compared the
similarity of engrafted PDXs of the same model with the same pas-
sage number. Surprisingly, we discovered that these pairs were not
more similar than pairs of PDXs from different passage numbers
(Fig. 3d,e, Extended Data Fig. 5 and Supplementary Note 7). Such
similarity in correlations suggested that copy number divergence

>
>

Fig. 2 | Comparisons of resolution and accuracy for CNAs estimated using DNA- and expression-based methods. a, Pairwise comparisons of the
distributions of CNA segment sizes as estimated using different measurement platforms in the validation dataset. CNAs are regions with (Jlog,[copy
number ratio]| > 0.1). Pvalues indicate the significance of the difference between distributions by two-sided Wilcoxon rank-sum test. vs, versus. b, Pairwise
comparisons of the distributions of CNA segment log,[copy number ratio] values. Pvalues were computed by two-sided Kolmogorov-Smirnov test.

¢, Distributions of Pearson correlation coefficients of median-centered log,[copy number ratio] values in 100-kb windows from CNA segments between
pairs of samples estimated using different platforms. Samples with non-aberrant profiles in SNP array and WES data were omitted (5-95% inter-percentile
range of log,[copy number ratio] < 0.3). Pvalues were computed by two-sided Wilcoxon rank-sum test. In the box plots, the center line represents the
median, the box limits are the upper and lower quantiles, the whiskers extend to 1.5x the interquartile range and the dots represent outliers. d, Examples of
CNA profiles in comparisons of different platforms. Pearson correlation coefficients of CNA segments between pairs of samples are shown on the right.
See Supplementary Table 3 for the number of samples per group. Examples of CNA profiles in comparisons of different platforms are shown; each sample
ID is denoted by the model ID, passage number and platform used (see Supplementary Data 1).
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might be associated with effects other than passaging. To further this
analysis, we defined, for The Jackson Laboratory (JAX) SNP array
and Patient-Derived Models Repository (PDMR) WES datasets,

samples within a lineage as those differing only by consecutive
serial passages, while we defined lineages as split when a tumor
was divided and propagated into multiple mice (Fig. 3g). For the
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Fig. 3 | Comparisons of CNAs from PTs with early and late PDX passages. a-c, Distributions of Pearson correlation coefficients of gene-based copy
number, estimated by SNP array (a), WES (b) and WGS (¢) between: PT-PDX samples of the same model; PDX-PDX samples of the same model; and
samples of different models from a common tumor type and contributing center. Pvalues were computed by one-sided Wilcoxon rank-sum test (P> 0.05).
Numbers of data points are indicated. NS, not significant. d-f, Distributions of Pearson correlation coefficients of gene-based copy number, estimated

by SNP array (d), WES (e) and WGS (f) among PT and PDX passages of the same model. Comparisons relative to PT (top) and PO (bottom) are shown
(higher passages are shown in Extended Data Fig. 5). In the box plots, the center line represents the median, the box limits are the upper and lower
quantiles, the whiskers extend to 1.5x the interquartile range and the dots represent all data points. g, Schematic of lineage splitting during passaging and
expansion of tumors into multiple mice. This is a simplified illustration for passaging procedures in which different fragments of a tumor are implanted into
different mice. h, Pearson correlation distributions for PDX sample pairs of different lineages and sample pairs within the same lineage, for (from left to
right): JAX SNP array, PDMR WES and EuroPDX WGS datasets. Pvalues were computed by one-sided Wilcoxon rank-sum test. For all box plots and violin
plots, the numbers of pairwise correlations are indicated in the x axis labels.

EurOPDX colorectal cancer (CRC) and WGS breast cancer (BRCA)  between PDX samples from different lineages compared with
datasets, such lineage splitting was due only to cases with initial ~ within a lineage (Fig. 3h; P=0.0233 for SNP; P=0.00119 for WES;
engraftment of different fragments of the PT (that is, PDX samplesof ~ P=0.000232 for WGS), despite a majority of these pairwise com-
different passages were considered as different lineages if they origi-  parisons exhibiting high correlation (>0.9) (Supplementary Notes 8
nated from different PT fragments). We observed lower correlation —and 9). This suggests that lineage splitting is often responsible
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for deviations in CNAs between samples, and that copy number
evolution during passaging mainly arises from evolved spatial
heterogeneity™.

We further explored whether the stability of copy number during
engraftment and passaging is affected by mutations in genes known
to impact genome stability (see Methods). Overall, we observed that
the presence of mutations in such genes does not lead to increased
copy number changes during PDX engraftment and passaging
(Supplementary Note 10 and Supplementary Fig. 66).

Genes with CNAs acquired during engraftment and passaging
show no preference for cancer or treatment-related functions.
Next, we investigated which genes tend to undergo copy number
changes. Genes with changes during engraftment or during passag-
ing were identified based on a residual threshold with respect to the
improved linear regression” (see Methods and Extended Data Fig. 3).
To test for functional biases, we compared CNA-altered genes with
gene sets with known cancer- and treatment-related functions*-*
(see Methods). We calculated the proportion of altered genes for
sample pairs from each model across all platforms and tumor types.
In agreement with the high maintenance of CNA profiles described
above, we found the proportion of altered protein-coding genes to
be low (median and IQR, respectively=1.90 and 4.11% for PT-PDX
pairs and 1.25 and 3.60% for PDX-PDX pairs; Fig. 4a). Only 8.78%
of PT-PDX pairs and 4.53% of PDX-PDX pairs showed alteration
of >10% of their protein-coding genes. We observed no significant
increase (P> 0.1) in alterations among any of the cancer gene sets
compared with the background of all protein-coding genes, for
either the PT-PDX or PDX-PDX comparisons. This provides evi-
dence that there is no systematic selection for CNAs in oncogenic
or treatment-related pathways during engraftment or passaging.
Next, we considered tumor-type-specific effects, focusing on tumor
types with larger numbers of models to ensure statistical power. We
observed no significant increase in alterations in tumor-type-specific
driver gene sets significantly altered in TCGA*~"" compared with
the background (P>0.1) for either PT-PDX or PDX-PDX com-
parisons (Fig. 4b and Supplementary Note 11).

Low recurrence of altered genes across models. We observed a very
low recurrent frequency (Fig. 4c; see Methods), with only 12 and
two genes recurring at >5% frequency for PT-PDX and PDX-
PDX comparisons, respectively (Supplementary Table 4). No gene
had a recurrence frequency higher than 8.96% (Supplementary
Note 12). None of these recurrent genes overlapped cancer- or
treatment-related gene sets, nor did they intersect genes (n=3)
reported by Ben-David et al.* to have mouse-induced copy num-
ber changes associated with drug response in the Cancer Cell Line
Encyclopedia (CCLE)*** database (Supplementary Note 12).

Absence of CNA shifts in 130 WGS PT, early-passage PDX and
late-passage PDX trios. Next, we investigated whether recurrent
CNA changes occur in PDXs in a tumor-type-specific fashion.
To this aim, we analyzed further the WGS-based CNA profiles of

large metastatic CRC and BRCA series, composed of matched trios
of PT, PDX at early passage (PDX-early) and PDX at later passage
(PDX-late). Genomic Identification of Significant Targets in Cancer
(GISTIC)**! analysis was applied separately to identify recurrent
CNAs in each PT, PDX-early and PDX-late cohort of CRC and
BRCA (see Methods and Supplementary Table 6). As expected,
CRCs and BRCAs generated different patterns of significant CNAs
but, within each tumor type, GISTIC profiles of the PT, PDX-early
and PDX-late cohorts were virtually indistinguishable (Fig. 5a,
Extended Data Fig. 7 and Supplementary Note 13), demonstrating
no gross genomic alteration systematically acquired or lost in PDXs.

We then carried out gene-level analysis, where each gene was
attributed the GISTIC score (Gscore) of the respective segment
(Supplementary Table 7). In both the CRC and BRCA cohorts,
gene-level Gscores of the PTs were highly correlated with the
respective PDX-early and PDX-late cohorts (Fig. 5b,c). Moreover,
PT versus PDX correlations were comparable to PDX-early versus
PDX-late correlations. To search for progressive shifts, we com-
pared the change in Gscore (AG): (1) from tumor to PDX-early;
and (2) from PDX-early to PDX-late. Correlations in these two AG
values were absent or even slightly negative (bottom-right panels
of Fig. 5b,c and Supplementary Note 13). Overall, these results
confirmed the absence of systematic CNA shifts in PDXs, even
under high-resolution gene-level analysis. To evaluate the possi-
bility of systematic copy number evolution at the pathway level in
these trios, we performed gene set enrichment analysis (GSEA)*>*
using Gscores to rank genes in each cohort (see Methods and
Supplementary Note 14). For both CRC and BRCA, the normal-
ized enrichment score (NES) profiles for the ~8,000 gene sets of PTs
were highly correlated with the respective PDX-early and PDX-late
cohorts (Fig. 5d,e). Moreover, PT versus PDX correlations were
comparable to PDX-early versus PDX-late correlations. To search for
progressive shifts, we calculated for each significant gene set ANES
values between PT and PDX-early, as well as between PDX-early
and PDX-late. Similar to what was observed for AG, correlations
were absent or at most slightly negative (bottom-right panels of
Fig. 5d,e), confirming the absence of systematic CNA-based func-
tional shifts in PDXs.

CNA evolution across PDXs is no greater than variation in patient
multiregion samples. As a reference for the treatment relevance of
PDX-specific evolution, we compared this with the levels of copy
number variation in multiregion samples of PTs. For this, we used
copy number data from multiregion sampling of non-small-cell
lung cancer from the TRACERx Consortium®, performing analo-
gous CNA correlation and gene analyses between multiregion pairs
(Supplementary Fig. 69). We observed no significant differences in
correlation (P> 0.05) between patient multiregion and lung cancer
PT-PDX pairs, while PDX-PDX pairs in fact showed significantly
better correlation than the multiregion pairs (P<0.05; Fig. 6a),
consistent across all lung cancer subtypes. Cancer gene set analyses
confirmed these results, with multiregion samples showing greater
differences than either PT-PDX or PDX-PDX comparisons, across

>
>

Fig. 4 | Cancer gene set analysis for copy number-altered genes during engraftment and passaging. a, Distribution of the proportion of altered genes
between pairwise PT-PDX (left) and PDX-PDX comparisons (right) of the same model in various gene sets. Along the xaxes from left to right are:
protein-coding genes annotated by Ensembl; genes in oncogenic signaling pathways identified by TCGA; genes with copy number gain or overexpression
(Amp) and genes with copy number loss or underexpression (Del) associated with therapeutic sensitivity or resistance or changes in drug response identified
by JAX CKB; and genes from the Cancer Gene Census frequently altered by amplifications or deletions. CNA genes were identified by |residual| > 0.5 from

a linear regression model. b, Distribution of the proportion of altered genes between pairwise PT-PDX (top) PDX-PDX comparisons (bottom) of the same
model in various gene sets within BRCA, CRC, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) models. Along the xaxes from left to
right are: protein-coding genes annotated by Ensembl, followed by significantly amplified and deleted genes from TCGA GISTIC analysis for the corresponding
tumor type. For all violin plots, Pvalues were computed by one-sided Wilcoxon rank-sum test (P> 0.1). The numbers of pairwise comparisons are indicated
above each plot, whereas the numbers of genes per gene set are indicated in the xaxis labels. ¢, Recurrence frequencies of protein-coding genes with CNAs,
[residual| > 1, across all models in PT-PDX (left) and PDX-PDX comparisons (right). Number of models are indicated in the x axis labels.
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all cancer gene sets considered (P < 0.05; Fig. 6b and Extended Data  Our PDX collection also contains a few cases in which the PT was
Fig. 8). These results show that PDX-associated CNA evolutionisno  assayed at multiple time points (relapse/metastasis) or multiple
greater than what patients experience naturally within their tumors.  metastatic sites, allowing for controlled comparison of intra-patient
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Fig. 5 | Absence of mouse-driven recurrent CNAs during engraftment and propagation of CRC and BRCA PDXs. a, Bar charts representing genome-wide
G scores for amplifications and deletions in each of the three cohorts of CRC (left; 87 trios) and BRCA (right; 43 trios): PT, PDX-early (PO-P1for CRC; PO-
P2 for BRCA) and PDX-late (P2-P7 for CRC; P3-P9 for BRCA). b,¢c, Scatter plots comparing gene-level G scores between each of the three cohorts for CRC
(b) and BRCA (¢). The bottom-right panels of b and ¢ show scatter plots comparing AG values from PT to PDX-early and from PDX-early to PDX-late.

d.e, Scatter plots comparing GSEA NESs for gene sets between each of the three cohorts for CRC (d) and BRCA (e). The bottom-right panels of d and e
show scatter plots comparing ANES from PT to PDX-early and from PDX-early to PDX-late. Gray data points represent all gene sets, whereas red data
points represent gene sets significantly enriched in at least one of the three cohorts (that is, PT, PDX-early or PDX-late).
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Fig. 6 | Comparison of CNA variation during PDX engraftment and passaging with CNA variation among patient multiregion, tumor relapse and
metastasis samples. a, Distributions of Pearson correlation coefficients of gene-based copy number for lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC) and other lung cancer subtypes, comparing different datasets. From left to right on the x axis, these include: multiregion tumor samples
of the same patient from TRACERx (n=92 PTs; n=295 multiregion samples); PT-PDX samples of the same model; and PDX-PDX samples of the same
model. Pvalues were computed by two-sided Wilcoxon rank-sum test (P> 0.05). b, Distributions of the proportion of altered genes between multiregion
tumor pairs from TRACERX, as well as PT-PDX and PDX-PDX pairs, for various gene sets for LUAD and LUSC. The gene sets and CNA thresholds are

the same as in Fig. 4. TCGA GISTIC Amp/Del and JAX CKB Amp Del gene sets are shown (other gene sets are shown in Extended Data Fig. 8). Pvalues
were computed by one-sided Wilcoxon rank-sum test. The numbers of genes per gene set are indicated above each plot. ¢, Distributions of Pearson
correlation coefficients of gene-based copy number between intra-patient PT pairs (n=14; primary, relapse or metastasis) from the same patient (n=5)
and corresponding PT-PDX pairs (derived from the same model; a different PT sample from the same patient generates a different model) for the same set
of patients. Pvalues were computed by two-sided Wilcoxon rank-sum test (P> 0.05). For all box and violin plots, the numbers of pairwise comparisons are
indicated in the xaxis labels. In all box plots the center line represents the median, the box limits are the upper and lower quantiles, the whiskers extend

to 1.5x the interquartile range and the dots represent all data points. d, CNA profiles of PT and PDX samples from patients with PDX models derived

from multiple PT collections (primary, relapse and metastasis). Each sample ID is denoted by the model ID, passage number and platform used (see

Supplementary Data 1).

variation versus PDX evolution (Supplementary Figs. 3, 4 and 7).
Despite a lower median in correlations among intra-patient sam-
ples, the difference compared with CNA evolution during engraft-
ment (PT-PDX) was not statistically significant (P> 0.05; Fig. 6¢).
CNA profiles for these samples are shown visually in Fig. 6d.

Discussion

Here, we have investigated the evolutionary stability of PDXs—an
important model system for which there have been previous reports
of mouse-induced copy number evolution. To better address this,
we assembled a collection of CNA profiles of PDX models, com-
prising PDX models with multiple passages and their originating
PTs. Our analysis showed the reliability of copy number estima-
tion by DNA-based measurements over RNA-based inferences,
which are substantially inferior in terms of resolution and accuracy
(Supplementary Note 15). The importance of DNA measurements
is supported by the inconsistent conclusions by two independent
studies (Ben-David et al.?**® and Mer et al.”°) on the same PDX
expression array dataset by Gao et al.””. Ben-David et al. concluded
that drastic copy number changes, driven by mouse-specific selec-
tion, often occur within a few passages. In contrast, Mer et al.
reported high similarity between passages of the same PDX model
based on direct correlations of gene expression, consistent with our
findings in large, independent DNA-based datasets.

The copy number shifts inferred by Ben-David et al. were inher-
ently impacted by major technical issues. First, the microarray sig-
nal for PT samples is diluted by introgressed human stromal cells,
while in PDXs mouse stromal transcripts only hybridize to a frac-
tion of the human probes”. Consequently, PT samples with sub-
stantial stromal content would display a reduced signal compared
with the corresponding PDX, which can lead to an erroneous infer-
ence of systematic increase in aberrations during PDX engraftment
when gain/loss regions are directly compared. Second, the mouse
host microenvironment can affect the transcriptional profile of the
PDX tumor®® and the quantity of mouse stroma can vary across pas-
sages. This can result in variability in the expression signal, which
can be wrongly inferred as copy number changes, both from the
tumor itself and through cross-hybridization of mouse RNA to the
human microarray. Although improved concordance in expres-
sion between PT and PDX can be achieved with RNA-seq with the
removal of mouse reads, we observed that expression-based
copy number inferences still have low resolution and robustness.
Hence, many cancer-driving genes, which are found mainly in
focal events with a size of 3Mb or lower® ™, cannot be evaluated
for PDX-specific alterations. These issues are further worsened
by the lack of tissue-matched normal gene expression profiles for
calibration”, which have been only intermittently available but
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can substantially impact copy number inferences. Because of these
considerations, the question of how much PDXs evolve as a conse-
quence of mouse-specific selective pressures cannot be adequately
addressed by expression data.

The studies we have presented here take into account the above
issues by the use of DNA data, as well as by assessing copy num-
ber changes by pairwise correlation/residual analysis to control for
systematic biases, and they overall confirm the high retention of
CNA profiles from PDX engraftment to passaging. We did observe
larger deviations between PT-PDX than in PDX-PDX compari-
sons, although this was probably due to dilution of the PT signal
by human stromal cells. Interestingly, we found that a major con-
tributor to the differences between PDX samples is lineage-specific
drift associated with the splitting of tumors into fragments during
PDX propagation. This spatial evolution within tumors appears to
affect sample comparisons more than time or the number of pas-
sages. This suggests that PDX expansion and passaging is the bottle-
neck of copy number evolution in PDXs, reflecting stochasticity in
sampling within spatially heterogeneous tumors (Supplementary
Note 16).

A challenge for evaluating any model system is that there is no
clear threshold for genomic change that determines whether the
model will still reflect patient response. Genetic variation among
multiregion samples within a patient can shed light on this point™®-%
since the goal of a successful treatment would be to eradicate all of
the multiple regions of the tumor. We found that the copy number
differences between PT and PDX are no greater than the variations
among multiregion tumor samples or intra-patient samples. Thus,
concerns about the genetic stability of the PDX system are likely
to be less important than the spatial heterogeneity of solid tumors
themselves. This result is consistent with our results on lineage
effects during passaging, which indicate that intratumoral spatial
evolution is the major reason for genetic drift.

We observed no evidence for systematic mouse environment-
induced selection for cancer- or treatment-related genes via copy
number changes, although individual cases vary (see example in
Extended Data Fig. 6¢c). Moreover, only a small fraction of sample
pairs (2.44%; 43 out of 1,758) showed large CNA discordance (see
Methods), suggesting that clonal selection out of a complex popula-
tion is rare. These results indicate that the variations observed in
PDXs are mainly due to spontaneous intratumoral evolution, rather
than murine pressures (Supplementary Note 17).

In summary, our in-depth tracking of CNAs throughout PDX
engraftment and passaging confirms that tumors engrafted and pas-
saged in PDX models maintain a high degree of molecular fidelity to
the original PTs, thus verifying their suitability for preclinical drug
testing. At the same time, our study does not rule out that PDXs
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will evolve in individual trajectories over time; thus, for therapeu-
tic dosing studies, the best practice is to confirm the existence of
expected molecular targets and obtain sequence characterizations
in the cohorts used for testing as close to the time of the treatment
study as is practical.
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Methods

Experimental details for sample collection, PDX engraftment and passaging,
and array or sequencing. For details of sample collection, abbreviations of PDX
model sources, PDX engraftment and passaging, and array/sequencing, see the
Supplementary Methods.

Consolidating tumor types from different datasets. As the terminology of tumor
types/subtypes by the different contributing centers was not consistent, we used
the Disease Ontology database® (http://disease-ontology.org/), along with cancer
types listed on the NCI website (https://www.cancer.gov/types) and in TCGA
publications™”, to unify and group the tumor types/subtypes under broader terms,
as shown in Fig. 1 and Supplementary Table 2.

CNA estimation methods. SNP array. The estimation of CNA profiles from SNP
array was detailed previously*. In short, for Affymetrix Human SNP 6.0 arrays,
PennCNV-Affy and Affymetrix Power Tools™ were used to extract the B-allele
frequency and log[R ratio] from the CEL files. Due to the absence of paired normal
samples, the allele-specific signal intensity for each PDX tumor was normalized
relative to 300 randomly selected sex-matched Affymetrix Human SNP 6.0 array
CEL files obtained from the International HapMap Project”. For Illumina Infinium
Omni2.5Exome-8 SNP arrays (version 1.3 and version 1.4 kits), the Illumina
GenomeStudio software was used to extract the B-allele frequency and log[R ratio]
from the signal intensity of each probe. The single sample mode of the Illumina
GenomeStudio was used, which normalizes the signal intensities of the probes with
an Illumina in-house dataset. The single tumor version of ASCAT* (version 2.4.3
for JAX SNP data and version 2.5.1 for SIBS SNP data) was used for GC correction,
predictions of the heterozygous germline SNPs based on the SNP array platform,
and estimation of ploidy, tumor content and allele-specific copy number segments.
The resultant copy number segments were annotated with the log,[ratio of the total
copy number relative to the predicted ploidy from ASCAT].

WES data. Aligned BAM:s (see Supplementary Methods) were subset to the target
region by GATK 4.0.5.1, and SAMTools™ version 0.1.18 was used to generate the
pileup for each sample. Pileup data were used for CNA estimation, as calculated
with Sequenza® version 2.1.2. Both tumor and normal data, which utilized the
same capture array, were used as input. pileup2seqz and GC-windows (-w 50)
modules from sequenza-utils.py utility were used to create the native seqz format
file for Sequenza and to compute the average GC content in sliding windows

from the hg38 genome, respectively. We ran the three Sequenza modules with
these modified parameters (sequenza.extract: assembly = ‘hg38} sequenza.fit:
chromosome.list=1:23 and sequenza.results: chromosome.list =1:23) to estimate
the segments of copy number gains/losses. Finally, segments lacking read counts,
in which >50% of the segment had zero read coverage, were removed. A reference
implementation of this workflow (Supplementary Fig. 71) was developed and
deployed in the Cancer Genomics Cloud by Seven Bridges (https://cgc.sbgenomics.
com/public/apps#pdxnet/pdx-wf-commit2/wes-cnv-tumor-normal-workflow/
and https://cgc.sbgenomics.com/public/apps#pdxnet/pdx-wf-commit2/
pdx-wes-cnv-xenome-tumor-normal-workflow/).

Low-pass WGS data. For EuroPDX CRC liver metastasis data, raw copy number
profiles for each sample were estimated using the QDNAseq” R package (version
1.20) by dividing the human reference genome into non-overlapping 50-kb
windows and counting the number of reads (see Supplementary Methods) in each
bin. Bins in problematic regions were removed”. Read counts were corrected

for GC content and mappability using a LOESS regression, median normalized
and log, transformed. Values below -1,000 in each chromosome were floored

to the first value greater than —1,000 in the same chromosome. Raw log,[ratio]
values were then segmented using the ASCAT* algorithm implemented in the
ASCAT R package (version 2.0.7). For EuroPDX BRCA tumors, raw copy number
profiles were estimated for each sample by dividing the human reference genome
into non-overlapping 20-kb windows and counting the number of reads (see
Supplementary Methods) in each bin. Only reads with a mapping quality of at least
37 were considered. Bins within problematic regions (that is, multimapper regions)
were excluded. Downstream analysis to estimate copy number was conducted as
described above.

RNA-seq and gene expression microarray data. For expression-based copy

number inference, we referred to the previous protocols for e-karyotyping and
CGH-Explorer’>**"”"%, For each cancer type, expression values (see Supplementary
Methods) of tumor samples and corresponding normal samples were merged in

a single table, and gene identifiers were annotated with chromos