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Cardiac pacemakers are used in the treatment of patients with symptomatic bradycardia. The pacemaker paces the heart at the
predetermined rate to maintain uninterrupted cardiac activity. Usually, pacemaker lead will be connected to the right atrium
(RA) and right ventricle (RV) in dual-chamber pacemaker implantation and RV alone in single-chamber pacemaker
implantation. This alters the route of proper conduction across the myocardial cells. The cell-to-cell conduction transmission
in pacing delays the activation of selected intraventricular myocardial activation. Pacing-induced cardiomyopathy (PICM) is
most commonly defined as a drop in left ventricle ejection fraction (LVEF) in the setting of chronic, high-burden right
ventricle (RV) pacing. Currently, very few effective treatments are standard for PICM which rely on the detection of the RV
pacing. Such treatments have primarily focused on upgrading to cardiac resynchronization therapy (CRT) when LVEF has
dropped. However, the early and accurate detection of these stress factors is challenging. Cardiac desynchrony and
interventricular desynchrony can be determined by various echocardiographic techniques, including M-mode, Doppler
method, tissue Doppler method, and speckle tracking echocardiography which is subjective measures and shows a significant
difference between RV and LV preejection period where the activation of LV is delayed considerably. Computer-aided
diagnosis (CAD) is a noninvasive technique that can classify the ultrasound images of the heart in pacemaker-implanted
patients and healthy patients with normal left ventricular systolic function and further detect the variations in pacemaker
functions in its early stage using heart ultrasound images. Developing such a system requires a vast and diverse database to
reach optimum performance. This paper proposes a novel CAD tool for the accurate detection of pacemaker variations using
machine learning models of decision tree, SVM, random forest, and AdaBoost. The models have been used to extract
radiomics features in terms of textures and then screened by their Relief-F scores for selection and ranking to be classified into
nine groups consisting of up to 250 radiomics features. Ten best features were fed to the machine learning models. The R-wave
dataset achieved a maximum test performance accuracy of 97.73% with four features in the random forest model. The T-wave
dataset achieved a maximum test performance accuracy of 96.59% with three features in the SVM model. Our experimental
results demonstrate the system’s robustness, which can be developed as an early and accurate detection system for pacing-
induced cardiomyopathy.
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1. Introduction

Cardiac pacemakers are used in the treatment of patients
with symptomatic bradycardia. The pacemaker paces the
heart at a predetermined rate to maintain uninterrupted car-
diac activity [1]. Usually, pacemaker lead will be connected
to right atrium (RA) and right ventricle (RV) in case of
dual-chamber pacemaker implantation and to RV alone in
single-chamber pacemaker implantation. This alters the
route of formal conduction across the myocardial cells.
The cell-to-cell conduction transmission in pacing delays
the activation of selected intraventricular myocardial activa-
tion [2, 3]. This leads to electrical and mechanical desyn-
chrony in the ventricular segmental function. These
temporal alterations in myocardial function status are
dependent on the pacing site at the RV cavity, which alters
the physiology of ventricular electrical activation. Cardiac
desynchrony can be determined by the different echocardi-
ographic techniques including M-mode, Doppler method,
tissue Doppler method, and speckle tracking echocardiogra-
phy which gives subjective measures and often requires
expertise in the field. Interventricular desynchrony can be
determined by the Doppler method, which denotes a signif-
icant difference between RV and LV preejection period
where the activation of LV is delayed considerably. RV pac-
ing is also responsible for LV intraventricular desynchrony,
which in turn increases myocardial wall stress and leads to
LV failure on long-term follow-up [4–6]. Echocardiographic
studies have proven the increased ventricular cavity dimen-
sions postpacemaker implantation which were apparent
after 6 months of implantation [7]. In the long term, this
results in cardiac dysfunction, specifically impairing LV
function and called pacemaker-induced cardiomyopathy
[8, 9]. Computer-aided diagnosis (CAD) plays a crucial role
in developing noninvasive techniques which can detect the
subtle variations in pacemaker functions in their early stage
using heart ultrasound (US) images. Creating such a CAD
system requires a diverse and huge database to reach opti-
mum performance. This study is aimed at developing an
automated system for the classification of pacemaker-
implanted patients from healthy control using US images
of left ventricular systolic function. To the best of our knowl-
edge, it is the first method developed in classifying the ultra-
sound images of the heart in pacemaker-implanted patients
and healthy patients with normal left ventricular systolic
function and further detecting the variations in pacemaker
functions in its early stage using heart ultrasound images.
The paper is organized as follows: Section 1: Introduction,
Section 2: Methodology, Section 3: Experimental Results,
and Section 4: Discussion.

2. Methodology

This study is aimed at classifying the ultrasound images of a
heart in pacemaker-implanted patients and in healthy
patients with normal left ventricular systolic function to
see the overall changes from the end diastole to end systole
between the two groups using automated detection tool,
which is aimed at systematically extracting and processing

the 250+ features of the ultrasound by employing the
Relief-F feature selection method and processing through
decision tree, AdaBoost, random forest (RF), and Support
Vector Machine (SVM). The detailed architecture of the
proposed model is given in Figure 1.

2.1. Data Acquisition. A total of 64 ultrasound images of
pacemaker-implanted patients and 46 images of healthy
individuals were included in the study. The study was con-
ducted after obtaining the institutional ethical clearance,
and informed consent was taken from each participant.
Patients who underwent permanent pacemaker implanta-
tion prior to 6 months were included in the study. At the
same time, healthy individuals attending the outpatient
department for routine health checks were served as con-
trols. Patients with left ventricular dysfunction, ischemic
heart disease, and cardiomyopathy were excluded from the
study. Since the pacemaker interferes with the activation of
the intraventricular myocardial segment, we drew 2 frames
from one cardiac cycle loop, corresponding to end diastolic
and end systolic phase that are consistent with Q wave and
Peak of T-wave of ECG signals from both the study groups.
Sample ultrasound images of the healthy and control group
are given in Figure 2.

2.2. Radiomics Feature Extraction. Up to 250 radiomics fea-
tures from nine groups were extracted from each heart ROI:
(a) histogram (9 features) [10]: mean, variance, skewness,
kurtosis, percentile (perc) K% (K = 1, 10, 50, 90, and 99);
(b) autoregressive model (5 features) [11]: teta1, 2, 3, 4,
and sigma; (c) gradient (5 features) [10]: percentage of non-
zero pixels (NonZeros) in gradients image, kurtosis, skew-
ness, variance, and mean; and (d) histogram of oriented
gradients (28 features) [12]: occurrence of gradient orienta-
tions. It is calculated for three different angular bins, 4 bins
(O4b0 to Ob4b3, 4 features), 8 bins (O8b0 to O8b7, 8 fea-
tures), and 16 bins (O16b0 to O16b15, 16 features); (e)
Gabor (24 features) [13]: the magnitude of Gabor transform
with different sizes of Gaussian envelope: 0 (H), 45 (Z), 90
(V), and 135-degree (N). Gabor features names are acrony-
mized as follows: “Gab” followed by a size of Gaussian enve-
lope and direction. For instance, Gab4H represents the
magnitude of Gabor transform with Gaussian envelope size
of 4 in the horizontal direction; (f) wavelet (24 features)
[14]: energy of six subbands (S1 to S8) in three different fre-
quency channels: low-high (LH), high-low (HL), and high-
high (HH). Harr mother wavelet family was used for image
decompositions. Wavelet feature names are acronymized as
follows: “Haar” followed by a level of subband and channel.
For instance, HaarS1HH stands for energy of decomposed
image in the first subband and the HH-channel; (g) gray-
level run-length matrix (GRLM, 28 features) [15]: direction:
(0 (H), 45 (Z), 90 (V), and 135-degree (N)). The GRLM fea-
tures are run-length nonuniformity (RLNonUni), gray-level
nonuniformity (GLevNonUn), long run emphasis
(LngREmph), short run emphasis (ShrtREmph), fraction,
normalized run-length nonuniformity (NRLNonUni), and
normalized gray-level nonuniformity (NGLevNonUni).
GRLM features names are acronymized by the desired
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direction followed by the name of a specific GRLM feature.
For instance, HGLevNonUn means gray-level nonunifor-
mity feature in the horizontal direction. (h) Gray-level cooc-
currence matrix (GLCM, 11 features) [16]: specific
intensities in specific distance (1 in this study) and in all
directions. The GLCM features are contrast, correlation
(Correlat), sum of squares (SumOfSqs), inverse difference
moment (InvDfMom), difference entropy (DifEntrp), differ-
ence variance (DifVarnc), entropy, angular second moment
(AngScMom), sum entropy (SumEntrp), sum average
(SumAverg), and sum variance (SumVarnc). (i) Local binary
patterns (LBP, 116 features) [17]: compare intensity of pixels
within a specific window size according to overcomplete
(Oc), transition (Tr), and center-symmetric (Cs) algorithms.
LBP features were calculated within four (4n) window size
for Tr (Tr4n0 to Tr4n15, 16 features) and Oc (Oc4n0 to
Oc4n15, 16 features) algorithms. For Cs algorithm, three
window sizes of four (Cs4n0 to Cs4n3, 4 features), eight
(Cs8n0 to Cs4n15, 16 features), and twelve (Cs12n0 to
Cs4n63, 64 features) were used.

2.3. Feature Selection and Ranking. All radiomics features
were checked for normality distribution using the

Kolmogorov-Smirnov test. In addition, the independent-
sample t-test was used to compare radiomics features among
groups. The SPSS software (BM SPSS Statistics 22) was used
for statistical analysis, and P < 0:05 was considered
significant.

The Relief-F feature selection method was used for fea-
ture reductions, i.e., removing irrelevant and redundant sig-
nificant features and selecting the best significant features to
classify the groups (Tables 1 and 2). Relief [18] is a filtering
algorithm that estimates attributes’ quality based on how
well their values differ between close instances. Relief-F
[19] is an extension of relief, which systematically handles
noisy and incomplete and multiclass data.

The performance of each model in both training and
testing phases is evaluated, and sensitivity, specificity, accu-
racy, and area under the ROC curve are reported. This study
assigns positive and negative cases to the patients and con-
trols, respectively.

2.4. Classification. Classification is the process of identifying
the true label of the test samples based on the best features
defined by Relief-F method. This study used four classifica-
tion algorithms, namely, decision tree, Support Vector
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Figure 1: Architecture of the proposed study.
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Figure 2: Sample images from the pacemaker case ((a) T-wave and (c) R-wave) and control set ((b) T-wave and (d) R-wave).
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Machine (SVM), random forest, and AdaBoost classifiers.
Following are the details of the used classifiers.

2.4.1. Decision Tree. Decision tree classifiers are constructed
using both features and rules. Based on these decisions, bet-
ter features and rules are grown. In a decision tree-based
classifier, we begin with initial features and then use those
data points as the basis for decisions that will help grow bet-
ter features. We continue this process until our trees reach
optimal size or we achieve a good set of rules [20, 21]. The
tuning parameters of decision tree were set for both T- and
R-wave ultrasound image analyses as follows: binary tree
was used, min split subset: 5 and maximum tree depth: 20.

2.4.2. Support Vector Machine (SVM). SVM is a classification
algorithm used when there are two classes, each of which has
many attributes, but where some attributes have much more
predictive value than others. Unlike a regular classifier,
SVMs attempt to find a single hyperplane that separates
the two classes and does so as well as possible. That is, an
SVM chooses the parameters (the coefficients for the equa-
tion of the separating hyperplane) to maximize the margin
between the two classes. The hyperplane is perpendicular

to the origin and is found by solving an optimization
problem [22]. The tuning parameters of SVM were set
for both T- and R-wave ultrasound image analyses as fol-
lows: regression cost: 1, type of kernel: RBF, and numeri-
cal tolerance: 0.10.

2.4.3. Random Forest. Random forest is a classifier that is
constructed by aggregating several decision trees. The input
variables are split up into subsets, one per tree, and then ran-
domly assigned to their own individual trees. The resulting
model is a collection of trees or a forest. When random for-
est is used on new data, the model is fit on a random selec-
tion of the original data, and the remaining data is used to
estimate the accuracy of the fit. The accuracy is computed
using various estimators, such as the Gini impurity for clas-
sification problems [23, 24]. The tuning parameters of ran-
dom forests were set for T- and R-wave ultrasound image
analyses, respectively, as follows: number of trees: 29 and
28, number of attributes considered at each split: 5 and 3,
and depth of individual trees: 8 and 5.

2.4.4. AdaBoost. AdaBoost is a machine learning algorithm
that identifies the informative variables within a predictive
model [25]. In machine learning, there are a lot of variables
whose values contribute to the prediction of a target variable.
Ideally, we want to use all those variables in our predictive
model. But there are inherent problems with overfitting,
which is the situation where the model learns the noise in
the data instead of the predictive relationships. The overfit-
ting problem is addressed by using a subset of variables
called a hypothesis and adding a penalty within the loss
function to ensure that the size of the hypothesis is less than
or equal to a certain number. You can think of AdaBoost as
a family of algorithms for selecting a good subset of the var-
iables. The algorithm for AdaBoost is very simple in princi-
ple but results in a very complex algorithm to implement.
The tuning parameters of AdaBoost were set for both T-
and R-wave ultrasound image analyses as follows: base esti-
mator: tree, number of estimators: 50, learning rate: 0.1, and
regression loss function: square.

3. Experimental Results

The proposed model is tested on a set of 64 patients with 46
control subjects. Up to 250 radiomics features from 9 groups
(histogram, AR model, gradient, etc.) were extracted from
each ultrasound images. This process is implemented for
obtaining both R-wave and T-wave data individually for
the same dataset. The SPSS software (BM SPSS Statistics
22) was used for statistical analysis, and P < 0:05 was consid-
ered significant. The Relief-F feature selection method was
used for cutting redundancy and selecting the best features.
Based on the Relief-F scores, the ten best radiomics features
of R-wave and T-wave ultrasound images were obtained
(Tables 1 and 2). The ten best features were then fed to 4
machine learning classifiers (listed in Section 2.4) for final
classification of the radiomics groups. All machine learning
models were trained with 80% of data (50 patients and 38
controls) using the leave-one-out cross-validation strategy.

Table 1: The best 10 radiomics features of R-wave ultrasound
images obtained by Relief-F method with their scores.

Group Rank Features Relief-F score

Gabor
1 Gab8V 0.273

2 Gab8H 0.196

Gradient 3 Variance 0.127

Gabor 4 Gab6V 0.124

Local binary patterns

5 Oc4n10 0.095

6 Oc4n4 0.094

7 Cs12n47 0.092

Gabor
8 Gab6Z 0.091

9 Gab6N 0.087

Cooccurrence matrix 10 DifVarnc 0.084

Table 2: The best 10 radiomics features of T-wave ultrasound
images obtained by Relief-F method with their scores.

Group Rank Features
Relief-F
score

Gabor

1 Gab8V 0.252

2 Gab8H 0.165

3 Gab6N 0.130

4 Gab6V 0.129

5 Gab6Z 0.117

Gradient 6 Variance 0.104

Wavelet 7 HaarS2HL 0.083

Gabor 8 Gab4H 0.081

Histogram of oriented
gradients

9 O16b8 0.080

Local binary patterns 10 Cs8n9 0.079
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The remaining 20% of data (14 patients and eight controls)
was used for the testing phase.

The initial number of selected features is set to 1, and the
number of selected features is increased one by one to reach
the best performance of each machine learning model. As
illustrated in Figure 3, the R-wave dataset achieved a maxi-
mum test performance accuracy of 97.73% with 4 features
in the random forest classifier, and the T-wave dataset
achieved a maximum test performance accuracy of 96.59%
with 3 features in the SVM, as illustrated in Figure 4. The

feature space of the best radiomics feature combinations of
R-wave and T-wave ultrasound images for random forest
and support vector machine classifiers is shown in
Figure 5. The models were implemented for both R-wave
and T-wave datasets to obtain values for specificity, area
under the curve (AUC), sensitivity, and accuracy (Tables 3
and 4). SVM yielded a deviation in percentage accuracy of
1.14% between training and testing for R-wave, and random
forest yielded a deviation in percentage accuracy of 0%
between training and testing for T-wave (Tables 3 and 4).
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Figure 3: Plot of accuracy versus different best significant radiomics feature combinations of R-wave ultrasound images using Relief-F
method for (a) decision tree, (b) Support Vector Machine, (c) random forest, and (d) AdaBoost classifiers.
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4. Discussion

The study’s main goal is to develop a computer-aided diag-
nostic tool for assessing pacemaker effects and its long-
term changes in contrast to healthy individuals using ultra-
sound images. In the current study, ultrasound images of
64 patients and 46 control subjects were used to identify
the variations between healthy and pacemaker-implanted
patients. The automated detection tool was used to systema-
tically extract and process 250+ features of the ultrasound by
employing the Relief-F feature selection method. The corre-

sponding ten best features with Gabor and gradient ranking
among the top two features (Tables 1 and 2) extracted were
fed into four classification models (random forest, SVM,
AdaBoost, and decision tree) with varying results. All
machine learning models were trained with 80% of the data,
and 20% was used for testing. Within the R-wave datasets,
the random forest classifier achieved the maximum perfor-
mance accuracy of 97.73% with four features, followed by
96.59% with the SVM model, and in the T-wave dataset,
the SVM model achieved a maximum accuracy of 96.59%
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Figure 5: Feature space of the best radiomics feature combinations of R-wave ultrasound images and T-wave ultrasound images. (a)
Random forest and (b) Support Vector Machine classifiers.

Table 3: Performance of four classifiers under the best radiomics
feature combination of R-wave ultrasound images in the training
and test datasets.

Model
Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
AUC

Decision tree

Training 92.00 94.74 93.18 0.912

Test 92.86 87.50 90.91 0.902

SVM

Training 100 92.11 96.59 0.992

Test 100 87.50 95.45 0.929

Random
forest

Training 100 94.74 97.73 0.988

Test 100 87.50 95.45 0.964

AdaBoost

Training 94.00 97.37 95.45 0.901

Test 92.86 87.50 90.91 0.909

Table 4: Performance of four classifiers under the best radiomics
feature combination of T-wave ultrasound images in the training
and test datasets.

Model
Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
AUC

Decision tree

Training 92.00 86.84 89.77 0.883

Test 100 87.50 95.45 0.924

SVM

Training 100 92.11 96.59 0.999

Test 100 87.50 95.45 0.955

Random
forest

Training 100 89.47 95.45 0.955

Test 100 87.50 95.45 0.945

AdaBoost

Training 100 89.47 95.45 0.947

Test 92.86 87.50 90.91 0.909
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followed by 95.45% with the AdaBoost model with three fea-
tures. Random forest and SVM have proven to be the more
suitable models in this study which will immensely facilitate
future work (Tables 3 and 4). Between the two performing
models, the accuracy from training and testing was 0% with
the random forest model, whereas the SVM model had a
deviation of 1.14%.

The study obtained a maximum accuracy of 97.73% and
a deviation in the accuracy of 0-1.14%, allowing for a robust
approach to early detection to facilitate appropriate medical
intervention. However, the current study draws its limita-
tions with the use of a smaller dataset as only 20% of the best
features were used for testing. Having a large dataset will not
only aid in better training but also polish the model to run
more efficiently, which leaves room for future development
where a much larger dataset for training and testing can be
implemented to improve the metrics of this model. Future
works will involve developing the model further with the
use of deep learning algorithms with larger datasets for
higher detection accuracy.

4.1. Limitations. It is difficult to generalize the system
because it uses the smaller dataset. Hence, we plan to extend
our work by collecting more images in the future.

5. Conclusion

Although multiple factors can contribute to patients being at
an increased risk for pacing-induced cardiomyopathy, many
individuals have tolerated high-burden RV pacing for years
without showing signs or symptoms. The ability to accu-
rately identify those at the highest risk remains insufficient
to this day. The proposed CAD tool demonstrates accurate
and consistent results up to 97.73% for early risk indicators
to assist in early detection and intervention, resulting in an
appropriate treatment plan based on the severity. In the
future, we would like to develop an automated system for
detecting PICM using deep learning techniques by involving
more subjects. In addition, we would like to create a huge
database from various hospitals and develop an IoT hybrid
model to achieve promising results.

Data Availability

No data were used to support this study.

Additional Points

Highlights of the Research Work. (i) The system uses the
leave-one-out cross-validation strategy. (ii) It uses only four
features to achieve maximum classification accuracy. (iii) To
the best of our knowledge, this is the first work to detect the
variations in pacemaker functions in its early stage.
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