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ABSTRACT Staphylococcus aureus strain TX0117 is a methicillin-susceptible bacte-
rium with type A beta-lactamase exhibiting a high cefazolin inoculum effect. TX0117
was cured of blaZ, yielding TX0117c with increased antimicrobial peptide resistance.
The sequencing and genome assembly of TX0117 elucidate six mutations between
TX0117 and TX0117c, including relA truncation and mnA_1 substitution.

Beta-lactam therapy has been associated with better outcomes than non-beta-
lactam therapy (i.e., vancomycin) in patients with methicillin-susceptible Staphylo-

coccus aureus (MSSA) bacteremia (1–4). Treatment standards recommend therapy with
either an isoxazolyl penicillin (e.g., nafcillin, oxacillin) or cefazolin (5). Recent data have
emerged to show that cefazolin demonstrates similar efficacy but better tolerability in
patients than do antistaphylococcal isoxazolyl penicillins (6, 7). However, cefazolin
treatment failures have been reported due to a cefazolin inoculum effect, which is
defined by isolates showing an MIC of �16 mg/liter in assays utilizing a bacterial
inoculum of 107 CFU/ml compared to the standard inoculum of 105 CFU/ml (8–11). The
cefazolin inoculum effect is based on the ability of the beta-lactamase of some MSSA
strains to overcome and hydrolyze cefazolin when bacteria are at high inoculum, and
it has been shown to cause clinical failures in certain deep-seated infections. These
isolates may be uncommon, but considerable regional variability is seen in their
prevalence (12–15).

In order to examine the effects of different antimicrobial therapies in vitro against
MSSA with a significant cefazolin inoculum effect, a clinical strain was isolated from a
patient with MSSA endocarditis who relapsed after cefazolin therapy (strain TX0117)
(11). This strain was subsequently cured by heat at 43°C and by novobiocin exposure
to inactivate the beta-lactamase, yielding TX0117c (16–18). The TX0117 and TX0117c
MSSA strain pair have been extensively studied in various in vitro models and in in vivo
rat endocarditis models to better understand the comparative efficacy of different
antibiotics against MSSA exhibiting the beta-lactamase-mediated cefazolin inoculum
effect and against an isogenic MSSA that has been cured of its beta-lactamase (19, 20).

Our evaluation of TX0117 and TX0117c showed subtle but consistent increased
resistance to cationic antimicrobial peptides in strain TX0117c compared to that in the
TX0117 parent strain (Fig. 1), leading us to hypothesize that in addition to curing the
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strain of beta-lactamase, novobiocin and heat treatment may have additionally cose-
lected previously uncharacterized mutations in TX0117c. To investigate these muta-
tions, we mapped short reads from the TX0117c genome to our newly sequenced and
assembled TX0117 genome using breseq version 0.31.0 (option breseq -r
TX0117_reference.gbk TX0117c_R1.fastq TX0117c_R2.fasta) (21).

The growth-improved clones were isolated and grown in M9 minimal medium
supplemented with 4 g/liter glucose. Cells were then harvested while in exponential
growth, and genomic DNA was extracted using a KingFisher Flex purification system
previously validated for the high-throughput platform mentioned below (22). Shotgun
metagenomic sequencing libraries were prepared using a miniaturized version of the
HyperPlus Illumina-compatible library prep kit (Kapa Biosystems). DNA extracts were
normalized to 5 ng total input per sample using an Echo 550 acoustic liquid-handling
robot (Labcyte, Inc.), and 1/10 scale enzymatic fragmentation, end repair, and adapter
ligation reactions were carried out using a Mosquito high-throughput sequencing (HTS)
liquid-handling robot (TTP Labtech, Inc.). Sequencing adapters were based on the iTru
protocol (23), in which short universal adapter stubs are ligated first, and then sample-
specific barcoded sequences are added in a subsequent PCR step. Amplified and
barcoded libraries were then quantified using a PicoGreen assay and pooled in ap-
proximately equimolar ratios before being sequenced on an Illumina HiSeq 4000
instrument with a paired-end protocol and read lengths of 150 nucleotides (nt). For all
software, default parameters were used throughout, unless otherwise noted. The
resulting short reads were checked for quality control using FastQC (version 0.11.5),
which showed that 698,669 paired-end reads were produced in the TX0117c sequenc-
ing run with 32% GC content, and approximately 710,028 paired-end reads were
produced in the TX0117 run with 33% GC content. The short reads were then assem-
bled with Unicycler (version 0.4.2) (24). The draft TX0117 genome consists of 163
contigs and 2.758 Mb in total. The final assembled genome was annotated using Prokka
(version 1.12) (25). The genome has 2,562 annotated coding sequences (CDSs), 16
tRNAs, and 4 rRNAs.

Using the breseq mutation prediction pipeline, we identified genes altered from
TX0117 to the TX0117c strain (Table 1). In addition to seven deletions corresponding to
regions of decreased coverage, six coding mutations were identified, which will be the
focus of this initial study. Most noteworthy is the curing of blaZ, as previously docu-
mented. The major mechanism of penicillin resistance, involving the hydrolysis of the
beta-lactam ring, has been attributed to beta-lactamase, which is encoded by the blaZ
gene (26). Type A beta-lactamases contribute to more efficient inactivation of beta-
lactam drugs and therefore correlate to the inoculum effect (27).

TX0117c also displayed a truncation of relA, the GTP pyrophosphokinase involved in
the stress response. relA encodes the RELA protein, which most commonly binds NFKB1
to form a NF-kappa-B transcription factor, activated downstream by processes such as

FIG 1 Susceptibilities (MIC, mg/liter) of different antibiotics against TX0117 and beta-lactamase-cured
derivative TX0117c, determined by Etest.
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inflammation, tumorigenesis, and differentiation (28). Also mutated, via substitution, is
the mnaA_1 gene. It encodes a UDP-N-acetylglucosamine 2-epimerase responsible for
converting UDP-GlcNAc into UDP-N-acetyl mannosamine, which is then oxidized in the
formation of teichoic acids (29). Teichoic acids bind to either peptidoglycans or
cytoplasmic membranes and dictate functions from cellular shape to pathogenesis.
They have been proven necessary for beta-lactam resistance in methicillin-resistant
Staphylococcus aureus (MRSA) (30) and have been shown to control bacteria suscepti-
bility to antimicrobial peptides and cationic antibiotics (31, 32). Additional studies will
be needed to examine the role of relA and mnaA in S. aureus susceptibility to cationic
antimicrobial peptides.

Data availability. This whole-genome sequencing project has been deposited in
NCBI GenBank under the accession no. VSSN00000000, and the Illumina short read data
for TX0117 and TX0117c have been deposited in the SRA under the accession no.
SAMN12622398 and SAMN12622402, respectively.
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