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Abstract: The dissolution of poorly water-soluble drugs has been a longstanding and important
issue in pharmaceutics during the past several decades. Nanotechnologies and their products have
been broadly investigated for providing novel strategies for resolving this problem. In the present
study, a new orodispersible membrane (OM) comprising electrospun nanofibers is developed for the
fast dissolution of diclofenac sodium (DS). A modified coaxial electrospinning was implemented
for the preparation of membranes, during which an unspinnable solution of sucralose was explored
as the sheath working fluid for smoothing the working processes and also adjusting the taste of
membranes. SEM and TEM images demonstrated that the OMs were composed of linear nanofibers
with core-sheath inner structures. XRD and ATR-FTIR results suggested that DS presented in the
OMs in an amorphous state due to the fine compatibility between DS and PVP. In vitro dissolution
measurements and simulated artificial tongue experiments verified that the OMs were able to
release the loaded DS in a pulsatile manner. The present protocols pave the way for the fast
dissolution and fast action of a series of poorly water-soluble active ingredients that are suitable for
oral administration.

Keywords: orodispersible membranes; coaxial electrospinning; poorly water-soluble drug; core-sheath
nanofibers

1. Introduction

The effective delivery of poorly water-soluble drugs has been a longstanding and
important issue in pharmaceutics due to their poor solubility in water [1–3]. During
the past several decades, a wide variety of efforts have been paid to potential solutions,
including both from new pharmaceutical excipients [4–6] and new methods for converting
them in suitable dosage forms [7–9]. In this nano era, nanotechnologies and their products
are playing an increasingly important role in providing novel strategies for resolving this
problem [10,11]. One example is electrospinning and electrospun nanofibers [12–14].

In pharmaceutics, orodispersible dosage is a popular form that provides convenience
and has good compliance among patients in all disease conditions. Shown in Figure 1 is a
diagram about the progress and division of orodispersible dosage during the past several
decades. From a standpoint of “forms”, orodispersible dosage forms have the form of
tablets (such as fast disintegrating tablets [15–19] and fast dissolving mini tablets [20–22],
strips (such as fast dissolving strip [23,24] and mouth melting strip [25]), fast disintegrating
pellets [26] and capsules (often with fast disintegrating particles in them) [27], and many
new types of films or membranes [28–31]. Based on the manufacture methods, orodis-
persible membranes (OMs) can be further divided into several categories, such as the most
common one-solvent casting film [32,33], hot melt extrusion film [34,35], solid dispersion
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extrusion film [36,37], printed membrane [38–41], and the present hot topic: electrospun
nanofiber membrane [42–44].
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diameters of nanofibers, big porosity, and large surface areas have made them a powerful 
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based on the applications of soluble polymers as a filament-forming matrix, electrospun 
homogeneous nanofiber-based drug-polymer composites are frequently exploited to pro-
vide immediate or pulsatile release of poorly water-soluble drugs [59,60]. Thus, a wide 
variety of pharmaceutical excipients are explored to prepare fast dissolving membranes 
of poorly water-soluble drugs such as polyvinylpyrrolidone (PVP), poly(ethylene oxide), 
polyvinyl alcohol, pullulan, gelatin, and also beta-cyclodextrin [61–65]. However, appli-
cations of electrospun complicated nanostructures have received little attention. During 
the past several years, electrospinning is moving forward from the traditional single-fluid 
blending process [66] to coaxial [67,68], side-by-side [69,70], tri-axial [71,72], and other 
multiple-fluid processes [73,74] for generating core-sheath, Janus, tri-layer core-sheath 
and multiple-chamber nanostructures. These structures, on the one hand, should have 
advantages over those homogeneous drug-polymer nanocomposites, which have been 
seldom demonstrated in promoting fast dissolution of poorly water-soluble drugs, partic-
ularly their orodispersible membranes. On the other hand, these structures can be easily 
prepared from the unspinnable materials because often only one of the multiple fluids 
must be electrospinnable during a multi-fluid electrospinning process [68–74].  

In this study, a new orodispersible membrane (OM) comprising electrospun core-
sheath nanofibers is developed for the fast dissolution of diclofenac sodium (DS). A mod-
ified coaxial electrospinning was carried out to create the nanofiber membranes, during 
which an unspinnable solution of sucralose and PVP K10 was explored as the sheath 
working fluid for smoothing the working processes and also adjusting the taste of mem-
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Electrospinning, an abbreviation of electrostatic spinning, is an electrohydrodynamic
atomization (EHDA) method [45–47]. These methods, including also electrospraying and e-
jet printing, taking advantage of the facile interactions between the liquids and electrostatic
energy for removing the solvents from the fluids rapidly to prepare solid products [48–50].
Often, the homogeneous distributions of solutes in the fluids can be propagated into the
solid nanofibers or ultra-thin particles [51–53]. Thus, both electrospinning and electro-
spraying are frequently utilized in pharmaceutics for creating amorphous solid dispersions
of poorly water-soluble drugs [54–57].

As for electrospun nanofiber membranes, their well-known properties such as small
diameters of nanofibers, big porosity, and large surface areas have made them a powerful
tool for resolving the dissolution issue of poorly water-soluble drugs [58]. Furthermore,
based on the applications of soluble polymers as a filament-forming matrix, electrospun
homogeneous nanofiber-based drug-polymer composites are frequently exploited to pro-
vide immediate or pulsatile release of poorly water-soluble drugs [59,60]. Thus, a wide
variety of pharmaceutical excipients are explored to prepare fast dissolving membranes
of poorly water-soluble drugs such as polyvinylpyrrolidone (PVP), poly(ethylene oxide),
polyvinyl alcohol, pullulan, gelatin, and also beta-cyclodextrin [61–65]. However, appli-
cations of electrospun complicated nanostructures have received little attention. During
the past several years, electrospinning is moving forward from the traditional single-fluid
blending process [66] to coaxial [67,68], side-by-side [69,70], tri-axial [71,72], and other
multiple-fluid processes [73,74] for generating core-sheath, Janus, tri-layer core-sheath
and multiple-chamber nanostructures. These structures, on the one hand, should have
advantages over those homogeneous drug-polymer nanocomposites, which have been
seldom demonstrated in promoting fast dissolution of poorly water-soluble drugs, partic-
ularly their orodispersible membranes. On the other hand, these structures can be easily
prepared from the unspinnable materials because often only one of the multiple fluids
must be electrospinnable during a multi-fluid electrospinning process [68–74].

In this study, a new orodispersible membrane (OM) comprising electrospun core-
sheath nanofibers is developed for the fast dissolution of diclofenac sodium (DS). A mod-
ified coaxial electrospinning was carried out to create the nanofiber membranes, during
which an unspinnable solution of sucralose and PVP K10 was explored as the sheath work-
ing fluid for smoothing the working processes and also adjusting the taste of membranes.
The core solution composed of DS and PVP K60 was spinnable. Their morphologies,
physical state of components, and functional performances are compared with OMs from
the traditional blending electrospinning processes.
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2. Experimental
2.1. Materials

The drug DS (purity of 99.8%) was purchased from Shanghai Hua-Shi Great Pharmacy
(Shanghai, China). PVP K60 (Mw = 360,000) and PVP K10 (Mw = 8000) were bought from
Shanghai Aldrich Co., Ltd. (Shanghai, China). Anhydrous ethanol and phosphate buffer
solution (PBS, 0.1 M, pH = 7.0) were obtained from the First Hangzhou Reagent Factory
(Hangzhou, China). Other chemicals were analytical grade and water was double distilled
before use.

2.2. EHDA Processes

The apparatus for implementing all the EHDA processes was homemade. Two so-
lutions were prepared and were guided to the spinneret as the sheath and core working
fluids. The sheath fluid consisted of 5.0 g sucralose and 10.0 g PVP K10 in 100 mL anhy-
drous ethanol, and the core fluid was composed of 5.0 g DS and 8.0 g PVP K60 in 100 mL
anhydrous ethanol. After some pre-experiments, the EHDA product collected distance was
fixed at 20 cm. The environmental temperature and humidity were 21 ± 6 °C and 47 ± 4%,
respectively. Other parameters such as applied voltage and fluid flow rates are included in
Table 1. Three kinds of EHDA processes were conducted, and their products are denoted as
E1 (a single-fluid electrospraying from the sheath fluid), E2 (a single-fluid electrospinning
from the core fluid) and E3 (a modified coaxial electrospinning), respectively.

Table 1. Process parameters for conducting three kinds of EHDA process.

No. Process
Applied

Voltage (kV)
Pumping Rate (mL/h)

Morphology
Sheath a Core b

E1 1-fluid electrospraying 15 0.5 – Microparticles
E2 1-fluid electrospinning 15 – 1.0 Nanofibers
E3 Coaxial electrospinning 15 0.5 1.0 Nanofibers

a A ratio of 5% (w/v) sucralose and 10% (w/v) PVP K10 were dissolved into ethanol. b A ratio of 5% (w/v) DS
and 8% (w/v) PVP K60 were dissolved into ethanol.

2.3. Characterizations
2.3.1. Morphologies and Structures

Scanning electron microscopy (SEM) is exploited for assessing the surface morpholo-
gies of the three EHDA products and also the cross-sections of the core-sheath nanofibers
E3. Before observations, the samples were pasted on the conductive adhesive tape and
were sprayed a thin layer of Au for 90 s. A strip of nanofibers E3 was cut out and im-
mersed into the liquid N2, and was manually broken after 20 min for preparing the samples
of cross-sections.

2.3.2. Physical State and Compatibility

X-ray diffraction (XRD, Bruker-AXS, Karlsruhe, Germany) and attenuated total
reflectance-Fourier transform infrared spectroscopy (ATR-FTIR, Spectrum 100, Billerica,
MA, USA) were carried out for evaluating the physical state and compatibility of compo-
nents within the EHDA products. The ranges for 2θ in XRD and wavelength in FTIR were
0–60◦ (0.02◦/s) and 4000 to 500 cm−1 (with a resolution of 1 cm−1).

2.4. Fast Dissolution Performances

The raw DS powders and EHDA products E2 and E3 were subjected to the following
three sorts of fast dissolution measurements.

2.4.1. Fast Wetting Process

Based on several papers and a Petri dish, an artificial tongue was developed for
measuring the dissolution performances of the E2 and E3.
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2.4.2. Drop Shape Analyses

The disappearance of a 3 µL double-distilled water was explored to assess the fast
dissolution performances of E2 and E3 through a drop shape analysis instrument (DSA100,
Kruss GmbH, Hamburg, Germany)

2.4.3. In Vitro Dissolution Tests

A UV spectrophotometer (Unico Instrument Co., Ltd., Shanghai, China) was exploited
to quantitatively measure the concentration of DS in the solutions. DS has a maximum
absorbance at λmax = 276 nm. Its standard equation of absorbance (A) to concentration (C,
µg/mL) is A = 0.03265C-0.00134 (with a correlation coefficient of R = 0.9997 and within a
linear range of 2~50 µg/mL).

A Water Bath Constant-Temperature Shaker (SHZ-86, Jintan Shuibei Science Popular-
ization Experimental Instrument Factory, Changzhou, China) holding seven conical flasks
(containing 100 mL PBS, the added DS powders, E2 and E3 were 5.0, 13.0, and 20.5 mg,
respectively) was utilized to implement the in vitro dissolution tests. The rotation rate of
the shaker and the temperature were fixed at 50 rpm and 37 ◦C ± 0.5 °C. At 1, 5, 10, 20, 30,
60 min, 5.0 mL of the dissolution media was drawn back for analyses and 5.0 mL fresh PBS
was compensated.

3. Results and Discussion
3.1. The EHDA Processes

A diagram of the homemade EHDA apparatus is shown in Figure 2. As with any
blending electrospinning apparatus or electrospraying system, it comprises four sections:
one power supply, two pumps, a concentric spinneret and a collector. When both the sheath
and core fluids were pumped to the spinneret, core-sheath nanofibers can be generated.
However, when one of the core or sheath fluids is closed, the coaxial EHDA process
will downgrade to a one-fluid EHDA process, and homogeneous EHDA products will
be created from a single-fluid blending process. The properties of the single fluid will
determine the products to be solid nanofibers or ultra-thin particles.Membranes 2021, 11, 802 5 of 14 
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Figure 2. The modified coaxial electrospinning and the core-sheath nanostructure.

Among the four sections within an EHDA apparatus, the spinneret is the most impor-
tant. Often, the structures of spinneret determine the name of working processes (such
as coaxial electrospinning due to a concentric spinneret [72,75]) and the final products
(such as Janus nanofibers from an eccentric spinneret [70]). In the present study, the details
about the homemade spinneret are exhibited in Figure 3. Figure 3a–c are digital images of
the concentric spinneret from a full, a front, and a side view. The inner capillary and the
outer capillary have a common axis, meaning it suitable for conducting a coaxial EHDA
process. Meanwhile, the inner capillary is designed to be slightly projected out the outer
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capillary 0.2 mm. This design feature should benefit a the leading role of the core fluid
during electrospinning and a prevention of mutual diffusion of the double working fluids.
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In the present study, three sorts of EHDA process were carried out to generate
three kinds of EHDA product. Shown in Figure 4 are a series of digital images of the
typical working processes and the organization of apparatus. Figure 4a is a full digital
image of the homemade electrospinning system, two pumps simultaneously drove the
sheath and core working fluids to the concentric spinneret. Meanwhile, the high voltage
was applied to the working fluids through an alligator clip (Figure 4b). When the sheath
fluid is switched off, a single-fluid blending electrospinning of the core spinnable liquid can
be clearly observed in Figure 4c. Correspondingly, the Taylor cone is recorded in Figure 4d.
The homogeneous DS-PVP K60 nanofibers E2 were successfully prepared using this pro-
cess. In contrast, When the core fluid is turned off, a single-fluid blending electrospraying
of the sheath unspinnable solution can be observed in Figure 4e, with a small Taylor cone
in Figure 4f. The homogeneous sucralose-PVP K10 particles E1 were generated through
this process. When both the core and sheath fluids are switched on, the typical coaxial
electrospinning process is given in Figure 4g. Obviously, the well-known three steps of
electrospinning can be discerned, i.e., Taylor cone (an enlarged image is given in Figure 4h),
a straight fluid jet, and the gradually enlarged bending and whipping loops due to the
electrostatic repulsion.

3.2. Properties of the EHDA Products

The SEM images of the three sorts of EHDA product are shown in Figure 5. The
particles E1 have an estimated diameter of 1.82 ± 0.34 µm. Some abnormal phenomena
include satellites and clinging of particles can be found (Figure 5a). The nanofibers E2 from
the blending electrospinning of core solution have a straight linear morphology and their
estimated diameters are 0.64 ± 0.18 µm (Figure 5b). Similarly, the core-sheath nanofibers
E3 from the modified coaxial electrospinning also exhibit linear morphology without any
discernible beads-on-a-string or spindles-on-a-string phenomenon (Figure 5c). They have
an average diameter of 0.81 ± 0.15 µm by estimation.
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Figure 5. Scanning electron microscope (SEM) images of the prepared EHDA products: (a) E1; (b) E2;
(c,d) surface and cross-section morphologies of E3, respectively.

The sheath unspinnable solutions have exerted some influences on the formation
of core-sheath nanofibers E3. On the one hand, the added sheath fluid should make the
nanofibers have a larger diameter due to more solutes passing through the nozzle in a
unit time. On the other hand, the unspinnable sheath fluids should extend the drawing
time of the core fluid under the electrostatic field due to an envelope effect. Thus, the
cross-sections of nanofibers E3 were observed, which are exhibited in Figure 5d. The
sheath sections have an estimated thickness of 0.12 µm, and the core diameter is about
0.57 µm, slightly smaller than the values of the homogeneous nanofibers E2. Meanwhile,
the successful observation of core-sheath nanostructure has a close relationship with the
different mechanical performances of sheath and core sections.

The XRD patterns of the raw materials (DS, sucralose, PVP K60 and PVP K10) and
their EHDA products are included in Figure 6. Just as anticipated, both raw sucralose
and DS powders have many sharp peaks in their XRD patterns, giving a hint that they
are crystalline materials initially. In sharp contrast, both PVP K10 and PVP K60 have no
any sharp peaks except two halos, suggesting they are amorphous polymers. After the
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EHDA processes, all the XRD patterns of the three types of EHDA product show no sharp
peaks. These phenomena demonstrate that the EHDA products are completely amorphous
composites, regardless of their formats of fibers or particles. During the EHDA processes,
the solvents can be removed by the electrostatic energy at a time scale of several decades
of milliseconds. The extremely fast drying processes would effectively convert the highly
homogeneous distribution state of the solutes in the working fluids to the final solid EHDA
products. Meanwhile, the solutes in the sheath fluids and the core fluids have little time to
diffuse to each other to ensure the successful formation of core-sheath structures.
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Figure 6. X-ray diffraction (XRD) patterns of the raw materials (DS, sucralose, PVP K60 and PVP
K10) and their EHDA products.

Shown in Figure 7 are ATR-FTIR spectra of the raw materials (DS, sucralose, PVP
K60 and PVP K10) and their EHDA products, and their molecular formula. Both DS
and sucralose have many sharp peaks in their finger region. However, when they were
encapsulated in the EHDA products with PVP K10 and PVP K60, these sharp peaks almost
completely disappeared. The reasons should be that DS and sucralose molecules have
formed secondary interactions with the polymeric carriers. These secondary interactions
include hydrogen bonding (such as protons in DS and sucralose molecules as donors and
–C=O in PVP molecules as acceptor), hydrophobic interactions between the benzene rings
of DS and long carbon chains of PVP, and also electrostatic interactions. These secondary
interactions should be fine for making the EHDA products stabler for shipping and storage.

3.3. Functional Performance of the EHDA Products

To mimic the tongue, several papers were placed into a Petri dish, and small volume of
water was utilized to wet out them. Then a small patch of EHDA products E3 was put onto
the wet paper. The fast disintegrating process was captured by a camera, which is shown
in Figure 8a. From “1” to “9”, the whole process cost only 15.8 ± 3.4 s (n = 3). Similarly,
when a small patch of EHDA products E2 was placed onto the wet paper, it rapidly
disappeared. The whole process from “1” to “9” in Figure 8b was only 16.1 ± 2.5 s (n = 3).
There were no significant differences between their disintegrating processes. The added
sheath sucralose showed no negative influences on the fast disintegrating of electrospun
medicated membranes.
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To further investigate the dispersible property of E2 and E3, a drop of water with a
volume of 3 µL was added to the membranes. The recorded water spreading processes
using the drop shape analysis instrument are included in Figure 9. In Figure 9a, the time
from “1” to “9” was 11.1 ± 1.4 s (n = 3) for the water droplets disappeared in the EHDA
E2. For the EHDA E2, the disappearance time of water droplets was 11.4 ± 1.2 s (n = 3), as
shown from “1” to “9” in Figure 9b.

Electrospinning is essentially a physical drying process, thus, the drug concentration
in the EHDA products for E1, E2 and E3 were 0, 38.5% and 24.4%, respectively, which
can be calculated according to the preparation conditions. The in vitro dissolution tests’
results are shown in Figure 10. Both EHDA E2 and E3 were able to free the loaded DS
within 1 min. This is mainly for the following reasons: (1) hydrophilic matrices PVP K10
and PVP K60; (2) the properties of the electrospun membranes, such as small diameter of
fibers and huge porosity; (3) the amorphous physical state of DS in the EHDA products.
As for the DS powders, which have a white color with a size smaller than 0.75 mm, almost
1 h was needed to be fully dissolved. Manipulating a suitable drug release rate is always
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an important task in pharmaceutics [75–78]. The present protocols show a way for many
similar drugs that can be administered orally.
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3.4. Strategy for Developing Medicated Membrane Using Modified Coaxial Electrospinning

DS is partially soluble in water, whose saturated solubility in PBS (pH = 7.0, 25 ◦C) is
1.13% [79]. As a popular non-steroidal anti-inflammatory drug, DS is available in a variety
of dosage forms, particularly, there are many dosage forms for oral administration [80,81].
However, there are almost no reports about the OM of DS although OM is popular among
patients. The reasons should be that DS is very bitter and the traditional orodispersible
tablets may have a strong sense of gravel. Apparently, the present reported OMs comprising
the electrospun core-sheath nanofiber membranes are able to eliminate the bitter taste by
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the sheath sucralose, and the amorphous physical state within the nanofibers should
completely reject the sense of gravel for the patients.

Thus, the present report is not only a successful case study of OM for the drug DS, but
also a new strategy for developing novel medicated membranes. A schematic about the
strategy for developing OM through the modified coaxial electrospinning is exhibited in
Figure 11. Clearly, it shows a process–structure–performance relationship. The advantage
of the modified coaxial electrospinning over the traditional coaxial process is that all the
materials (regardless of their electrospinnability) can be explored to create the sheath
sections of core-sheath nanofibers, greatly expanding the capability of electrospinning in
producing novel nanostructures. Certainly, based on the core-sheath nanostructures, a
wide variety of drugs may be delivered through their OM dosage forms when fast actions
are needed to relieve pain or bring down a fever. Besides drug delivery, the protocols
reported here should be also useful for delivering nutrition in food science and engineering
and for cosmetic applications [82–84].

Membranes 2021, 11, 802 11 of 14 

 

 
Figure 11. A process–structure–performance strategy for developing orodispersible membrane 
through the modified coaxial electrospinning. 

4. Conclusions 
In the present study, modified coaxial electrospinning was implemented to prepare 

a new type of core-sheath nanostructures in which the core drug–polymer composites 
were encapsulated by the sheath sucralose-polymer composites. Although the sheath 
fluid composed of sucralose and PVP K10 had no electrospinnability, the core-sheath nan-
ofibers showed linear morphology with an average diameter of 0.81 ± 0.15 μm. XRD and 
ATR-FTIR results demonstrated that the drug DS presented in the EHDA products in an 
amorphous state due to its fine compatibility with the polymeric carrier. The artificial 
tongue experiments and drop shape analyses demonstrated that the prepared OMs from 
the single-fluid blending process and the coaxial process had high dispersible properties. 
In vitro dissolution tests showed that the OMs were able to release the loaded DS within 
1 min, whereas the DS powders needed 1 h. Thus, the electrospun core-sheath nanofibers 
are good candidates for delivering DS through OMs thanks to fast disintegration of the 
drug and also the taste masking using sucralose. The protocols reported here should be 
useful for many other poorly water-soluble drugs, fast action of which for a better thera-
peutic effect is desired. 

Author Contributions: Conceptualization, T.N., Y.Z. and D.-G.Y.; Methodology, T.N. and D.-G.Y.; 
data curation, T.N., Y.Z. and H.X.; Funding acquisition: D.-G.Y.; Investigation, T.N., Y.Z., H.X. and 
S.G.; Resources, D.-G.Y.; Supervision: K.W. and D.-G.Y.; Writing-original draft: T.N. and Y.Z.; Writ-
ing-review and editing: K.W. and D.-G.Y. All authors have read and agreed to the published version 
of the manuscript. 

Funding: The following financial supports are appreciated: The Natural Science Foundation of 
Shanghai (No.20ZR1439000) and Shanghai Innovation Projects for College Students (No. 
SH2021257). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Zare, M.; Dziemidowicz, K.; Williams, G.R.; Ramakrishna, S. Encapsulation of pharmaceutical and nutraceutical active ingredi-

ents using electrospinning processes. Nanomaterials 2021, 11, 1968. 
2. Sheikh, F.A.; Aamir, M.N.; Shah, M.A.; Ali, L.; Anwer, K.; Javaid, Z. Formulation design, characterization and in vitro drug 

release study of orodispersible film comprising BCS class II drugs. Pak. J. Pharm. Sci. 2020, 33, 343–353. 
3. Oh, B.C.; Jin, G.; Park, C.; Park, J.B.; Lee, B.J. Preparation and evaluation of identifiable quick response (QR)-coded orodispersible 

films using 3D printer with directly feeding nozzle. Int. J. Pharm. 2020, 584, 119405. 
4. Olechno, K.; Basa, A.; Winnicka, K. Success depends on your backbone—About the use of polymers as essential materials form-

ing orodispersible films. Materials 2021, 14 ,4872. 
5. Yu, D.G. Preface. Curr. Drug Deliv. 2021, 18, 2–3. 
6. Liu, J.; Guan, J.; Wan, X.; Shang, R.; Shi, X.; Fang, L.; Liu, C. The improved cargo loading and physical stability of ibuprofen 

orodispersible film: Molecular mechanism of ion-pair complexes on drug-polymer miscibility. J. Pharm. Sci. 2020, 109, 1356–1364. 

Figure 11. A process–structure–performance strategy for developing orodispersible membrane
through the modified coaxial electrospinning.

4. Conclusions

In the present study, modified coaxial electrospinning was implemented to prepare
a new type of core-sheath nanostructures in which the core drug–polymer composites
were encapsulated by the sheath sucralose-polymer composites. Although the sheath
fluid composed of sucralose and PVP K10 had no electrospinnability, the core-sheath
nanofibers showed linear morphology with an average diameter of 0.81 ± 0.15 µm. XRD
and ATR-FTIR results demonstrated that the drug DS presented in the EHDA products in
an amorphous state due to its fine compatibility with the polymeric carrier. The artificial
tongue experiments and drop shape analyses demonstrated that the prepared OMs from
the single-fluid blending process and the coaxial process had high dispersible properties.
In vitro dissolution tests showed that the OMs were able to release the loaded DS within
1 min, whereas the DS powders needed 1 h. Thus, the electrospun core-sheath nanofibers
are good candidates for delivering DS through OMs thanks to fast disintegration of the
drug and also the taste masking using sucralose. The protocols reported here should
be useful for many other poorly water-soluble drugs, fast action of which for a better
therapeutic effect is desired.
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