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Improved security bound for the
round-robin-differential-phase-shift
quantum key distribution
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The round-robin-differential-phase-shift (RRDPS) quantum key distribution (QKD) protocol
has attracted intensive study due to its distinct security characteristics; e.g., information
leakage is bounded without learning the error rate of key bits. Nevertheless, its practicality
and performance are still not satisfactory. Here, by observing the phase randomization of the
encoding states and its connection with eavesdropper's attack, we develop an improved
bound on information leakage. Interestingly, our theory is especially useful for implementa-
tions with short trains of pulses, and running without monitoring signal disturbance is still
available. As a result, the practicality and performance of RRDPS are improved. Furthermore,
we realize a proof-of-principle experiment with up to 140 km of fiber, which has been the
longest achievable distance of RRDPS until now, whereas the original theory predicted that no
secret key could be generated in our experiment. Our results will help in bringing practical
RRDPS closer to practical implementations.
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nlike public-key cryptography, whose security relies on

unproven mathematical assumptions, quantum key dis-

tribution (QKD)'? can information-theoretically dis-
tribute secret key bits between distant peers (such as Alice and
Bob). According to quantum mechanics, any eavesdropping on a
quantum channel will inevitably introduce signal disturbance,
which implies that Alice and Bob can bound the information
leakage for the eavesdropper (Eve) by collecting the error rate of
their raw key bits or some other parameters reflecting the signal
disturbance. For the well-known BB84! and measurement-device-
independent (MDI)? QKD with decoy states*™©, the error rate and
counting yields are used to evaluate Eve’s information. In
coherent-one-way (COW)7# and differential-phase-shift (DPS)
%10 protocols, the visibility of interference plays an essential role
in monitoring information leakage. Device-independent (DI)!1~13
QKD relies on monitoring the violation of Bell inequalities. MDI-
QKD and DI-QKD feature a high security level in practice, while
COW and DPS have compact and simple implementation. There
has been great progress on exgerimental QKD, such as lon$-
distance QKD implementations®!*1°, high key rate systems!®~
and demonstrations of QKD networks?’~23, Nevertheless, signal
disturbance monitoring is indispensable for almost all these QKD
protocols and implementations.

Surprisingly, the recently proposed round-robin-differential-
phase-shift (RRDPS)** protocol is an exception. In the RRDPS
protocol, Alice prepares a series of pulse trains, each consisting of
L weak coherent pulses. The pulses are individually modulated to
random phases out of 0 and 7, and every L-pulse train can be
handled as a packet. Upon receiving these packets, Bob measures
the phase shift between the m-th pulse and the (m + r)-th pulse of
each packet, where r is randomly chosen from [1, L — 1] for each
packet and m+r<L. Through a simple and comprehensive
security proof?4, it has been noted that Eve’s information on raw
key bits I,y is no larger than h,(N/(L-1)), where N is the
photon-number of a packet. The main merit of the RRDPS
protocol is that the estimation of I,z does not depend on the
error rate of key bits, and thus can be treated as a constant
experimentally, which implies that signal disturbance monitoring
can be removed during the RRDPS protocol.

There are several reasons for the strong interest in RRDPS. In
theory, the result sheds new light on how intrinsic randomness of
quantum mechanics can be related to secure key distribution. In
practice, the removal of signal disturbance monitoring means that
we do not need to consider the statistical fluctuations in the
monitoring error rate and some other parameters, so a better
tolerance of finite-sized-key effects is expected®*. In particular, the
finite-sized-key effects must be carefully considered in practice,
since the fluctuations induced by environmental disturbance will
lead to inaccurate statistical results or much more consumption
for sampling. From the point of view of QKD engineering, the
post-processing of QKD can be simplified too, since the random
sampling and classical authenticated communications necessary
in monitoring signal disturbance are not needed. Furthermore,
according to the formula Iyp<hy(N/(L — 1)), it is obvious that
the information leakage will be deeply suppressed, and a positive
key rate under a higher error rate is expected when L becomes
larger, which is the reason why, at the present stage, large L is
important. It is worth noting that multi-dimensional QKD pro-
tocols?® usually have higher tolerance of error rate; in particular,
the recently proposed Chaul5 protocol®® can tolerate an error
rate of up to 50% in principle, but these protocols must run with
signal disturbance monitoring.

There have been several successful demonstrations of RRDPS
with Eassive interferometers®”?® and actively selectable compo-
nents®>30. The longest achieved distance is ~90km?°. Despite
these experimental successes, it is still a great challenge to realize
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a practical measurement system with a large L value. In addition,
it should be noted that large L values result in lower secret key
rates per pulse. Therefore, an improved estimate of Ing would be
very useful, especially if it could allow operation with few pulses.
In addition, although the upper bound of g given in ref. ** does
not depend on the error rate, it is still not fully clear how Eve’s
attack introduces error bits and if it is possible to use the error
rate in RRDPS to improve its performance. To address these
issues, we report an improved theoretical bound on I4g. Inter-
estingly, error rate can also be considered in our method to
estimate I, in an even tighter way. Through numerical simula-
tion, we show that with our theory, the performance of the real-
life RRDPS implementation can be improved. Even the RRDPS
with relatively small L, e.g., L = 8, can outperform commonly used
BB84 with decoy states when interferometer misalignment is
severe. It is also remarkable that the RRDPS protocol with L=3,
which is not permitted in the original RRDPS protocol, can
generate secret keys according to our analysis. Finally, we verify
our theory through a proof-of-principle experiment with L=3,
which can run at a distance of 30 km without signal disturbance
monitoring and decoy states. In addition, a demonstration at 140
km is also realized with monitoring signal disturbance and decoy
states.

Results

New bound for Eve’s information. The original security proof
given in ref. 2* is simple and elegant but does not consider Eve’s
optimal attack and corresponding information leakage. Our basic
idea is to directly construct Eve’s collective attack to each packet and
calculate the maximal information acquired by Eve. Considering that
the quantum de Finetti theorem® = holds when the pulses are
grouped by packets in RRDPS, the results also then cover general
coherent attacks. However, even in case of collective attack, it is not
easy to perform theoretical analysis, since the dimension of Alice’s
encoding state depends on L and may be very large. For simplicity,
we first consider the case in which each packet contains only one
photon. Alice randomly prepares the single-photon state
) = S (=1)"|m), where k,, € {0, 1} is Alice’s raw key bit and
|m) (me{l, ., L}) indicates that this single-photon is in the m-th
time-bin. Eve’s general collective attack can be given by
Ukye |M) |€initial) = th:l Cmn|1)|€mn), where the quantum state of
Eve’s ancilla |e,,,) corresponds to Eve transforming |m) to |n) and
sending |#) to Bob. In principle, Eve’s ancilla has [? different states
and thus is difficult to work with. We develop a method to simplify
Eve’s quantum state and bound her information effectively. The
essence of our method is to introduce phase randomization, which
was not considered in previous works. Concretely, consider the case
in which Bob has measured the incoming single-photon with basis
|a) + |b) successfully and announced (a, b) publicly. Eve then aims to
guess k,+k, For any m*a, b the phase (—l)km is completely
random to Eve, which implies that some mixed components
\cma|2|ema><em\ + |cmb|2|em1,><emb| (m*a, b) will emerge in the
density matrix of Eve. These mixed components do not give Eve any
information and can thus be ignored to simplify the proof. Accord-
ingly, we find that Iyp<maxpe<190((L—1)x,1—x)/(L—1),
where  ¢(x,y) = —xlog, x — ylog, y + (x + y)log,(x +y). In
addition, x can be related to the error rate E, so this bound works for
implementations both with and without monitoring signal dis-
turbance. One can refer to Supplementary Note 1 for the detailed
security proof.

It would be very useful to extend the security proof from the
single-photon to the N-photon case. Nevertheless, due to the
complexity of the N-photon quantum state, it is difficult to depict
and estimate the upper bound of Eve’s information for the
general N-photon case. Our technique is based on grouping the
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N-photon state into different summations with different numbers
of phases and introduce phase randomization between them.
Here, we sketch our method for the odd-N photon-numbers case.
Such an odd-N (N<L-1) photons quantum state must have
the form |y) = f]:/12+1/2(71)km1+”‘+k’”2f*1|m1m2...m2t,1>0dd, in
which |mym;,...my_1) 44 means a superposition of quantum
states in which the photon-numbers in time-bins mm,...m,,
must be odd, while the photon-numbers in all other time-bins
must be even. The form of |mjm;...my_1) 44 depends on the

values of N and L. For example, assuming N=3 and L=5, non-

normalized state |1>0ddé V3I1)(2)]2) + [3)]3) + 14)]4) +15)[5))
+|1)|1)|1), where |1)|2)|2) means that there is one photon in the
first time-bin and two photons in the second time-bin, while
[1)|1)|1) indicates that all three photons occupy the first time-bin
(see Supplementary Note 3 for the three-photon case). It is then
straightforward to redefine the collective attack with the new
basis |myimy... 1) g4t Ukve [m1my... 15 1) 44 €initial)
= Zﬁ:l Conymy...my 11| 1) | €mymy...my 1n)> Where the quantum state
of Eve’s ancilla |ey,m,..m, ,n) corresponds to Eve transforming
|mym;...mae_1)4q to single-photon state |n) and sending |n) to
Bob. After Bob measures the incoming single-photon with basis
|a) £+ |b) and announces (a, b) publicly, Eve will try to guess k, +
k. Due to the potential phase randomization between different
summations, Eve can acquire some information only from

two types of  “two-dimensional” terms such as
UEve ( _ l)kml Fhmy +oethimy, ((_ 1)ka | My My M a)()dd
(= 1) fmymy...moe1b)ogq) leinitar) and

UEve(_l)km1 ety (|mymy...ma_1) gaq

+ (—l)k”kb\mlmz...my,lab)odd)\einiﬁal> (my, my, ..., My £ a, b).
Summing over the upper bounds of Eve’s information on all these
“two-dimensional” terms, we obtain the final formula to estimate
Eve’s information. The examples for two-photon and four-
photon cases are given in Supplementary Notes 2 and 4,
respectively. The detailed proof for general cases can be found
in Supplementary Notes 5-7. The results are summarized by the
following theorem and its corollary.

Theorem. For the RRDPS protocol with L-pulse packet, where
each packet contains N photons (L > N+ 1), Eve’s information
can be bounded by

N
Zl @((L — n)xp, NXui1)
=

L—1 ’

(1)

IAE<I AE — MZ‘.XXMC2

AAAAA XN+

where ¢(x,y) = —xlog, x — ylog, y + (x +y)log2( +y), non-
negative real parameters x; satisfying ZNl x; = 1. Moreover, if
the error rate of raw key bits is E, these parameters x; (i€ {1, 2, .
N+ 1}) must satisfy the constraint

(N- 1)/2 5
(,/ L 2n x2n \/2nx2,,+1) +

(L—N—1)xy;1/2

E> n=1
~ L—1
forodd N,
()
and,
N/2
(VI =21+ Dxguy —/(2n— 1)x2n) +(L =N —1)xy11/2
n=1
E2Z
L—1
foreven N.
3)
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Table 1 E,,., of RRDPS with different methods

L \ Method Original RRDPS  Eq. (1) without E  Eq. (1) with E
3 - 0.0546 0.0811

5 0.0289 0.122 0.144

8 0.0818 0.176 0.191

16 0.165 0.244 0.252

32 0.24 0.3 0.303

Corollary. If the photon-number L < N -2, I, < 1 always holds.

Based on this theorem, the upper bound of Iy, is generalized to
find the maximum value of a given function under a constraint
defined by E. If we ignore this constraint, we obtain Iy without
monitoring signal disturbance. Alternatively, if we retain this
constraint, a tighter estimation may be achieved. It is remarkable
that searching such a maximum value can be effective and concise
through a numerical method, since its function is convex. A
dlfferent less tight bound improvement was recently reported in
ref. 3

Potential improvements made by our theory. For a QKD pro-
tocol, the mutual information between Alice and Bob is given by
I,y =1— hy(E). Thus, there is a maximum value E,,, of error rate
E, which satisfies Iyp = I, when E= E, ... Obviously, if E2Epy
holds, I, will be no larger than I§;, and no secret key bits can be
generated. Thus, E,,, is the maximum value of tolerable error
rate of a QKD protocol. We first compare E,,; of RRDPS
between the original method and our new formulae. In Table 1,
we list the results for the cases in which a single-photon source is
equipped. One can see that our formulae can increase Eax
especially when L is small. It is remarkable to note that for the
case L=3, with our formulae E,,,; can be up to 5%, while the
original RRDPS protocol cannot generate secure key bits at all.
More importantly, the notable difference between columns two
and three in Table 1 implies that our theory leads to increased
Enax compared to the original RRDPS even when signal dis-
turbance monitoring is still turned off.

The most important step is to evaluate the secret key rate and
achievable distance of RRDPS through simulations. Here, we
assume the pulse width is constant for different values of L and
the dark countlng rate of the single-photon detector (SPD) is set
to be d=107° per pulse, which is typical and practical. Another
important parameter used in the simulations is the interferometer
misalignment en;. In a phase-coding system, the error rate
mainly stems from apparatus imperfections, such as interferom-
eter misalignment and dark counts of SPD. The interferometer
misalignment e,,;; indicates the probability that an incoming
photon hits an erroneous SPD due to interferometer misalign-
ment. Actually, e,;; depends on the visibility V of optical
interference, and e, = (1 — V)/2. In an ideal interferometer with
V=1, two optical pulses with relative phases 0 and z always hit
different SPDs. Thus, one can deduce the relative phase, i.e., key
bit in the phase coding system, by observing which SPD clicks.
However, due to the limited precision of interferometer
fabrication or the environmental disturbance, e.g., the drift
between the lengths of the short arm and long arm of the
interferometer, V may be lowered, and higher e,; is introduced.

Although e,;; in most reported QKD experiments can be kept
small, ie, en<5%, it is still important to evaluate the
performance of RRDPS in the high e, region. There are two
reasons for this. First, reducing e,,;; requires complex techniques,
such as active feedback> and interferometer fabrication with high
precision. In addition, active feedback techniques, such as phase-
reference alignments and polarization controls, may be ineffective
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Table 2 loss,,.x (dB) of BB84 and RRDPS with different methods
emis \ Method BB84 Original RRDPS Eq. (1) without E Eq. (1) with E
0.015 47.8dB 41.5dB (L=19) 449dB (L=7) 456dB (L=7)
0.08 42.8dB 39.8dB (L=29) 42.7dB (L=28) 435dB (L=8)
0.1 38dB 39.2dB (L =30) 42dB (L=9) 42.8dB (L=9)
0.15 - 37.7dB (L=45) 40.6dB (L=16) 41dB (L=16)
0.1 0.001 5
Emis=0.015 E €1is=0.15
- - - R, (L=8) - - - R, (L=16)
0.01 4 - = - R, (L=16) 4 _ R, (L=32)
— R, (L=32) o —— R, (L=8)
$ 0.001 4 —— R,(L=8) 3 —— R, (L=16)
g —— R, (L=16) g8 1 R, (L=32)
8 1g-44 Ry (L=32) g BS54
e 1 v NN e e R(BB84) Y 3
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Fig. 1 Secret key rate R versus channel loss. R; and R, represent the original
RRDPS protocol and the proposed one, respectively. R (BB84) is for the
BB84 protocol with infinite decoy states. Both Ry and R, are simulated for
the scenarios without monitoring signal disturbance

and even invalid in fast-changing environments. High-precision
interferometers, on the other hand, are more challenging in
RRDPS, since interferometers with variable delays must be
matched well. To improve the robustness of the QKD system in
various environments and alleviate its dependence on these
techniques, QKD protocols inherently feasible in high e
scenarios are highly desirable. Second, the use of other high-
dimensional degrees of freedom, e.g., orbital angular momentum
(OAM) of photons, rather than time-bin, is a potential way to
improve the key rate of RRDPS, but tygically, emis in QKD based
on OAM can be greater than 10%°>7. Hence, simulations of
RRDPS with large ey, are relevant for future study. We here
report the simulation results. Details of how we model the QKD
systems and perform the simulations are presented in the
methods section.

For ease of understanding, we first study the tolerance of
channel loss when a single-photon source is equipped. Under a
given e, secure key bits can be generated only when the channel
loss is smaller than a value loss,,,y, which is understood as the
maximum value of tolerable channel loss. The loss,,., values
under different e, are listed in Table 2. For RRDPS, the value of
L is optimized to maximize loss ... We can see that with the help
of formula (1), the loss,,, of RRDPS becomes much larger, and L
can be lowered, compared to the original RRDPS. When e,; >
0.08, the improved RRDPS can outperform BB84 in terms of
tolerable channel loss.

Next, we consider a more realistic scenario in which a weak
coherent source is used. The secret key rates R per pulse versus
total losses for L=8, L=16 and L=32 are simulated. Figure 1
(emis=0.015) and Fig. 2 (ey;s=0.15) are both simulated without
using signal disturbance parameters. From them, we can see that
with the help of the proposed method, the secret key rate and
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Fig. 2 Secret key rate R versus channel loss. R; and R, represent the original
RRDPS protocol and the proposed one, respectively. The line for BB84 is
not drawn since its key rate is always O in this case. Both R, and R, are
simulated for the scenarios without monitoring signal disturbance

achievable distance of RRDPS systems are both evidently
increased, especially for small L cases. To further investigate the
performance of our improved RRDPS under high e, the secret
key rates versus ey,;; under typical channel losses are depicted in
Fig. 3, from which we can see that RRDPS outperforms BB84 with
decoy states when e,;s is greater than 10%.

We also analyzed experimental data from previous experiments
to show the improvement of key rate. In the experiment of
RRDPS with L = 65 reported in ref. 2%, the secret key rate for a 95
km fiber channel can be increased from 5 x 1078 to 1.4 x 107 per
pulse (see methods section for details).

These simulations confirm the prominent advantages of our
theory over the original RRDPS. Compared with BB84 with decoy
states, the proposed RRDPS is inherently feasible under a high
emis region, which is meaningful to alleviate its dependence on
implementation techniques, such as active phase compensations
and interferometer fabrication with high precision. In addition,
the proposed RRDPS can still run without monitoring signal
disturbance, so its unique advantages on the tolerance of finite-
sized-key effects and postprocessing convenience over conven-
tional QKD protocols are maintained.

Proof-of-principle experiment. Based on the above theoretical
results, RRDPS requires that L>3. This would represent the
simplest RRDPS experimental implementation up to date. Here,
we describe a proof-of-principle experiment with L=3 to verify
our theory.

Our implementation is shown in Fig. 4, and it is similar to the
ones employed in refs 282%, At Alice’s site, a pulse train with a
repetition rate of 1 GHz is generated by modulating a 1550.12 nm
continuous wave (CW) laser using the first LINDO; intensity
modulator (IM;). Every 3 pulses (L= 3) is defined as one packet.
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The second intensity modulator (IM,) is employed to implement
the decoy states method, by which each packet is randomly
modulated into signal, decoy and vacuum packets. The first phase
modulator (PM,) adds phase —z/2 or z/2 on each pulse to encode
the key bits, and the second phase modulator (PM,) adds a
random global phase on each packet. The encoded pulse train is
then launched into a variable attenuator (VA) so that the average
photon-number per pulse can be adjusted.

At Bob’s site, the passive scheme based on a 1 x 2 beam splitter
(BS) is used to implement a high-speed and low-loss decoding
measurement. Since L= 3 and the time interval between adjacent
pulses is 1 ns, there are only two unbalanced Faraday—Michelson
interferometers (FMIs) with 1 and 2 ns temporal delays. One 50/
50 BS and two Faraday mirrors (FMs) constitute an FMI, and a
three-port optical circulator is added before the BS to export the
other interference result. Each output of these two unbalanced
FMIs is led to an SPD. Finally, the detection events are recorded
by a time-to-digital convertor (TDC), which records the time-
tagged and which-detector information.

The passive implementation scheme and small values of L
make our RRDPS system very practical. The passive approach
allows high time efficiency and internal transmittance of Bob’s

0.01
-~ -20dB (L=8)
-~ -20dB (L=16)
J 20 dB (L=32)
0001 o 20 dB (BB84)
= —— 10 dB (L=8)
8 1 —— 10dB (L=16)
3 1E43 10 dB (L=32)
- SN N 10 dB (BB84)
8 1E5 4
N ]
£ ]
@
5 1E-6 3
[ 1
n
1E-7 3
1E-8 T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

emis

Fig. 3 Secret key rate R versus en;s. The dashed lines and solid lines
represent the proposed RRDPS under channel losses of 20 and 10 dB,
respectively. Signal disturbance monitoring is still turned off. The two
dotted lines are for BB84 with infinite decoy states under channel losses of
20 and 10 dB, respectively
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optical components, and four SPDs used to detect the L=3
packet are acceptable. The 1x2 BS amounts to randomly
choosm% between 1 and 2 ns delay FMIs. In contrast to active
schemes*’, the passive choice between different delay measure-
ments has no speed limits, and the time interval between each two
packets to achieve a low error rate is no longer necessary. The
average insertion loss (IL) of the 1 and 2 ns delay FMIs is only
approximate 0.80 dB, in which the IL of the optical circulator is
also included. These two FMIs are placed in two small ABS plastic
cases to isolate them from the environment, and heating plates
are used to keep the temperature of FMIs above room
temperature. Thus, we could actively and independently com-
pensate for the phase shifts of 1 and 2 ns delay FMIs and keep the
phase of the unbalance interferometer stable. Owing to 45°
Faraday mirrors, these FMIs are insensitive to polarization
variations and feature extinction ratios of approximately 23.5 dB.

In addition, SPDs based on InGaAs/InP avalanche photodiodes
(APD) are employed to detect photons from 1 and 2ns delay
FMIs, which makes the RRDPS system more practical. These four
SPDs are working with Peltier cooling and operated in gated
Geiger mode with the sine-wave filtering method®3. The detection
efficiencies of the four SPDs are approximately 20.4% with a dark
count rate of 1.25 x 1076 per gate and an after-pulse probability of
1.02%. Here, the insertion loss of the optical circular from BS (of
FMI) to SPD is included in the detection efficiency of SPD.

We tested the L =3 RRDPS system with standard telecom fiber
channels at distances of 30, 50, 100, and 140 km. At a distance of
30km, the system was running without monitoring signal
disturbance and decoy states, while the mean photon-number
per pulse was set to be 0.005. At the other distances, our RRDPS
system cannot generate secret key bits without decoy states due to
the contribution of multi-photon events, so decoy states must be
introduced. The decoy states method was implemented by setting
the photon-numbers per pulse of the signal, decoy, and “vacuum”
packets with values of 0.13, 0.03, and 0.0003, respectively. These
values of mean photon-number are optimal to maximize the key
rate according to the simulations. The experimental results are
listed in Table 3, where the error rates of key bits and yields per
packet are directly obtained experimentally. When decoy states
are employed, we use formulae given in ref. 3° to calculate the
yield and error rate for a single-photon packet. The secret key
rates R; and R, are then calculated according to Eq. (1) without
and with the error rate, respectively (see methods section for
detailed information).

In our L =3 RRDPS experiment without monitoring and decoy
states, the transmission distance could reach 30 km. When decoy
states are employed, 140 km is reached with InGaAs/InP SPDs,

Bob
‘
nb—d: E}i:y

, !

2ns

UP—iQ De.|ay

D= Beam splitter
—®= Circulator
— Faraday mirror
— Single photon detector

Fig. 4 Experimental setup to implement the RRDPS protocol with L =3. CW Continuous Wave, IM Intensity Modulator, PM Phase Modulator, VA Variable
Attenuator. At Alice’s site, a pulse train with a repetition rate of 1GHz is generated by modulating a 1550.12 nm CW laser using IM,. Every 3 pulses (L =3)
are defined as one packet. The intensity of each packet is randomly modulated by IM, to prepare signal, decoy and vacuum states. PM; adds phase — z/2 or
/2 on each pulse to encode the key bits, and PM, adds a random global phase on each packet. The VA is used to adjust the average photon-number per
pulse. At Bob's site, through a 1x 2 beam-splitter, the incoming signal is randomly coupled into one of two unbalanced Faraday-Michelson interferometers
(FMIs) with 1 and 2 ns temporal delays. Each output of the FMIs is led to an SPD. Finally, the detection events are recorded to extract key bits
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Table 3 Experimental results of the L =3 RRDPS system

' (km) Qs Es Qd Ed Qv RI R2

30 318x1074 2.32% - - - 420%107° -

50 3.24x1073 1.76% 7.52x1074 1.95% 112 %1072 814 x107> 3.60x1074
100 3.28x107% 2.26% 7.86x107> 4.01% 450x107° 4.98x1076 315x107°

140 5.52%x107> 4.99% 1.56 x 107> 13.31% 3.87 %1076 - 1.45x107°

of all key bits, respectively

List of mean yields and error rates of signal (Qs and E;), decoy (Qq and Eg), and mean yield of “vacuum” (Q,) packets, secret key rates per pulse (R; and Ry) for four lengths of the fiber channel (1), where
Ry is calculated without using the error rate while R, is calculated with using the error rate. At 30 km, the decoy states method is not employed, so Qs and E represent the yield per packet and error rate

while the maximum transmission distance of the similar L=5
RRDPS experimental system is less than 50km with super-
conducting SPDs?®. Thus, we have successfully verified the
feasibility of RRDPS with the smallest L =3, which is impossible
based on the original theory.

Discussion

We reported on an alternative theory to estimate Eve's infor-
mation on raw key bits Iyg. The essence behind our method is
that the potential phase randomization can be utilized for the
security analysis of RRDPS. The advantage is that I,g can be
bounded more tightly than before, especially when L is small. Our
results can be used for scenarios both without and with mon-
itoring signal disturbance.

We compared RRDPS with the commonly used BB84 protocol.
Although the secret key rate and achievable distance of RRDPS
still seem to be inferior to BB84 with decoy states in some typical
scenarios, the proposed RRDPS has its particular advantage of
post-processing convenience. Moreover, when interferometer
misalignment  is  severe, RRDPS can  outperform
BB84 significantly. To verify our theory, a proof-of-principle
experiment with L=3 is demonstrated here.

There are still several points that should be addressed in the
future. In ref. *°, it has been proved that the original bound
Izsg<hy(n/(L — 1)) holds with inaccurate phase coding. Our
technique depends on the phase randomization, which requires
that Alice’s phase coding must be 0 or # randomly. Therefore,
analyzing the relation between phase coding inaccuracy and the
upper bound of I, quantitatively is necessary. Another issue is
how to countermeasure the potential attacks due to device
imperfections. For example, the blinding attack*! must be care-
fully considered in the practical RRDPS systems.

Note added. While preparing the paper, we became aware that
similar topics are discussed in other theoretical works*>*3,

Methods
Simulation. We use Wolfram Mathematica 10.3 to run the numerical simulations.

The transmission efficiency of the channel is = 1071°%/19, and loss is just the
attenuation (dB) of the channel. Here, we assume that loss stems from the channel
while the photon-number-resolving SPDs have 100% efficiency and dark counting
rate d = 107% per pulse. When Bob decides to set the delay value as r€ {1, ..., L—1},
both of his SPDs will open L —r time-windows to detect the incoming signal. Bob
retains only the events in which a single-photon click occurs among these L —r
time-windows. The models of the simulations are given below.

We first simulate RRDPS with a single-photon source. Imagining that the delay
value is r and both SPDs open one time-window to detect the incoming single-
photon, a single click obviously occurs with the probability (L —r)y/L + (1 - (L—7)
n/L)2d(1 — d). The first item represents the probability that the single-photon is not
absorbed by the channel or lost due to the noninterfering events in unbalanced
Mach—Zehnder interferometers*#4>. The second item means a dark count occurs,
while the single-photon is absorbed by the channel or lost due to the noninterfering
events in interferometers. Considering that Bob actually opens L — r time-windows
and only retains the case in which there is only one click among these L —r time-
windows, the probability that Bob obtains one raw key bit per packet is given by

Y, = (1 7d)2(L”H<L;rr/+ (1 7?;1)2@70:1). @)
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The error rate of the key bit generated by a single-photon packet with delay value r
is

o (L— L—
EY, = (1 - d)Z(L ) 1< L rnemis + <1 - Tr’7> (L - i’)d), (5>

where e,; represents the probability that the incoming photon clicks the erroneous
SPD due to interferometer misalignment. Accordingly, the mean yield of a single-
photon packet is Y = 3271 v, /(L — 1), and its mean error rate is simulated by
EY = S %1 E,Y,/(L — 1). The secret key rate per pulse is then given by

RL =Y (1 — hy(E) — I\ ), where h; is the information entropy function.

For comparison, we also simulate phase-coding BB84 with a single-photon
source here. In a typical phase-coding BB84 system, each encoding state consists of
two optical pulses and thus is quite similar to RRDPS with L= 2. We then have for
phase-coding BB84 its yield per “one pair of pulses” and error rate given by

Y:(lfd)<%n+<lf%n>2d>, (©)

and

EY = (1 —d)(%nemis+ (1 —%n)d> 7)

respectively, and its secret key rate per pulse is R=Y(1 - 2h,(E))/2.

With a weak coherent source, the method for simulating RRDPS is present here.
Assuming the mean photon-number of each pulse emitted by Alice is y, the mean
photon-number per pulse will be attenuated to #u due to channel loss. When Bob’s
delay value is r, his two SPDs open L —r time-windows to detect L —r+ 1 weak
coherent pulses with mean photon-number #u. Recall the loss due to the
noninterfering events in unbalanced Mach—Zehnder interferometers*4>; Bob
actually attempts to observe the single-photon from L — r weak coherent pulses
with mean photon-number #u. For ease of simulation, we assume Bob’s SPD can
resolve the photon-number perfectly (in practice, one can use the number of
double-clicks of threshold SPDs to effectively estimate the number of times Bob
receives a multi-photon packet, and then the amount of “tagged” key bits generated
by multi-photon receiving events can be upper bounded and further eliminated by
privacy amplification?®.). There are then only two possibilities for observing a
single-photon click. First, there exists exist only one photon among these L —r
weak coherent pulses to click Bob’s SPD. The corresponding probability is
proportional to e“L"H(L — r)pu. Second, there is no photon among these pulses,
but Bob’s SPD clicks due to dark counting. The corresponding probability is then
proportional to &L=k, Summing over the two possibilities and recalling that Bob
retains only the case in which there is only one click among these L —r time-
windows, we have

Q = (1= e = (L — )+ 2(L = 1)d), (8)

and the overall counting rate Q = ""_! Q,/(L — 1). The error rate E can be
simulated by

L1 o
BQ= Y g (= e (L e+ (L= ). )

In the case without monitoring signal disturbance and decoy states, the secret key
rate R per pulse is given by

RL = Q(1 — I (E)) — esrc — (Q — esic) I g, (10)
where e =1 — Y 1 e7%(Lu)" /n! is the probability that the photon-number of
a packet is greater than vy, In our method, Iy, is calculated by Eq. (1) setting the
photon-number N=vy, and ignoring constraint Eqgs. (2) and (3). In the original
method, I = hy(vn/(L — 1)). p and vy, should be optimized to maximize R.
For comparison, we also simulate phase-coding BB84 with a weak coherent
source here. Note we assume that infinite decoy states are employed in this case.
Similar to the method of obtaining Eqs. (10) and (11) in ref. 39 we have for phase-
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coding BB84 its yield per “one pair of pulses” and error rate given by

Y, = (1 f%n)Hu —d) (%m]%» (1 7%;1)2d>,
E Y, (1 7%;7)"71(1 —d) Gmyem + (1 %Od),

respectively, where n is the photon-number of the encoding state. Summing over
all possible photon-numbers 7, its mean yield and error rate are given by Q =
Ym0 € #(2u)"Y,/n! and EQ = Y o e #(2u)"E, Y, /n!, respectively, where u is
the mean photon-number per pulse. Its secret key rate is

2R = —Qhy(E) + e #2uY, (1 — by (Ey)).

and

(12)

(13)

In an experiment of RRDPS with L =65 given in ref. %, there is a set of
experimental observations: the mean photon-number s=0.037 per pulse, yield Q,
=8.435 x 107* per packet and error rate E=0.058. By setting vy, = 10, the secret key
rate is Ry = (Qy(1 — L.11o(E)) — egre — (Qs — e:)Ma(vin/64))/L = 5 x 108, With the
same parameters and finding I} = 0.513 for 10-photon,

R, = (Qs(1 = 1.1y (E)) — ege — (Qs — ec)I35) /L = 1.44x 1075,

Key rate for the experiment. Here, we describe the methods for obtaining the
secret key rates in Table 3.

At 30 km, the system was running without monitoring and decoy states. Its
secret key rate R is then calculated by RL = Q (1 — hy(E)) — egre — (Qs — esrc)I3g»
where eq.=1- e — Lue ¥, 4 =0.005, and IY; is calculated by formula (1).

At the other distances, decoy states were employed. The photon-numbers per
pulse of signal, decoy, and “vacuum” packets are given the values s=0.13, d=0.03,
and v=0.0003, respectively. In the experiment, we directly observe the yields Qs, Qq
and Q, for signal, decoy and “vacuum” packets, respectively. The error rates E (Eq)
for key bits generated from signal (decoy) packets are also observed experimentally.
Referring to ref. 3, we can estimate the yield Y; for single-photon packets and the
error rate E; for key bits generated from single-photon packets by the following:

_ LdQue" — LvQqet?
Yo = max{ﬁ,o} (14)
v Ls Qed_Qev_(Ld)z_(LV)z(Qes_Y)
' LsLd — LsLv — (Ld)> + (Lv) \ ¢ v (Ls)? TR
(15)
s d
El _ EsteL EdeeL (16)

(Ls — Ld)Y,

As a proof-of-principle experiment, the secret key rates R; and R, in Table 3 are
not obtained by actually performing post-processing steps. Instead, they are
calculated by R = (Lse ™Y, (1 — I}}) — Qiha(Es)) /L. Here, to obtain Ry, we
calculate IHE with Eq. (1), while ignoring constraint Egs. (2) and (3). To R,, this
constraint with E= E; is used.

Code availability. Source codes of the plots are available from the corresponding
authors on request.

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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