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Abstract: Hepatocellular Carcinoma (HCC) is the most common malignant liver tumor, being present
in 70% of liver cancer cases. It usually evolves on the top of the cirrhotic parenchyma. The most
reliable method for HCC diagnosis is the needle biopsy, which is an invasive, dangerous method.
In our research, specific techniques for non-invasive, computerized HCC diagnosis are developed,
by exploiting the information from ultrasound images. In this work, the possibility of performing
the automatic diagnosis of HCC within B-mode ultrasound and Contrast-Enhanced Ultrasound
(CEUS) images, using advanced machine learning methods based on Convolutional Neural Networks
(CNN), was assessed. The recognition performance was evaluated separately on B-mode ultrasound
images and on CEUS images, respectively, as well as on combined B-mode ultrasound and CEUS
images. For this purpose, we considered the possibility of combining the input images directly,
performing feature level fusion, then providing the resulted data at the entrances of representative
CNN classifiers. In addition, several multimodal combined classifiers were experimented, resulted by
the fusion, at classifier, respectively, at the decision levels of two different branches based on the same
CNN architecture, as well as on different CNN architectures. Various combination methods, and
also the dimensionality reduction method of Kernel Principal Component Analysis (KPCA), were
involved in this process. These results were compared with those obtained on the same dataset, when
employing advanced texture analysis techniques in conjunction with conventional classification
methods and also with equivalent state-of-the-art approaches. An accuracy above 97% was achieved
when our new methodology was applied.

Keywords: hepatocellular carcinoma (HCC); contrast-enhanced ultrasound (CEUS) images; multi-
modal combined CNN classifiers; feature level fusion; classifier level fusion; decision level fusion

1. Introduction

Hepatocellular Carcinoma (HCC) is the most common malignant liver tumor, which
appears in 70% of liver cancer cases. Nearing the top of the most frequent tumors world-
wide, HCC is placed at fifth position. It is also situated at the fourth position at the top of
cancer-related deaths around the world [1]. HCC usually evolves from cirrhosis, after a
liver parenchyma restructuring phase when dysplastic nodules result, which can transform
into HCC. The golden standard for HCC diagnosis is, nowadays, the needle biopsy, but
this is an invasive, dangerous technique, as it can lead to the spread of the tumor inside
the human body and also to infections [2]. Thus, alternative, safer techniques based on
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advanced computerized processing and artificial vision are due. Ultrasonography is a med-
ical examination method that is cheap, non-invasive, non-irradiating and, thus, repeatable,
suitable for patient-disease monitoring. Other medical image-based examination methods,
such as Computer Tomography (CT), Magnetic Resonance Imaging (MRI) and endoscopy
are irradiating and/or expensive. Contrast-Enhanced Ultrasound (CEUS) imaging is an
improved ultrasound-based technology, assuming the injection into the blood of a specific
contrast agent, consisting of gas filled microbubbles. The contrast agent spreads through
the human body, emphasizing the vessel structure in the region of interest [3]. This technol-
ogy leads to the highlighting of both large vessel flows, as well as of the microcirculation,
being firstly implemented for hepatic tumor pathology, for abdominal emergencies and in
order to recognize various tumor types [4]. The microbubbles of the contrast agent produce
harmonic echoes, which are detected by the transducer. This behavior is significantly
different from that of the usual ultrasound waves reflected by the tissues. The ultrasound
devices employ ultrasound emissions to cancel the tissue signals and to emphasize those
of the microbubbles. The CEUS technology reported a superior sensitivity, compared to
that of CT or MRI with a gadolinium- or iodinated-based agent [5].

Within B-mode ultrasound images, focal, encephaloid HCC appears, in more ad-
vanced evolution phases, as a well-defined region, of 3–5 cm in size, being hyperechogenic
and often heterogeneous, due to the interleaving of fatty cells, necrosis, fibrosis and active
growth tissue [2]. In CEUS images, HCC appears more highlighted, due to the dense and
complex vessel structure that is specific to the malignant tumors [3]. The HCC tumors are
usually hyper-enhanced during the arterial phase, showing washout during the portal
venous and delayed phases [5]. An eloquent example of HCC tumor, as it appears in a
pair of B-mode Ultrasound and CEUS images, is depicted within Figure 1. However, in
many cases, within both B-mode ultrasound images and CEUS images, HCC is hardly
distinguishable from the cirrhotic parenchyma on which it evolves, so advanced com-
puterized methods are due, in order to overpass the limitations of the human eye, in a
non-invasive manner.

In this context, adopting appropriate methods for noise removal is of great importance.
The noise and the artifacts, due mainly to the acquisition process, might lead to uncertainty
and imprecision, causing undesired phenomena within the medical images, such as the
partial volume effect [6]. Concerning the ultrasound images, the most frequent type of
noise is that of speckle, affecting all the types of ultrasound images [7]. In addition, the
quality of the CEUS images is lower in the deeper regions, presenting a low Signal-to-Noise
(SNR) ratio, due to the bubble disruption phenomenon [8]. Low-pass filters, such as the
median filter or the arithmetic mean filter [9], the transform-based methods [7,8], as well as
the fusion of multiple image modalities [6] were successfully implemented for reducing
noises within medical images. Contrast enhancement through specific computerized
methods is of great importance also, in both real-world and medical images, in order
to highlight the objects of interest, the anatomical or pathological structures, to reduce
uncertainty or imprecision. Such relevant methods are described in [10], respectively,
in [11]. In [10], the authors present their method for adaptive contrast enhancement in
gray level images. An S-shaped fuzzy Membership Function (MF) was defined for this
purpose. Then, a set of fuzzy patches were extracted, ascending order statistics being
computed on these patches. These statistics were considered as points in a 4-D fuzzy unit
hyper-cube, which finally led to contrast enhancement, based on the distances between
the previously mentioned points, respectively those of maximum darkness and maximum
brightness. A new approach regarding the histogram equalization technique was presented
in [11]. Histogram division was performed by automatically estimating the number of sub-
histograms, based on the number of peaks of the original histogram. Then, corresponding
clusters were defined by grouping the pixels based on their intensity levels with the aid of
a fuzzy clustering algorithm. Finally, the histogram equalization method was applied for
each cluster separately. The obtained results demonstrated an obvious increase concerning
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the image clarity. In addition, a more natural appearance of the elements within the images
of the experimental set was gained.

Figure 1. Example of a Hepatocellular Carcinoma (HCC) tumor within B-mode Ultrasound (left) and
Contrast-Enhanced Ultrasound (CEUS) images (right), delineated by an experienced radiologist.

Many approaches exist, performing the recognition, within medical images, of various
important affections, including tumors, by employing specific image analysis and machine
learning techniques [12–14]. Initially, the texture-based methods in combination with
classifiers have been widely exploited [15–18]. Specific methods, such as the Gray Level
Co-occurrence Matrix (GLCM) [17], the Run-Length Matrix [18], the Wavelet [13] and the
Gabor transforms [16], in combination with powerful machine learning techniques, such
as Support Vector Machines (SVM) [13], Artificial Neural Networks (ANN), Fisher Linear
Discriminants (FLD) [19] or the Bayesian classifiers [16] have been extensively implemented
in this context. Recently, the deep learning techniques, such as the Stacked Denoising
Autoencoders (SAE) [20], the Deep Belief Networks (DBN), the Recurrent Neural Networks
(RNN), respectively, the CNN-based classifiers, were successfully employed for automatic
diagnosis within medical images [21,22]. They demonstrated their value in other fields,
as well, such as bioinformatics [23,24], object detection and recognition [25], semantic
segmentation of images [26]. CNN began to be utilized on a large scale when powerful
computational resources, such as the parallel units or the Graphical Processing Units
(GPU), appeared—their value being emphasized during the ImageNet competition in 2012.
They were also included in the top 10 most important discoveries in [27]. This technology
demonstrated its superiority in many situations, such as fatty liver recognition within
ultrasound images [14], fibrosis grade detection for patients affected by B-type hepatitis
from 2D shear wave elastographic images [28], breast tumor recognition within ultrasound
images [29], liver lesion recognition [30], liver tumor recognition [31] and segmentation [32],
pulmonary nodule detection from CT images [33]. Standard CNN architectures, as well as
original, deep CNNs, were employed for these objectives.

The CNN-based methods also demonstrated their value in the field of bioinformatics.
In [23], the authors described their methodology, aimed at classifying DNA promoters
through the interpretation of the DNA sequences. They employed deep learning and
appropriate text processing techniques for this purpose. The DNA promoters represent
short regions inside DNA where specific genetic processes occur, being the main cause of
many important affections, as diabetes, cancer, or Huntington’s disease. In their innovative
approach [23], the authors modeled the DNA sequences as a combination of continuous
FastText N-grams, which were provided at the input of an 1D CNN with an original
architecture. After the experiments, an accuracy of 85.41% resulted when distinguishing
between promoter and non-promoter, while in the case when differentiating between strong
and weak promoters, the accuracy was 69.4%. This performance was superior to that of
other relevant state-of-the-art methods. Within another representative approach for this
domain, 2D CNN architectures were employed for predicting the Flavin Mono-Nucleotide
(FMN) binding sites [24]. The FMN co-factors are responsible for carrying and transferring
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electrons during the cellular respiration, being able to provide information about diseases,
also upon drug targets. The Position Specific Scoring Matrix (PSSM) data was provided
at the entrances of a 2D CNN with an original architecture. This architecture consisted of
zero padding 2D layers, convolution 2D layers and max pooling 2D layers, respectively, of
a flattened layer, two fully connected layers separated by a dropout layer and a softmax
layer, within the output section. After performing 5-fold cross validation, an accuracy of
98.2%, a sensitivity of 83.7%, a specificity of 99.2% and a Matthews correlation coefficient
of 0.85 resulted. This performance overpassed the previous state-of-the-art results.

Both conventional methods and deep learning techniques were also applied for
performing tumor recognition and segmentation within contrast-enhanced medical im-
ages [34–37], respectively, within combinations of different medical image modalities [26,38],
the CNN techniques having an important role in this context. The most relevant approaches
in this field are described below.

1.1. Automatic Diagnosis Approaches within Contrast-Enhanced Medical Images

In [34], the authors presented a two-stage multi-view learning framework for per-
forming the automatic diagnosis of the liver tumors from CEUS images. Three typical
CEUS images, corresponding to the arterial phase, portal venous phase and late phase
were adopted. Firstly, the Deep Canonical Correlation Analysis (DCCA) was applied upon
the three image groups, yielding six-view features. During the second stage, the multi-view
features were provided at the entrances of a Multiple Kernel Learning (MKL) classifier,
for the automatic recognition of the liver tumors. After applying the above-described
methodology, a sensitivity of 93.56%, a specificity of 86.89% and an AUC of 95.3% resulted.
The study described in [39] highlighted the implementation of an automatic classification
method within CEUS images, which employed the contrast agent Sonazoid, in order to
discover the presence of the Focal Liver Lesions (FLLs), such as HCC, benign and metastatic
liver tumors. The authors determined spatial, as well as temporal features, during the
arterial phase, portal phase, post-vascular phase, respectively, within max-hold images.
These data were provided to an SVM classifier, for supervised classification. The images
corresponding to 98 subjects were included in the experimental dataset, yielding, in the case
of malignant/benign structure differentiation, an accuracy of 91.8%, a sensitivity 94.0% and
a specificity of 87.1%. For HCC, benign and metastatic tumor classification, the accuracy
was 85.7%, the sensitivity was 84.4% and the specificity was 87.7%. Another approach
that performed the recognition of the liver lesions based on dynamic CEUS images was
presented in [40]. The video sequences containing the CEUS frames were processed by
a 3D CNN, which yielded spatial and temporal features. The corresponding framework
was trained using a specific dataset. This system achieved an average accuracy of 93.1%,
when the 10-fold cross-validation strategy was employed. In [41], the authors assessed a
radiomics methodology based on deep learning techniques to derive features in order to
evaluate the Progression-Free Survival (PFS), as well as the Surgical Resection (SR) of the
Radiofrequency Ablation (RFA) procedure. Another objective was that of optimizing the se-
lection of patients with incipient HCC, supposed to undergo specific treatments. The study
included the CEUS images of 419 patients, which were examined one week before the RFA
or SR procedures. Then, RFA and SR nomograms were built based on Radiomics signatures
and relevant clinical variables. This methodology led to a satisfying accuracy concerning
the targeted discrimination and predictions—the C-index being 0.736 for RFA, respectively,
0.741 for SR. The CEUS technology was also involved in the detection of the colorectal liver
metastases, as illustrated in [42]. According to the clinical studies, the contrast agent led to
the discovery of a more increased number of metastases, with improved sensitivity and
specificity, in comparison with the B-mode ultrasound technology. The existing studies
highlighted that CEUS had a considerably increased sensitivity, of 80–90%, regarding the
detection of the liver metastases, comparable with the CT technology. In addition, some of
the reports demonstrated that CEUS manifested a specific sensitivity to metastases smaller
than 10 mm, improving the corresponding sensitivity by approximately 50%, compared
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with the classical US. A method that performed automatic tumor segmentation within a
dynamic sequence of CEUS images was described in [36]. A new CNN architecture, named
CEUS-Net, was defined and assessed. This network was derived from the well-known
U-Net architecture, infused with newly designed feature-re-weighted dense blocks, for se-
lecting relevant information, an attention mechanism being implemented. A multichannel
convolutional module made the learning of spatial-temporal features possible. The novel
CEUS-Net architecture was experimented in order to segment breast and thyroid lesions.
The corresponding performance, measured through the dice index, was 0.84 in the case of
the breast tumors, respectively, 0.78 for the thyroid tumors.

1.2. Automatic Recognition and Segmentation Using Multiple Image Modalities

In order to improve the automatic recognition process, the fused information derived
from multiple data categories, in particular from multiple image modalities, was employed
in both medical and real world images. Referring to medical image recognition employing
the classical approach, in [38], the objective was the recognition of the liver tumors using the
textural parameters resulted from classical, as well as from contrast-enhanced CT images.
The texture-based attributes resulted from the classical CT images were concatenated with
those obtained from the contrast-enhanced CT images. After relevant attribute selection,
a C4.5 classification method was implemented, yielding a classification accuracy over
90%. Regarding the deep learning techniques applied in the domain of medical image
recognition when considering multiple image modalities, in [43], the authors proposed a
newly defined Temporal Sequence Dual-Branch Network (TSDBN) that used both B-mode
ultrasound and CEUS images, in order to diagnose the breast tumors. A Gram matrix
was employed for performing temporal modeling of the CEUS image sequence. Then,
a Temporal Sequence Regression Mechanism (TSRM) was involved. This mechanism
represented a new method for extracting powerful features from the CEUS frames, based
on the previously defined matrix. Regarding the network structure, two separate branches
based on different ResNet versions were considered for feature extraction, within B-mode
ultrasound and CEUS images. The TSRM method was involved in order to obtain a tempo-
ral sequence relationship between the frames, also in order to design a Shuffle Temporal
Sequence Mechanism (STSM) for the temporal sequences. According to the experimental
results, the proposed methodology led to an accuracy improvement close to 4%, with
respect to the previously existing state-of-the-art approaches. Another relevant approach
was presented in [44]. The authors combined histological and immunohistochemical image
data (of type PR, ER, Her2 and Ki-67) for breast cancer diagnosis. Three basic CNN architec-
tures, VGGNet, ResNet and InceptionV3 were considered for combination and two transfer
learning strategies were adopted. The first strategy assumed to use the pre-trained DCNN
architectures for feature extraction, then the features corresponding to the five image types
were concatenated. Thereafter, the Principal Component Analysis (PCA) method was used
for dimensionality reduction, followed by a Linear Discriminant Analysis (LDA) classifier.
The second strategy assumed to provide the images of the five stain types to a multi-input
DCNN, the corresponding branches being previously trained with appropriate data. Thus,
only the weights of the last layers were adjusted, by training them with the specific data.
The first strategy performed better, a sensitivity above 89% being attained. In [26], the
authors aimed to achieve the segmentation of the sarcoma malignant tumor by combining
MRI, CT and Positron Emission Tomography (PET) images. The contour of the images in
the training set was manually delineated by the medical specialists. Three approaches are
compared: (a.) firstly, the fusion of the features individually determined on each image
type, containing multi-modal intrinsic representations of the image data was performed;
then, the result of the fusion process was provided as input to a CNN network, designed
by the authors (feature level fusion); (b.) only the parts which performed convolution
were separated within the network architecture, so that the images of each category were
individually provided and processed in parallel, by identical convolution units; then, the
results were processed by a single fully connected network, which determined the class of
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belongings (classifier level fusion); (c.) the corresponding images of various types were
provided to different CNNs, the final result being established through a majority voting
procedure (decision level fusion). Finally, the feature and classifier level fusion approaches
provided the best results, the segmentation accuracy being around 95%. The combination
of multi-modal PET images was exploited in [6]. The aim was to improve the segmentation
process, in particular concerning tumor localisation, in conditions of uncertainty and im-
precision, inherent to the nature of the images. For this purpose, the fusion of multi-tracer
PET functional medical images, combined with elements of the belief function theory, was
employed. The neighboring information derived from mono-modal images, as well as a
priori contextual knowledge, regarding the spatial resolution of the acquisition system,
were also considered. Appropriate combination rules were then applied for information
fusion. The proposed methodology provided good results on both simulated images with
various SNR ratios, as well as on medical images.

Concerning the combination of multiple image types in order to perform automatic
recognition within real-world images, relevant approaches that refer to action recogni-
tion [45], object recognition [46], and complex geomodel recognition, respectively, exist.
In [45], the authors proposed a methodology based on CNN techniques for combining
spatial and temporal information received from multiple sources. The final purpose was
that of performing action recognition. An additional feature, based on optical flow, was also
added to the original dataset. Different CNN branches were employed for each data source
and the feature maps representing the results of these CNN branches were combined by a
multiplicative fusion method. The aim was to amplify or suppress the feature activations,
based on their agreement. The obtained results were comparable with the state-of-the-art
results. In order to accurately perform object recognition, in [46], the authors employed
CNN-based techniques for exploiting both color and depth information (RGB-D data).
A two-stage cascaded network was implemented for this purpose. This network was
designed in order to perform both PCA and canonical correlation analyses. Within the first
layer, the network assimilated PCA based filters for depth and RGB. The second layer was
destined to canonical correlation analysis filter jointly learning for the two modalities, RGB
and depth. An accuracy of 91% resulted after experimenting this methodology. A study
concerning the parametrization of the complex 3D geomodels through a deep learning
methodology was described in [47]. A 3D CNN-PCA algorithm was designed for this
purpose, which employed a CNN as a postprocessor for low level PCA representation.
The CNN-PCA method yielded geological features that were consistent with the refer-
ence models. This algorithm was also applied for history matching within a bimodal
channelized system.

As it results from the above-described methods, the contrast-enhanced medical images
demonstrated very good results concerning the automatic diagnosis of both liver tumors
and other tumor types. In addition, combining multiple image modalities generally led to
significant improvements of the recognition and segmentation accuracy in both medical
and real-world images. However, no relevant approach exists that employs both B-mode
ultrasound and CEUS images for performing the automatic recognition of HCC based on
CNN architectures. We performed this in our current research, by combining the two types
of information at different levels, also involving various combination functions and the
KPCA dimensionality reduction method for this purpose. Within our preliminary research
presented in [48], we firstly analyzed the accuracy improvement due to the combination
between CEUS and B-mode ultrasound images, by employing conventional approaches,
respectively, the SAE deep learning classifier. The conventional approaches consisted of
providing the relevant textural features and the KPCA result, respectively, corresponding
to B-mode ultrasound images, CEUS images, and to the combination between B-mode
ultrasound and CEUS images at the entrances of powerful traditional classifiers. As
feature selection methods, we employed Correlation-based Feature Selection (CFS) and
Information Gain Attribute Evaluation (IGA). Regarding the traditional classifiers, we
adopted the SVM technique, the Multilayer Perceptron (MLP), and AdaBoost combined
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with decision trees. On the other hand, the SAE deep learning classifier received as
inputs the relevant textural feature sets, or the pixel intensity values of the original images.
When assessing the value of the combined B-mode ultrasound and CEUS information,
feature level fusion, classifier level fusion and decision level fusion were considered,
regarding this classifier. The best performance was achieved for the SAE classifier, when
employing feature level fusion. Other relevant papers, representative for our research,
are [9,49,50], where we performed the automatic recognition of the HCC tumors, within
B-mode ultrasound images, on various datasets, by employing advanced texture analysis
methods combined with conventional classifiers, both, respectively, CNN techniques.

1.3. Contributions

As previously stated, no relevant approach exists that performs HCC recognition
within combined B-mode ultrasound and CEUS images, through CNN-based techniques.
In addition, none of the existing approaches compare the HCC recognition performance
based on B-mode ultrasound images, with that due to CEUS images, by taking into account
CNN techniques. Within the current research work, the objective was that of assessing
the role of the CEUS images, employed individually, or in combination with B-mode
ultrasound images, concerning the HCC automatic diagnosis, by using CNN techniques.
Thus, the contributions of the current research are the following: (a.) Compare the HCC
recognition performance achieved by using B-mode ultrasound images, CEUS images,
and combined B-mode ultrasound and CEUS images, respectively, when employing CNN
architectures. (b.) Assess various CNN architectures with different parameters in order to
get the best performance in the above-mentioned situations. (c.) Experiment and evaluate
multiple methods in order to combine B-mode ultrasound images with CEUS images,
such as feature level fusion, classifier level fusion and decision level fusion; assess various
methods of feature level fusion (arithmetic mean, weighted mean and multiplication of the
input images); concerning the classifier level fusion, assess the role of various combination
modalities (concatenation, arithmetic and weighted mean, multiplication, KPCA with
different kernels), in order to combine the outputs of the convolutional parts, which corre-
sponded to CNN structures having the same architecture, as well as different architectures,
at various levels. Various types of multimodal combined classifiers resulted in this manner,
which were finally compared. (d.) Compare the role of the CNN-based techniques with
conventional approaches, based on texture analysis and traditional classifiers, in each
experimental case.

2. Materials and Methods
2.1. Background

In the context of the current research, we aim to assess the role of the CNN archi-
tectures, respectively of their combinations, regarding the automatic recognition of the
HCC tumors within combined B-mode ultrasound and CEUS images. The role of various
combination methods, including the KPCA dimensionality reduction technique, is as-
sessed in this context. Thus, within the next paragraphs, we will synthesize the theoretical
foundations corresponding to these methods.

2.1.1. Convolutional Neural Networks (CNNs)

As stated before, the CNN techniques reached, during the last decade, the top of
the most valuable methods for image classification. They are also integrated in the deep
learning techniques category, as they represent a class of feed-forward artificial neural
networks, having more than three hidden layers. They simultaneously perform dimen-
sionality reduction, image analysis and recognition. CNNs are different from other types
of neural networks, as they consist of combining multiple MLP structures, organized
in convolutional layers, employed in order to compress the data in recognized patterns
(models) [51]. A CNN induces a local connectivity model between the neurons belonging
to neighbouring layers. Thus, the entrances of the hidden units of the m-th layer are
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provided by a subset of units from the layer m-1—these units having spatially contiguous
receptive fields. Within the CNN, each convolution filter is extended upon the whole visual
field. The replicated units (the convolutional filters) have, as principal parameters, the
Weight (W) vector and the distortions (Bias (B)). At each level, the input image is convolved
with a set of K filters, having the weight vector W = {W1, W2, ..., WK}, respectively, the
biases B = {b1, ..., bK}, each of them generating a single feature map Xk, k ∈ {1, .., K}.
The corresponding features are subjected to a non-linear transform, this process being re-
peated on each convolutional layer, m, the mathematical formula being presented in (1) [21]:

Xm
k = σ(Wm−1

k Xm−1
k + bm−1

k ) (1)

In (1), Wm
k , k ∈ {1, .., k} is the vector of weights, which connects the pixels from

the layer m, having the coordinates (i, j), with the corresponding pixels from the layer
m − 1, having the same coordinates. Relevant examples of the σ() transform are the
hyperbolic tangent(tanh), respectively the sigmoid function [21]. CNN also incorporates
pooling layers, where the feature values are aggregated through a permutation invariant
function, which usually computes the average, or extracts the maximum value. These
operations target the computational complexity reduction at superior levels within the
CNN, also inducing translation invariance. Within a CNN, the Rectified Linear Unit (ReLU)
layers can be met as well, which apply unsaturated activation functions of low cost, finally
leading to the enhancement of the nonlinear properties of the CNN. The last part of the
CNN is represented by fully connected layers, which perform supervised classification, at
the end a class probability distribution being generated, with the aid of a softmax function.

Specific CNN architectures have been elaborated during the last decade, in order to
achieve the best performances regarding the image recognition task. Firstly, the LeNet and
AlexNet CNN architectures were elaborated, the latter containing seven layers and a higher
number of filters, 3 × 3, respectively 5 × 5 in size, classifying more object classes than its
ancestor. In comparison with LeNet, AlexNet employs dropout instead of regularization,
for reducing the danger of overtraining. SqueezeNet represents a smaller neural network,
having fewer parameters, but usually the same performance as the AlexNet architectures.
For increasing the efficiency, it employs fire modules consisting of a squeeze convolution
layer with only 1 × 1 filters; the data being then directed to an expanded convolutional
layer, having a mix of 1 × 1 and 3 × 3 filters [52]. The VGGNet architecture stands for a
sequential network having 21 layers, the filter size of 3 × 3 being taken into account for
all the convolutional operations, replacing also the former 5 × 5 convolutions, in order to
increase the detection accuracy of the small local features. Maxpooling layers are always
inserted between the convolutional layers. As it manages 140 milions of parameters, it has
an increased computational complexity [53]. The GoogLeNet architecture is based on the
so-called “inception” modules, which replace the sequential convolutions, performed in
separate layers, with simultaneous convolutions—a fact that considerably increases the
computational efficiency. The 1 × 1 convolutions are also employed in this context, for
dimensionality reduction. The InceptionV3 and InceptionResNetV2 architectures belong to
the same class [54]. In order to overcome the “vanishing gradient” problem, specific to deep
neural networks, the ResNet architecture implements the so-called residual connections,
assuming that, during the training process, some of the convolutional layers are being
skipped, in order to avoid the gradient vanishing problem, which might appear for the
deep networks [55]. Within the same family, the more complex DenseNet architecture
employs an increased number of residual connections (each layer receives connections from
all the preceding layers), the information flow between the CNN layers being maximized.
DenseNet also implements feature map reuse, which considerably reduces the number of
the network parameters, increasing the efficiency [56].

2.1.2. Kernel Principal Component Analysis (KPCA)

PCA represents a dimensionality reduction technique that projects the initial data
on a lower dimensional space where the main variation modes are highlighted. Mathe-
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matically speaking, PCA determines a linear mapping M, which maximizes the quantity
MTcov(X)M, where cov(X) is the covariance matrix of the dataset X. It was demonstrated
that the linear mapping matrix M is formed by the first d eigenvectors which correspond
to the highest d eigenvalues of the covariance matrix, built on the initial dataset, where
the mean value for each feature vector was subtracted. KPCA, the generalized version of
PCA, represents the transposition of PCA in a superior space, built using a kernel function.
KPCA determines the eigenvectors of the kernel matrix K, which is built by applying
the kernel function on the initial data. The mapping of the original data onto a lower
dimensional dataspace is performed according to the Formula (2) [57]:

yi = {
n

∑
j=1

α
j
1K(xi, xj), ...,

n

∑
j=1

α
j
dK(xi, xj)} (2)

In (2), αk, k ∈ {1, .., d} are the eigenvectors of the covariance matrix in the initial space,
α

j
k is the j-th element of αk, K is the kernel function, while n is the number of the instances

in the dataset. The kernel function can have different forms, such as Gaussian, polynomial
and linear, in the last case being equivalent to the classical PCA [57]. In our work, all the
three versions of KPCA were experimented, the best obtained results being depicted.

2.2. The Proposed Solution

This research article aims to assess the role of the CEUS images, respectively of the
combined B-mode ultrasound and CEUS images, concerning the automatic recognition
of HCC by employing CNN-based technology and various fusion methods, such as the
dimensionality reduction method of KPCA. The performance of the CNN techniques,
resulted in this context, is also compared with a traditional approach, based on texture
analysis and conventional powerful classifiers. A graphical schema of our methodology
is depicted in Figure 2. As it results from Figure 2, during the first phase, various CNN
architectures are employed, individually or appropriately combined, in order to assess the
role of B-mode ultrasound images, of the CEUS images, respectively of the combination
between the B-mode ultrasound and CEUS images in the automatic recognition of the
HCC tumors. In order to combine the two image modalities, specific fusion methods were
applied, at various levels: feature level fusion, assuming the combination of the original
B-mode ultrasound and CEUS image data, the fused data being provided to a single
CNN architecture; classifier level fusion, assuming the generation of multimodal combined
classifiers, resulted through the fusion of two CNN branches, separately trained with
B-mode ultrasound and CEUS data, before the fully connected or softmax layers; decision
level fusion, implying to perform the arithmetic or weighted mean between the probabilistic
results provided by two separate CNNs, trained with B-mode ultrasound, respectively
with CEUS data. The classification performance due to the combination between the
B-mode ultrasound and the CEUS images is compared with that separately obtained on
each image type.

During the second phase, the performance resulted through the CNN technology
was compared with that resulted by employing advanced texture analysis methods in
conjunction with powerful classifiers.
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Figure 2. Methodology description. Phase 0 corresponds to data preparation and preprocessing. Phase
1 assumes the assessment of the CNN-based classifiers, on B-mode US and CEUS image separately,
respectively on combined B-mode US and CEUS images, estimating the Performance Improvement
(PI) for the last case. Phase 2 consists of assessing a conventional Machine Learning (ML) approach,
based on advanced texture analysis and traditional classifiers and comparing the corresponding
performance with that obtained during Phase 1.

2.2.1. Data Preparation and Preprocessing

(1.) Description of the dataset. In order to perform the experimental assessments,
according to the above-described methodology, the B-mode ultrasound, the CEUS images
corresponding to 48 patients affected by HCC were considered. The HCC diagnostic of
these patients was confirmed either through biopsy or CT examination. The corresponding
images were acquired with the aid of a GE Logiq E9 XDclear 2.0 (General Electric, 5 Necco
Street, Boston, MA 02210, USA) ultrasound machine, using identical settings: Frequency of
6 MHz, Gain of 58, Depth of 16 cm, Dynamic Range (DR) of 111. The Sonovue (Bracco®)
agent was exploited during the CEUS examination. The CEUS images gathered during
the arterial phase were included in our dataset, in order to get a better visibility of the
HCC tumors. Pairs of CEUS and B-mode ultrasound images, which were acquired si-
multaneously, for each considered patient, were taken into account. These images were
initially provided in DICOM format. Based on the DICOM videos, images in bitmap (.bmp)
format, corresponding to separate frames, were extracted. The HCC tumors were manually
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delineated, within both CEUS and B-mode US images, by experienced radiologists, with
the aid of the VGG Image Annotator (VIA) 3.0.6 application [58].

(2.) Preparation and preprocessing steps. Firstly, within the pairs of B-mode ul-
trasound and CEUS images, which had the HCC structures manually delineated by the
radiologists, regions of interest of 51 × 51 pixels, for HCC and cirrhotic parenchyma where
HCC had evolved were automatically extracted. This algorithm localized the center of
each polygon and browsed a region of size 250 × 250 pixels around the center, using a
sliding window algorithm. Within this region, pixels representing the centers of patches
having 51 × 51 pixels in size were taken into account, with no intersection between the
corresponding patches. If the size of the intersection with the polygon surrounding HCC
was equal to 2601, the patch was integrated in the HCC class, while if the intersection
was 0, the patch was integrated in the class of the cirrhotic parenchyma on which HCC
had evolved, further denoted by PAR. The previously mentioned two classes were chosen
for comparison, as the visual aspect of the HCC and PAR tissue in ultrasound images is
very similar in many situations. The healthy liver tissue class was not included, as HCC
usually evolves on cirrhhotic parenchyma. The data was uniformly split between these
classes. Thereafter, the existing dataset was augmented by the 90, 180 and 270 rotation of
the images, resulting 1500 patches/class. These data have been further augmented during
training, through flip operations, respectively through translation operations.

2.2.2. CNN Based Methods for HCC Recognition within Combined B-Mode Mode
Ultrasound and CEUS Images

In order to perform HCC recognition within B-mode ultrasound and CEUS images,
combined under various approaches, several representative CNN architectures, well known
for their performance, were compared, such as:

(a) SqueezeNet, as a small and efficient CNN [52];
(b) VGGNet, as a classical, sequential CNN, well known for its performance [53];
(c) GoogLeNet, having an optimized CNN architecture, in comparison with its ancestors,

due to the inception modules [59];
(d) ResNet, as a deep CNN, which implements the concept of residual connections [55];
(e) An original version of GoogLeNet, however, less complex than InceptionV3 and Incep-

tionResNetV2, obtained by drawing residual connections in order to skip the last
three inception modules, aiming to improve efficiency, while reducing the gradient
vanishing danger; the residual connections were drawn from the output of each
of these inception modules, to the network output, the addition operation being
performed. In order to perform appropriate dimensionality reduction, respectively
to equalize the feature vectors, which were inputs to the same addition unit, aver-
age pooling operations and 1 × 1 convolutions have been performed, achieving
dimensionality reduction and the decrease in the number of parameters;

(f) DenseNet, as an improved version of ResNet, providing a maximized information
flow through the network, but with less parameters.

These network architectures were chosen in order to include an exhaustive set of
functional elements which were characteristic for CNNs: convolutions of various sizes,
1 × 1 convolutions, parallel convolutions, residual connections. These classifiers were
experimented separately using each image type, as well as in order to fuse the two types of
images, using the following approaches:

(1) Feature level fusion, the combination being performed directly among the data
belonging to the B-mode ultrasound and to the CEUS images;

(2) Classifier level fusion, the combination being performed using the feature maps pro-
vided by two CNN structures, separately trained on B-mode ultrasound, respectively
on CEUS data;

(3) Decision level fusion, assuming to compute the arithmetic or weighted means be-
tween the probability values yielded by two completely separated CNNs, the first
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being trained with B-mode ultrasound images and the second being trained using
CEUS images. All these methods are detailed below.

(1) Performing feature level fusion

In order to perform feature level fusion, the pixel data from the B-mode ultrasound
images, respectively from the CEUS images, was directly fused, pursuing to combine the
two types of information provided by each image modality, the first one referring to the
properties of the tissue with respect to the reflection of the ultrasounds and the second one,
to the characteristics of the vessel structure, put into evidence with the aid of the contrast
agent. The fusion of the information at this level assumed to perform the arithmetic mean,
the weighted mean, and the multiplication between the corresponding pixel values from
the two images, respectively. After multiplication of the correspondent pixel values, the
result was scaled in the appropriate interval, of [0, 255]. The weighted mean was performed
with emphasis on the CEUS images, as illustrated in (3):

w_mean(i, j) =
2 · contrast(i, j) + b_mode(i, j)

3
(3)

The schema in Figure 3 illustrates this process. In Figure 3, the CNN block stands for
the entire CNN network, including the convolutional part, the fully connected layers and
the softmax layer. HCC and PAR stand for the output probabilities for the two considered
classes, HCC and cirrhotic parenchyma on which HCC had evolved.

Figure 3. Feature level fusion.

(2) Performing classifier level fusion

The classifier level fusion was achieved by separately training the convolutional units
of two separate CNN architectures with CEUS, respectively B-mode US data, then provid-
ing the fused features to common supervised classifiers, such as fully connected and/or
softmax units. This method was adopted as the efficiency regarding the physical resources
and execution time was also targeted. In order to perform the fusion of the feature maps
provided by each of the CNN structures, the following methods were experimented: the
concatenation; the arithmetic mean, the weighted mean and the multiplication, which
were performed between the corresponding elements of the linear feature maps (feature
vectors), provided by the convolutional units; respectively, the two feature vectors were
concatenated and then KPCA was applied for dimensionality reduction. The weighted
mean was performed according to Formula (3). This procedure is depicted in Figure 4,
where the ConvNet blocks stand for the convolutional part of the network (i.e., convolu-
tional, ReLU, pooling or batch normalization layers), while the FC block stands for the fully
connected layers. The two networks involved in this process can have the same architecture
or different architectures. When combining different CNN architectures, in the case of
multiplication, arithmetic or weighted mean, since the output feature vectors had different
sizes, PCA was applied upon the larger feature vector, for dimensionality reduction, in
order to obtain the same vector size as that provided by the other network.



Sensors 2021, 21, 2202 13 of 31

Figure 4. Classifier level fusion.

(3) Performing decision level fusion

In order to combine the results provided by two completely distinct CNN-based
classifiers, the first one being trained using B-mode ultrasound images and the second
using CEUS images, a voting procedure was employed, through the computation of the
arithmetic mean, respectively weighted mean between the probability values provided
by each classifier, as shown in Figure 5. As for the weighted mean, the same procedure,
described by the formula (3) was applied. The CNN blocks (CNN1 and CNN2) represent
the entire network, including the convolutional part, the fully connected layers and the
softmax layer. CNN1 and CNN2 represent either the same CNN architecture or different
CNN architectures.

Figure 5. Decision level fusion.

2.2.3. Comparing the CNN Methods with Conventional Approaches

In order to provide a reliable comparison of the CNN performance with that due to the
traditional approaches, classical and advanced texture analysis methods were employed
for computing potentially relevant textural parameters, able to highlight the visual and
physical properties of the tissue. Then, appropriate feature selection methods were applied,
in order to determine the set of the relevant textural features, able to best separate between
the considered classes. The feature selection techniques were applied as follows: (a.) upon
the textural features computed from the B-mode ultrasound images; (b.) upon the textural
features derived from the CEUS images; (c.) upon the set of concatenated textural features,
resulted from the B-mode ultrasound and CEUS images. The values of the relevant
textural features were provided at the entrances of well-known, powerful classifiers. The
corresponding methods are detailed within the next paragraphs.

(1) Texture analysis methods

Concerning the classical techniques, the autocorrelation index [60] was determined,
for assessing the granularity of the tissue. In order to quantify the tissue structure com-
plexity, specific parameters, such as the edge frequency, edge contrast and edge orientation
variability [60], the density and frequency of the textural microstructures resulted after the
application of the Laws’ convolution filters [61] and the Hurst fractal index [15] were also
calculated. Multiresolution features, such as the Shannon entropy, determined after the
recursive, twice application of the Wavelet transform, were taken into account also [49].
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Concerning the advanced textural features, the Haralick parameters resulted from su-
perior order co-occurrence matrices were included within the feature set. The elements
of the generalized, superior order co-occurrence matrix are defined as illustrated within
Formula (4):

CD( f1, f2, . . . , fn) = #{((x1, y1), (x2, y2), . . . , (xn, yn) :

f (x1, y1) = f1, f (x2, y2) = f2, . . . , f (xn, yn) = fn,

|x2 − x1| = |
−→
dx1|, |x3 − x1| = |

−→
dx2|, . . . , |xn − x1| = |

−−−→
dxn−1|,

|y2 − y1| = |
−→
dy1|, |y3 − y1| = |

−→
dy2|, . . . , |yn − y1| = |

−−−→
dyn−1|,

sgn((x2 − x1)(y2 − y1)) = sgn(
−→
dx1 ·

−→
dy1), . . . ,

sgn((xn − x1)(yn − y1)) = sgn(
−−−→
dxn−1 ·

−−−→
dyn−1))} (4)

According to Formula (4), an element of a superior order, Generalized Co-occurrence
Matrix (GCM) computes the number of the n-tuples of pixels which have the values f1, f2,
f3,. . . , fn for a certain feature f , being in a spatial distribution defined by the displacement
vectors, illustrated in (5):

−→
d = ((

−→
dx1,
−→
dy1), (

−→
dx2,
−→
dy2), . . . , (

−−−→
dxn−1,

−−−→
dyn−1)) (5)

In (4), the symbol # stands for the cardinality of the set, referring to the number
of elements, each element being represented by an n-tuple of pixels (group of n pixels),
having the coordinates (x1, y1), (x2, y2), . . . , (xn, yn), always being in a specific spatial
configuration, as provided by the displacement vectors, according to (5). A certain local
feature, denoted by f , is taken into account, being measured in each point, having the
values f1, f2, . . . , fn, corresponding to each pixel in the n-tuple. This local feature can refer
to the intensity value of the pixel, to the value resulted after applying a convolution filter
for edge detection, to an edge orientation value, or to a label obtained after applying a
clustering algorithm.

In our case, the feature f was associated with the intensity values of the pixels, the
second and third order GLCM being determined. Thereafter, the corresponding Haral-
ick features were computed, such as the local homogeneity, the energy, the entropy, the
correlation, the contrast and the variance, considered able to reveal the differences in
heterogeneity, granularity and gray level complexity between the two region of interest
types, corresponding to the compared tissue classes [60]. In the case of the second order
GLCM, the module of the corresponding displacement vectors was considered as having
the value 1, while the direction varied between 0◦ and 360◦, being always a multiple of
45◦. Finally, the Haralick features were computed as the arithmetic mean of the individual
values, for each of the GLCM matrices, which corresponded to each combination of param-
eters. In the case of the third order GLCM, the three considered pixels were either collinear,
or they formed a right angle triangle, the current pixel being always in the central position,
as described in [9]. As in the previous case, the Haralick features were computed for each
configuration, then their values were averaged.

All the textural features were computed on the regions of interest (HCC and PAR
patches), independently on orientation, illumination and region of interest size.

(2) Feature selection methods

Concerning the feature selection techniques, two representative methods, which
provided the best results in our previous work, were taken into account, being shortly
presented below:

(a) The Correlation-based Feature Selection (CFS) is a feature selection method that
evaluates attribute subsets by computing, for each possible subset, a merit, with
respect to the class parameter. Thus, the features from the subset were considered
relevant if they were strongly correlated with the class parameter and weakly
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correlated with the other features [62]. CFS was employed together with the Best
First Search algorithm, which generated an appropriate set of feature subsets to be
assessed [63].

(b) The method of Gain Ratio Attribute Evaluation assessed the individual attributes
Ai, i = 1, . . . , m (m being the number of attributes), by associating them with a
gain ratio. This ratio emphasized the decrease in the class entropy after observing
the attribute Ai, reported to the entropy of Ai within the whole dataset [62]. This
method was employed in conjunction with the Ranker method [63]. In the case
of CFS, the feature subset corresponding to the most increased merit was taken
into account, while for the Gain Ratio Attribute Evaluation technique, the first
ranked attributes with a gain ratio above 0.15 were considered. The union of
the relevant feature subsets, provided by each individual method, was finally
considered—the corresponding values being provided as inputs to the conventional
classification methods.

(3) Conventional classification techniques

Aiming to assess the ability of the textural features for discriminating, in each ex-
perimental case, between the two considered classes, HCC and PAR, powerful classifiers
and meta-classifiers, which provided the best results in our former experiments, were
taken into account, as follows: (a.) the SVM classifier, which demonstrated its efficiency in
many state-of-the-art approaches [13], with various kernel types: Radial Basis Function
(RBF) kernel, respectively polynomial kernel; (b.) the MLP classifier, with up to three
hidden layers and different number of nodes within each layer, the best such architecture
being chosen [49]; (c.) the AdaBoost technique in conjunction with the C4.5 algorithm for
decision trees, a representative meta-classifier, well known for its performance [49]; (d.) the
Random Forest (RF) meta-classifier, which employs ensembles of decision trees, in order
to gain an increased classification performance [49].

The learning parameters and classifier structures were varied in each case, the best
configurations being adopted. In order to assess the classification performance, the following
metrics, derived from the confusion matrix, were taken into account: the recognition
rate (accuracy), the sensitivity, the specificity and the Area under the Receiver Operating
Characteristics (AUC). The classification accuracy, also called recognition rate, estimates
the number of the correctly classified instances reported to the total number of instances in
the training set, performing a global evaluation of the correctness of the classifier result.
The True Positive Rate (TPR) or the sensitivity, assesses the numerical fraction between
the correctly classified instances from the positive class and the total number of instances
from the positive class [61]. Usually, when working with medical data, the positive class
is considered that which represents the targeted affection. Thus, the sensitivity estimates
the capability of a certain classifier to correctly identify the presence of that affection. The
True Negative Rate (TNR) or the specificity assesses the classifier regarding the correct
identification of the negative class (associated with the absence of the affection). If the
specificity is high, the probability to erroneously diagnose a certain disease is low. Both
the sensitivity and the specificity are important in the context of cancer diagnosis, leading
to an increased probability to reach the disease when it is present, respectively to a low
probability to send the patient to a harmful treatment when it is not actually needed. The
ROC curve represents the plot of the sensitivity versus 1-specificity, which is equivalent
with plotting the TPR, represented on the vertical axis, versus the FPR represented on the
horizontal axis. Thus, ROC illustrates the trade-off between the true positives, standing
for the benefits and the false positives, representing the costs, the performance of a certain
classifier being in direct relation with the area under this plot [61].

3. Experiments

The CNN techniques were employed within the Matlab 2020 environment, using
the Deep Learning Toolbox [64]. During training, the Stochastic Gradient Descent with
Momentum (SGDM) strategy was adopted, with a small enough learning rate (0.0002),
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a momentum of 0.1, a minibatch size of 25, the duration of the training process being
set to 70 epochs. The values of the above-mentioned hyperparameters were chosen to
achieve a refined and efficient learning process and simultaneously to avoid overtraining
(the learning rate, momentum and the number of epochs), also taking into account the
memory requirements (the minibatch size). The corresponding functions of the Deep
Learning Toolbox and the specific CNN structures, squeezenet, googlenet, vgg16, resnet18 and
densenet201 were exploited. These networks were pretrained using the ImageNet dataset;
then, the training was refined using the specific data from the B-mode ultrasound and
CEUS images. In addition, the last layer of these networks was reshaped to provide only
two output features, corresponding to the HCC and PAR classes. The method of KPCA was
employed with the aid of the Matlab–Kernel–PCA toolbox [65]. The linear, third degree
polynomial and Gaussian kernels were experimented.

ROC analysis was performed in Matlab also. In order to perform ROC curve repre-
sentation, the perfcurve function was employed. This function needed three arguments:
the label vector, the score vector and the reference to the positive class. The labels were
converted to numeric values of type double, the score vector contained the probabilities for
the positive class, a single numeric value being employed in order to refer to the positive
class. The score vector resulted as output of the classify or predict functions. In order to
simultaneously determine multiple ROC curves in a time-efficient manner, the trained
versions of the CNN classifiers, previously saved on the disk, were loaded, the test set
was provided at the input of each classifier in order to determine the score vector, then
the perfcurve function was applied appropriately. For decision level fusion, the arithmetic
mean of the two score vectors, corresponding to each of the combined CNN classifier, was
computed, then this value was provided as the second argument of the perfcurve function.
The ROC curves corresponding to multiple classifiers were superimposed on the same
figure, with the aid of the plot functions and hold on statements.

The textural attributes (41 features) determined by our Visual C++ software modules
were included in the experiments.

The feature selection techniques and the conventional classification methods were
employed using the Weka 3.8. library [63]. Regarding the feature selection methods, the
CfsSubsetEval(CFS) method was implemented with BestFirst search, while the GainRa-
tioAttributeEval was employed in conjunction with the Ranker search technique. As for
the conventional classifiers, the John Platt’s Sequential Minimal Optimization (SMO) al-
gorithm [63] for SVM was assessed—the best performance resulting for the polynomial
kernel, of 3rd or 5th degree. The MLP technique was implemented as well, a momentum
of 0.8, a learning rate of 0.2 and a training time of 500 epochs being considered, in order to
achieve a refined learning process, to avoid overtraining, and to rich convergence. Different
architectures, with one, two and three hidden layers, each of them with a number of nodes
provided by the arithmetic mean between the number of classes and the number of features
were assessed. The AdaBoost metaclassifier was evaluated for 100 iterations, in conjunction
with the J48 method, the equivalent of the C4.5 algorithm in Weka. The Random Forest (RF)
method of Weka, with 100 iterations and batch size 100, which provided the best results in
our former experiments [49], was experimented as well.

All these experiments were performed on a computer having an i7 processor of
2.60 GHz, 8 GB of internal (RAM) memory and an Nvidia Geforce GTX 1650 Ti GPU.
Regarding the performance evaluation strategy, for the CNN methods, 60% of the data con-
stituted the training set, 15% of the data stood for the validation set and 25% of the data
was included in the test set. Concerning the traditional classification techniques, 75% of
the data was included in the training set and 25% of the data constituted the test set.

4. Results
4.1. CNN Assessment on CEUS and B-Mode Ultrasound Images

Firstly, the proposed CNN architectures were assessed on CEUS and B-mode ultra-
sound images, separately. The results that correspond to the CEUS images are depicted in
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Table 1. The highest value for each column is emphasized with bold characters. As can
be noticed, the best accuracy, of 91.6%, the best sensitivity, of 93.5%, the highest AUC, of
92.04%, were obtained for the ResNet architecture, the best specificity, of 94.1%, resulting
for the DenseNet architecture. The GoogLeNetV1 classifier achieved an accuracy of 86.7%,
which was superior to the accuracy of the SqueezeNet and standard GoogLeNet architec-
tures, but also closed to that of VGGNet, while the training time of 136 min and 48 s was
more decreased than the training time of VGGNet (200 min).

Table 1. The values of the performance parameters obtained when providing the CEUS images at the
Convolutional Neural Network (CNN) inputs.

CNN Acc (%) Sens (%) Spec (%) AUC (%)

SqueezeNet 85.7 80.5 91.4 86.38
GoogLeNet 86.2 86.4 86.1 86.25

GoogLeNetV1 86.7 80.9 91.5 86.23
ResNet 91.6 93.5 90.5 92.04

VGGNet 87.4 85.8 88.9 87.39
DenseNet 90.9 86.9 94.1 90.71

The results obtained when providing the B-mode ultrasound images at the CNN
inputs are depicted in Table 2. The best accuracy, of 90.5%, was obtained in the case of the
ResNet architecture, the best sensitivity, of 95.2%, and the best AUC, of 90.4%, resulted
in the case of VGGNet, while the best specificity, of 94.3%, resulted in the case of the
GoogLeNetV1 architecture. It can be also remarked that, in the case when providing the
CEUS images at the CNN inputs, the results were always superior than in the situation
when the B-mode ultrasound images were employed.

Table 2. The values of the performance parameters obtained when providing the B-mode ultrasound
images at the CNN inputs.

CNN Acc (%) Sens (%) Spec (%) AUC (%)

SqueezeNet 82.9 91.2 80.7 86.35
GoogLeNet 84.4 89.3 82.9 86.25

GoogLeNetV1 85.8 67.7 94.3 83.86
ResNet 90.5 84.3 94 89.52

VGGNet 87.2 95.2 84.7 90.4
DenseNet 90.3 84.3 93.5 89.23

4.2. CNN Assessment on Combined CEUS and B-Mode Ultrasound Images
4.2.1. Feature Level Fusion

The results achieved in the case of feature level fusion are illustrated within Table 3. It
results that in the case when the arithmetic mean was employed, the best accuracy, of 93.2%,
and the best AUC, of 93.2%, were obtained for DenseNet, the best sensitivity, of 93.6%, was
obtained for GoogLeNet, the best specificity, of 95%, was achieved for VGGNet. When
considering the weighted mean as the fusion method, the best accuracy, of 92.6%, and the
best AUC, of 93.01%, were obtained for DenseNet, the highest senitivity, of 96.1%, resulted
for ResNet, while the highest specificity, of 96.3%, resulted for GoogLeNetV1. In most of the
cases, for the SqueezeNet, GoogLeNet and VGGNet classifiers, the classification accuracy
values resulted for the weighted mean strategy were superior to those obtained for the
arithmetic mean strategy, for the same classifiers, but in the case of the CNN architectures
involving residual connections, the accuracy values were superior when employing the
arithmetic mean combination method. However, no significant differences were noticed
between the results achieved in the case of arithmetic mean employment and weighted
mean employment, respectively. When considering the multiplication as a feature level
fusion method, the highest accuracy, of 94.7%, the best sensitivity, of 96.4%, as well as the
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most increased AUC, of 94.89%, were obtained for the DenseNet technique, while the most
increased specificity, of 96.1%, resulted for the ResNet architecture. As can be noticed, the
results obtained for multiplication are superior to the other feature level fusion cases. Thus,
the multiplication emphasized those pixels which had, in both B-mode and CEUS images,
either increased or decreased intensity values, corresponding to actively growing tumour
tissue or to the necrosis regions. Eloquent examples of HCC and PAR patches, obtained in
each case of feature level fusion, by performing the above-mentioned operations upon the
B-mode ultrasound and CEUS images, are illustrated in Appendix A.

Table 3. The values of the classification performance parameters for CNNs when performing feature
level fusion.

Fusion CNN Acc (%) Sens (%) Spec (%) AUC (%)

Arithmetic SqueezeNet 87 88.7 85.2 87
mean GoogLeNet 87.6 93.6 80.9 87.86

GoogLeNetV1 87.9 84.5 85.1 84.80
ResNet 92.6 91.2 94.2 92.74
VGGNet 91.6 89 95 92.15
DenseNet 93.2 93.4 93 93.2

Weighted SqueezeNet 87.5 88.1 87.1 87.6
mean GoogLeNet 88.9 88.1 89.7 88.9

GoogLeNetV1 88.4 67.1 96.3 84.65
ResNet 90.9 96.1 86.6 91.73
VGGNet 92.3 89.1 94.2 91.76
DenseNet 92.6 95.9 89.8 93.01

Multiplication SqueezeNet 88.8 89.5 88.2 88.6
GoogLeNet 88.9 91.2 87.1 89.22
GoogLeNetV1 88.9 70.4 95.3 85.02
ResNet 94.5 92.5 96.1 94.36
VGGNet 92.3 88.7 95.4 92.24
DenseNet 94.7 96.4 93.3 94.89

4.2.2. Classifier Level Fusion

In the case of classifier level fusion, for each considered CNN architecture, the features
obtained at the output of the last layer, preceding the classification layers (fully connected or
softmax), were usually taken into account, as described below.

(a) In the case of SqueezeNet, the following feature vectors were taken into account: the
output of the last layer, “pool10” having the size of 2; the feature vector obtained
at the output of the previous layer, “relu_conv10”, of size 392 (14× 14× 2); the
concatenation of these two feature vectors (size 394).

(b) In the case of GoogLeNet, the feature vector of size 1024 (1× 1× 1024) obtained
at the output of the “pool5-drop_7X7_s1” layer, preceding the fully connected
layer, was considered; the same for the modified version of GooLeNet, denoted by
GoogLeNetV1, but the output was of size 528.

(c) In the case of ResNet18, the output of the “pool5” layer, of size 512 (1× 1× 512),
preceding the fully connected layer, was taken into account.

(d) In the case of VGG16, the output of the “drop7” dropout layer, of size 4096 (1× 1×
4096), preceding the fully connected layer, was retained.

(e) As for DenseNet201, the output of the “avg_pool” layer, of size 1920 (1× 1× 1920),
preceding the fully connected layer, was considered.

Thereafter, the supervised classification layer was implemented as a feedforward net-
work, softmax function, or fitececoc function, the Matlab equivalent of SVM, the best obtained
results being depicted.

The values of the corresponding performance parameters are presented within Table 4.
The highest values obtained for each performance parameter, for each fusion method,
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are emphasized. Thus, in most of the situations, the best performance resulted for the
concatenation, respectively for the arithmetic and weighted mean.

KPCA led to the best values of the performance parameters when either the linear
kernel or the 3rd degree polynomial kernel was considered. In the case of SqueezeNet, when
taking into account the feature vector obtained as the output of the “relu_conv10” layer, the
highest specificity, of 93.61%, resulted in the case of KPCA, for the 3rd degree polynomial
kernel. In addition, a satisfying classification performance (accuracy above 83%), in the case
when employing KPCA as a combination method, resulted for the SqueezeNet, GoogLeNet
and VGGNet architectures.

A more detailed comparison regarding the combination methods employed in order
to perform classifier level fusion is depicted in Appendix B.

Regarding the comparison between the considered CNN architectures, the best accu-
racy, of 97.25%, the best specificity, of 97.58%, and the best AUC, of 97.22%, resulted for
the hybrid multimodal-combined classifier, obtained by combining a DenseNet branch,
pretrained with CEUS images, respectively a ResNet branch, pretrained with B-mode
ultrasound images, when the concatenation fusion method was implemented, while the
best sensitivity, of 97.11%, was achieved for the alternative hybrid combined multimodal
classifier, resulted from a ResNet branch, pretrained with CEUS images, respectively from
a DenseNet branch, pretrained with B-mode ultrasound images, when the concatenation,
was adopted. Thus, the fusion, at classifier level, between the best performing architectures,
DenseNet and ResNet, was experimented, leading to very good results, as illustrated in
Table 4. In the case of the new GoogLeNetV1 architecture, an obvious increase in perfor-
mance was noticed for classifier level fusion, in the cases of arithmetic mean, concatenation,
and multiplication. The values of the classification performances in these cases was su-
perior to those obtained for GoogLeNet and SqueezeNet, while in the cases of arithmetic
mean, weighted mean and multiplication, the values of these parameters were superior
to the values resulted for ResNet, in the same situations. These results were superior to
those attained separately on CEUS and B-mode ultrasound images, when applying the
considered CNN-based techniques, but also to the feature level fusion case.

Table 4. The values of the classification performance parameters for CNNs when performing classifier
level fusion.

CNN Fusion Acc (%) Sens (%) Spec (%) AUC (%)

SqueezeNet Concatenation 93.77 91.34 95.81 93.66
“pool10” Arithm.mean 92.57 90.55 94.27 92.47

Weight.mean 94.13 91.86 96.04 94.03
Multiplication 88.38 80.58 94.93 88.55

SqueezeNet Concatenation 88.02 87.93 88.1 88.02
“relu_conv10” Arithm.mean 88.62 86.09 90.75 88.50

Weight.mean 89.82 91.86 88.11 90.04
Multiplication 83.71 82.41 84.80 83.63
KPCA(Poly 3rd dgr) 87.78 80.84 93.61 87.84

SqueezeNet Concatenation 87.90 88.45 87.44 87.95
“relu_conv10” Arithm.mean 90.06 89.50 90.53 90.02
+ “pool10” Weight.mean 89.46 87.66 90.97 89.36

Multiplication 84.79 83.99 85.46 84.73
KPCA(Poly 3rd dgr) 89.46 87.93 90.75 89.37

GoogLeNet Concatenation 90.1 86.3 96 91.2
“pool5_drop_7x7_s1” Arithm.mean 89.1 88.2 90.3 89.2

Weight.mean 91.6 95.6 86.9 82.3
Multiplication 84.6 91 76.9 84.4
KPCA (Linear) 83.7 81.1 85.9 83.2
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Table 4. Cont.

CNN Fusion Acc (%) Sens (%) Spec (%) AUC (%)

GoogLeNetV1 Concatenation 91.86 91.08 92.51 91.8
“pool5_drop_7x7_s1” Arithm.mean 92.1 91.34 92.73 93.75

Weight.mean 90.06 90.03 90.09 90.06
Multiplication 91.74 90.29 92.95 91.89
KPCA (Linear) 75.3 80.3 71.0 65.79

ResNet Concatenation 92.2 90.9 93.9 92.1
“pool5” Arithm.mean 87.3 89.9 84.5 87.3

Weight.mean 81.9 83.3 80.3 82.3
Multiplication 88.9 88.8 88.9 89.2
KPCA (Linear) 76.9 80.1 74.2 77.1

VGGNet Concatenation 92.8 96.9 87.9 92.75
“drop7” Arithm.mean 93.9 96 91.3 93.75

Weight.mean 92 94.1 89.5 91.89
Multiplication 92.46 92.39 92.51 92.45
KPCA (Linear) 90.7 90.8 90.5 90.65

DenseNet Concatenation 87.7 87.9 87.4 87.80
“avg_pool” Arithm.mean 88.6 91 85.8 88.50

Weight.mean 80.23 60.12 83.45 73.04
Multiplication 81.4 80.19 82.5 81.36
KPCA (Linear) 75.9 72.3 72.8 72.55

DenseNet + ResNet Concatenation 97.25 96.85 97.58 97.22
“avg_pool” Arithm.mean 85.12 84.25 80.65 95.75
+”pool5” Weight.mean 80.23 60.12 83.45 73.04

Multiplication 81.4 80.19 82.5 81.36
KPCA (Linear) 75.9 72.3 72.8 72.55

ResNet + DenseNet Concatenation 96.53 97.11 96.04 96.58
“pool5” Arithm.mean 80.26 84.78 63.91 93.75
+”avg_pool” Weight.mean 80.11 78.47 81.12 79.82

Multiplication 80.6 78.8 81.53 80.19
KPCA (Linear) 73.1 74.2 73.1 73.65

4.2.3. Decision Level Fusion

The values of the classification performance parameters corresponding to decision
level fusion are depicted within Table 5. It can be observed that the performance was
the best, in most of the situations, when the arithmetic mean was adopted as a decision
level combination technique. The best performing methods, ResNet and DenseNet, were
also combined with each other, constituting the branches of the fused classifiers, in the
following manner: the DenseNet classifier trained on CEUS images was combined with
the ResNet classifier trained on B-mode ultrasound images and also the ResNet classifier
trained on CEUS images was combined with the DenseNet classifier trained on B-mode
ultrasound images. Thus, when taking into account the arithmetic mean as a decision level
fusion method, in the case when the same architecture was involved in the decision level
fusion, the best accuracy, of 97.49%, the best sensitivity, of 96.59%, the highest specificity, of
98.24%, as well as the highest AUC, of 97.43%, were achieved for DenseNet. However, in
the situation when fusing the DenseNet classifier trained on CEUS images with the ResNet
classifier trained on B-mode ultrasound images, an accuracy of 98.20%, a sensitivity of
98.16%, a specificity of 98.24% and an AUC of 98.20% were obtained, which were superior
to the values of the performance parameters obtained in all the other cases. When the
weighted mean was considered as the decision level fusion technique, the most increased
accuracy, of 96.77%, the highest sensitivity, of 97.64%, as well as the highest AUC, of
96.85%, resulted for the case when the DenseNet CNN architecture was combined with
itself; the best specificity, of 99.54%, was attained when fusing the GoogLeNetV1 classifier
with itself. The overall performance results in this case were superior to those achieved
when providing the CEUS, respectively the B-mode ultrasound images separately, at the
entrances of the CNN-based classifiers. In addition, the best values of the classification
performance parameters were higher than those resulted in the case of feature level fusion,
as well as in that of classifier level fusion.
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Table 5. The values of the classification performance parameters for CNNs when performing decision
level fusion.

Fusion CNN Acc (%) Sens (%) Spec (%) AUC (%)

Arithmetic SqueezeNet 92.69 91.08 94.05 92.6
mean GoogLeNet 93.89 91.08 96.26 93.78

GoogLeNetV1 86.19 65.35 98 85.45
ResNet 97.37 96.33 98.24 97.3
VggNet 95.21 92.13 97.8 95.11
DenseNet 97.49 96.59 98.24 97.43
DenseNet + ResNet 98.20 98.16 98.24 98.20
ResNet + DenseNet 96.77 95.01 98.24 96.67

Weighted SqueezeNet 91.62 91.08 92.07 91.58
mean GoogLeNet 92.10 89.76 94.05 91.99

GoogLeNetV1 85.45 56.73 99.54 82.10
ResNet 95.81 95.01 96.48 95.75
VggNet 92.93 91.08 94.49 92.83
DenseNet 96.77 97.64 96.04 96.85
DenseNet + ResNet 92.81 95.8 90.31 93.18
ResNet + DenseNet 95.45 93.44 97.14 95.35

4.3. Comparisons with Conventional Approaches
4.3.1. Texture Analysis and Recognition on CEUS, and B-Mode Ultrasound Images

The values of the classification performance parameters, resulted after applying
texture analysis methods in conjunction with conventional classifiers, upon CEUS images,
are presented in Table 6. As can be seen in Table 6, the best accuracy, of 82.1%, the best
sensitivity, of 91.5%, as well as the highest specificity, of 72.5%, resulted for the AdaBoost
metaclassifier combined with decision trees (J48), while the best AUC, of 88.1%, was
obtained for the RF classifier. These results are inferior to those achieved with the CNN-
based techniques on the same CEUS dataset.

Table 6. The values of the classification performance parameters for texture analysis methods
combined with conventional classifiers, obtained on CEUS images.

Classifier Acc (%) Sens (%) Spec (%) AUC (%)

RF 79.25 90.7 66.7 88.1
SVM(poly 3rd dgr) 79.3 89.1 69.8 79.3
MLP 79.5 88.7 70.3 86.4
AdaBoost + J48 82.1 91.5 72.5 87

The classification performance achieved when providing, at the entrances of the
conventional classifiers, the values of the relevant textural features derived from the B-
mode ultrasound images are illustrated in Table 7. Thus, the best accuracy, of 75.1%, the
highest sensitivity, of 90.1%, and the most increased AUC, of 83%, were attained in the case
of the RF classifier, while the best specificity, of 60.3%, resulted for the MLP classifier. As
can be noticed, these results are inferior to those obtained on the same B-mode ultrasound
images, when employing the CNN-based techniques, being also inferior to those achieved
in the case of the CEUS images, when employing the conventional approach.



Sensors 2021, 21, 2202 22 of 31

Table 7. The values of the classification performance parameters for texture analysis methods
combined with conventional classifiers, obtained on B-mode ultrasound images.

Classifier Acc (%) Sens (%) Spec (%) AUC (%)

RF 75.1 90.1 60.2 83
SVM(poly 5th dgr) 65.3 88.2 50.2 65.9
MLP 73.1 85.4 60.3 75.2
AdaBoost + J48 73.4 87.2 59.7 77.8

4.3.2. Texture Analysis and Recognition on Combined CEUS and B-Mode
Ultrasound Images

The values corresponding to the classification performance parameters, obtained after
applying the conventional approach described within Section 2.2.3, upon the combination
of CEUS and B-mode ultrasound images, are depicted in Table 8. The highest accuracy, of
87.1%, as well as the best sensitivity, of 98.2%, were achieved in the case of the AdaBoost
metaclassifier, the best specificity, of 76.2%, resulted for the MLP classifier, while the most
increased AUC value, of 95.1%, was obtained for the RF classifier. These results were gener-
ally inferior to those obtained for the same dataset, when applying CNN-based techniques,
but they were superior to those obtained when employing the considered conventional
approach, on CEUS, respectively on B-mode ultrasound images, separately. However, the
best accuracy, of 87.1%, obtained for the AdaBoost metaclassifier, was comparable to that
resulted in the case of SqueezeNet, when the combination methods of arithmetic mean and
weighted mean, respectively, were applied for feature level fusion. Additionally, the best
sensitivity, of 98.2%, resulted for the same conventional classifier, overpassed the sensitivity
values obtained by employing the CNN technique, while the AUC value was comparable
with those achieved for the CNN-based method, in all the experimental situations. Regard-
ing the relevant textural features resulted in this case, those computed based on the CEUS
images played a major role, such as: the Haralick parameters derived from the GLCM
matrices, as well as the entropy computed after the recursive application of the Wavelet
transform, emphasizing the complex, chaotic character of the HCC tissue, also differences
in structural complexity between the HCC and PAR classes. The autocorrelation index was
also part of this relevant textural features set, indicating differences in granularity between
the two considered tissue types.

Table 8. The values of the classification performance parameters for texture analysis methods
combined with conventional classifiers, obtained on combined CEUS and B-mode ultrasound images.

Classifier Acc (%) Sens (%) Spec (%) AUC (%)

RF 84.35 95.6 73.1 95.1
SVM(poly 1st dgr) 83.11 94.0 72.1 83.2
MLP(a) 81.5 87 76.2 90.2
AdaBoost + J48 87.1 98.2 74.1 93.3

5. Discussion

As can be seen in the results from the previous section, the combination between the
CEUS and B-mode ultrasound images led to significant classification improvement, in
comparison to the case when the CEUS and the B-mode ultrasound images were separately
taken into account, respectively. The best classification performance resulted in the case of
the hybrid multimodal combined classifiers, when performing decision level fusion, by
combining the DenseNet branch, pretrained using CEUS images, with the ResNet branch,
pretrained with B-mode ultrasound images. A classification accuracy above 98% was
achieved in this case. A detailed comparison regarding the best values of the classification
accuracy, obtained for each fusion level, for each employed CNN architecture or multi-
modal combined classifier, is depicted in Figure 6. Within this figure, it can be noticed that
the accuracy values obtained for the CEUS images were slightly better than those resulted
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for the B-mode ultrasound images, while the adopted combination schemes were obviously
superior to these cases from the accuracy point of view. Thus, the best performance resulted
for the decision level fusion schemes, followed by the classifier level fusion schemes, then
by the feature level fusion schemes. Regarding the performance of the CNN architectures,
the structures involving residual connections, ResNet, and DenseNet, respectively, led
to the best results. Additionally, the hybrid multimodal combined classifiers, resulted
through the combination between the DenseNet and ResNet branches generated a signif-
icant performance improvement, both for classifier and decision level fusion, especially
when the DenseNet branch was pretrained with CEUS images and the ResNet branch
was pretrained with B-mode ultrasound images. The GoogLeNetV1 architecture provided
satisfying accuracy, slightly better than the usual GoogLeNet architecture and sometimes
close to those provided by the VGGNet architecture, the specificity having very high values
in all these cases. An obvious increase in performance for this architecture resulted in the
case of classifier level fusion, when the outputs of different inception modules, for both
CEUS and B-mode ultrasound images, were fused in various manners.

Figure 6. Comparison of the classification accuracy values achieved by the considered CNN architec-
tures, for each fusion strategy.

Within Table 9, the values of the classification performance parameters assessed on
the validation set, for our best performing CNN classifiers, are depicted. These values are
almost similar to those illustrated previously (within Section 4), which were evaluated on
the test set, confirming the already resulted performance, for feature level fusion, classifier
level fusion and decision level fusion, respectively.

Table 9. The values of the performance parameters obtained on the validation set for the best
performing multimodal classifiers.

Img. Modality CNN Classifier Acc (%) Sens (%) Spec (%) AUC (%)

CEUS ResNet 92.02 89.52 94.12 91.91

B-mode US ResNet 90.95 88.07 92.43 90.33

Feature level DenseNet
fusion (multiplication) 93.7 97.2 90.8 94.18

Classifier level DenseNet + ResNet
fusion (concatenation) 97.21 95.20 98.90 97.11

Decision level DenseNet + ResNet
fusion (arithmetic mean) 98 96.94 98.90 97.94

The overall comparison between the best accuracy values obtained for the CNN-
based classifiers, respectively those resulted for the classical approach, involving advanced
texture analysis methods and conventional classifiers, is depicted in Figure 7. It can be
observed that, in the case of the CNN classifier, the best obtained accuracy was superior, in
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all cases, for B-mode ultrasound images and CEUS images separately, respectively for the
fusion between the CEUS and B-mode ultrasound images. For each class of techniques,
the best accuracy resulted in the case of the fusion between CEUS and B-mode ultrasound
images, followed by the case when only the CEUS images were employed, then by the
situation when the B-mode ultrasound images, or the relevant textural features derived
from these images were provided at the classifier inputs.

Figure 7. Comparison of the classification accuracy values achieved in each case by the CNN-based
techniques or through the conventional approach.

Within Figure 8, the ROC curves for the best performing classifier, for each considered
experimental case (CEUS and B-mode ultrasound image with separate employment; feature
level fusion, classifier level fusion and decision level fusion), can be compared. Thus, the
best ROC curves, having the most increased area below, were those corresponding to
feature level fusion by multiplication (DenseNet) and to classifier level fusion (DenseNet +
ResNet), respectively. Additionally, the ROC curve corresponding to the situation when
only the CEUS images were employed, with the aid of the ResNet architecture, was superior
to that corresponding to the case when the B-mode ultrasound images were separately
exploited (ResNet), while the ROC curve corresponding to the decision level fusion case
(DenseNet + ResNet) was better than the first.

Figure 8. Comparison of the ROC curves for the best classifiers.

The activation maps corresponding to the best performing classifiers, generated for
both HCC and PAR patches, are illustrated in Figure 9. They were achieved by taking into
account the output of the last layer (dropout, pooling, ReLu or combined), preceding the
fully connected or softmax layer, which was transposed into a grayscale image of appropri-
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ate size. Thus, in the cases when the B-mode ultrasound and CEUS images were separately
employed, the output, a feature vector of length 512, was provided by the last pooling
layer of the ResNet architecture (“pool5”) and was transposed in a grayscale image having
16× 32 pixels in size; in the case of feature level fusion, as the best performing classifier
was DenseNet, the output was acquired from the last average pooling layer (“avg_pool”),
a vector with 1920 elements, which was transposed into a grayscale image having 32× 60
pixels in size; in the case of classifier level fusion, the displayed image, having 32× 76
pixels in size, resulted from the concatenation of the output of DensNet (“avg_pool”), pre-
trained with CEUS images, with the output of ResNet (“pool5”), pretrained with B-mode
ultrasound images. It can be remarked that, in the case of HCC, the corresponding intensity
pattern is more heterogeneous and has a better contrast, in comparison with the case of
the PAR class, these differences being more emphasized in the case of B-mode ultrasound
images, respectively in that of classifier level fusion. They confirm the a priori known
properties, of in-homogeneity and structural complexity, of the HCC tumor tissue. These
maps can stand as the basis for a newly defined model of HCC, following the previously
defined textural model, described in [9].

Figure 9. The activation maps of the best performing classifiers: (a.–d.)—the class of HCC for B-mode
US and CEUS input (ResNet), respectively for feature level fusion (DenseNet, multiplication) and
classifier level fusion (DenseNet + ResNet); (e.–h.)—the class of PAR, for the same cases

Comparisons with Other State-of-the-Art Results

Considering the relevant state-of-the-art approaches that concern the automatic
recognition within medical images using multiple image modalities, illustrated within
Section 1.2, our solution mostly resembles the one presented in [44]. Thus, in [44], the
authors perform only classifier level fusion, in order to automatically recognize breast
cancer, based on five types of histological and imunohistochemical image data. Three
standard CNN architectures were taken into account: VGG16, InceptionV3, and ResNet50,
respectively. As stated in [44], the best performing solution consisted of training the CNNs
on the five image modalities, which were then combined, at classifier level, by applying
the PCA method on the concatenated vector of the resulted activations. The result of
PCA was then provided as input to a LDA classifier. Concerning the combined classifiers
presented in [44], each combination always involved the same CNN architecture. In order
to compare our solution with the previously mentioned approach, in the same conditions,
we employed the InceptionV3, ResNet50 and VGG16 architectures from the Matlab Deep
Learning toolbox [64], which were pretrained on our B-mode ultrasound and CEUS data.
The corresponding activation maps were then concatenated and the linear PCA method
was applied, the result being provided as argument to the fitcdiscr function, the Matlab
equivalent of LDA classifier. The performance was assessed on the test set and compared
with the best performance resulted in our work, while performing feature level fusion,
classifier level fusion and decision level fusion. This comparison was depicted within
Table 10. Our current approach was also compared with our previous approach, presented
in [48], where we evaluated, on a subset of the current dataset, the performance resulted by
applying the SAE classifier on combined CEUS and B-mode ultrasound images. The best
performance was achieved in the case of feature level fusion, when providing, at the input
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of SAE, the relevant textural features, derived from the concatenated textural attributes,
corresponding to both B-mode ultrasound and CEUS images. The comparison between the
performance of our approach and that of the above mentioned approach, assessed on the
current dataset, is depicted in Table 10. We can notice that in the case of the multimodal
classifiers corresponding to the approach presented in [44], the values of the classification
performance parameters were comparable to those obtained for the classifier level fusion,
when applying KPCA with a 1st or 3rd degree polynomial kernel, as illustrated in Table 4.
However, as can be seen in Table 4, concerning the classifier level fusion, a better per-
formance was achieved when employing concatenation, arithmetic or weighted mean as
combination methods, the best result of this category being also illustrated within Table 10.
The values of the classification performance parameters obtained in the case of decision
level fusion, when combining the DenseNet classifier, trained with CEUS images, with the
ResNet classifier, trained with B-mode ultrasound images, were superior, as well, to those
achieved for the methods described in [44], employed on our dataset. In addition, in the
case of feature level fusion, when employing multiplication, the classification performance
was superior to that resulted for the methods presented in [44]. Concerning the approach
presented in [48], the best resulted performance was inferior to that resulted in the context
of the current research.

Our approach can be also compared with the approach described in [43], regarding
both the methodology and applicability domain. However, this approach evaluated dy-
namic sequences of B-mode ultrasound and CEUS images. The employment of dynamic
image sequences and of the corresponding temporal information is part of our future
research objectives. We can conclude that the classification performance achieved through
our approach is comparable, even superior, to the state-of-the-art approaches previously
presented, although not all the evaluations have been performed of the same dataset.

Table 10. Comparison with state-of-the-art results.

Multimodal Classifier Acc (%) Sens (%) Spec (%) AUC (%)

InceptionV3 + PCA-LDA [44] 73.4 66.1 79.5 73.22

ResNet50 + PCA-LDA [44] 78.7 82.2 75.8 79.12

VGG16 + PCA-LDA [44] 91.7 91.9 91.6 91.75

Textural Features + SAE [48] 90.08 85.1 94.2 89.9

DenseNet201—feature level
multiplication (crt. work) 94.7 96.4 93.3 94.89

DenseNet201 + ResNet18—classif. level
concatenation (crt. work) 97.25 96.85 97.58 97.22

DenseNet201 + ResNet18—decision level
arithm. mean (crt. work) 98.25 98.16 98.24 98.2

6. Conclusions

The proposed methodology, as well as the analysis of the experimental results, demon-
strated that the CEUS images and especially the combination between B-mode ultrasound
and CEUS images led to a considerable classification performance improvement, in compar-
ison to the case when the B-mode ultrasound images were separately employed. The newly
defined multimodal combined classifiers finally led to a classification accuracy above 97%,
generally better than the performance reported in the state of the art of the domain. As for
the future work, the dataset will be enhanced, by gathering more data and by also adding
the class of benign liver tumors (e.g., hemangioma). More complex CNN architectures,
such as those of Inception and InceptionResNet type, as well as other appropriate combina-
tion methods, such as DCCA [34], are also planned to be experimented. The problem of
insensitivity to changes in the image acquisition settings that induce variations in image
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resolution will also be approached. Another future research intention is to take into account
also elastographic images, in order to combine them with the existing dataset.
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The following abbreviations are used in this manuscript:

ANN Artificial Neural Networks
AUC Area Under Curve
BN Batch Normalization
CT Computer Tomography
MRI Magnetic Resonance Imaging
CFS Correlation-based Feature Selection
CNN Convolutional Neural Network(s)
DCCA Deep Canonical Correllation Analysis
DICOM Digital Imaging and Communications in Medicine
GCM Generalized Co-occurrence Matrix
GLCM Gray Level Co-occurrence Matrix
HCC Hepatocellular Carcinoma
KPCA Kernel Principal Component Analysis
LDA Linear Discriminant Analysis
MLP Multi-Layer Perceptron
PAR Cirrhotic Parenchyma (on which HCC had evolved)
PCA Principal Component Analysis
RF Random Forest
SMO Sequential Minimal Optimization
SVM Support Vector Machines

Appendix A

In Figure A1, relevant examples of HCC and PAR patches are depicted, for both B-
mode ultrasound and CEUS image modalities, as well as for the situations when the feature
level fusion methods are employed: arithmetic mean, weighted mean, and multiplication,
respectively.
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Figure A1. Examples of (a.) HCC and (b.) PAR patches, in the following cases (left -> right): the
B-mode ultrasound image; the CEUS image; the arithmetic mean of the B-mode ultrasound and
CEUS images; the weighted mean of the B-mode ultrasound and CEUS images; the multiplication
between the B-mode ultrasound and CEUS images.

Appendix B

The comparison between the experimented classifier level fusion methods is illustrated
in Figure A2, where the arithmetic mean values of accuracy, sensitivity and specificity
are illustrated, for each such method. Thus, the best values for these parameters were
achieved in the case of concatenation, followed by arithmetic mean and weighted mean
that had an almost similar performance, then by multiplication and finally by the KPCA
method. The lower performance of KPCA is probably due to the fact that sometimes
dimensionality reduction operations had already taken place within the CNN (pooling and
dropout operations, respectively 1× 1 convolutions).

Figure A2. Comparison between the classifier level fusion method.
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