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ABSTRACT: Biological oscillators are present in nearly all
self-regulating systems, from individual cells to entire
organisms. In any oscillator structure, a negative feedback
loop is necessary, but not sufficient to guarantee the
emergence of periodic behaviors. The likelihood of oscillations
can be improved by careful tuning of the system time
constants and by increasing the loop gain, yet it is unclear
whether there is any general relationship between optimal time
constants and loop gain. This issue is particularly relevant in
genetic oscillators resulting from a chain of different
subsequent biochemical events, each with distinct (and
uncertain) kinetics. Using two families of genetic oscillators
as model examples, we show that the loop gain required for oscillations is minimum when all elements in the loop have the same
time constant. On the contrary, we show that homeostasis is ensured if a single element is considerably slower than the others.
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Timekeeping elements coordinate and synchronize most
processes required to sustain life, from the physiology of

individual cells to the daily rhythms of entire organisms.1 The
design principles underlying the operation of biomolecular
clocks have been investigated by dissecting natural systems,2−5

as well as by building de novomolecular oscillators in an effort to
identify minimal requirements for periodic behaviors.6−10

Experiments6,2,7,9,11 and modeling12−21 have established that a
necessary requirement for a system to exhibit oscillations is the
presence of a negative loop. Conversely, any negative feedback
loop potentially leads to oscillations provided that the loop
includes destabilizing features, for instance delaying elements
associated with a large feedback gain.7,22,23 Delay can be
introduced by a variety of phenomena. In addition to
transcription and translation steps, delay is increased by
transport, mRNA splicing and stabilization, phosphorylation,
and protein maturation.24,25,46 While an explicit delay term is
useful to aggregate these phenomena in a single, black-box
parameter, in other instances it is possible to model their
individual kinetics as a chain of interconnected subsys-
tems.17,25,26 In a linearized closed-loop system, a chain of slow
subsystems has the same effects as an explicit delay in inducing
oscillations.22 The overall delay of the negative feedback chain
depends on all the time constants of the dynamic elements.
Given a sufficient delay, the larger the feedback gain, the likelier
is the onset of persistent oscillations.
Despite the simplicity of these design principles, it is unclear

how the individual time constants and the overall gain affect the

emergence of oscillations. Are we equally likely to observe
oscillations in a system with homogeneous versus nonhomoge-
neous time scales? How large should the loop gain be in either
case? These questions are particularly relevant in the context of
genetic oscillators, where time constants are determined by
mRNA and protein degradation, transport, and processing rates,
which may widely vary among the oscillator components, and a
large loop gain is energetically expensive, because it depends on
the production rate of the components.
In this paper, we address the following question in

mathematical terms: Given a negative loop of first order
elements, each associated with its own time constant, which is
the choice of the time constants that requires the smallest gain
to allow for persistent oscillations? We demonstrate that
homogeneous time constants are the most favorable choice
when a small loop gain is desired. In particular we prove that (1)
the smallest negative feedback gain required to trigger
oscillations is achieved when all time constant are equal; (2)
the smallest gain is invariant under a homogeneous scaling of all
time constants and the period of the oscillations is proportional
to the scaling factor; (3) as a converse result, in a negative
feedback loop, the best strategy to avoid oscillations is to have a
single element of the chain that is much slower than all the
others, and this fact explains why, in several pathways with
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negative feedback, the presence of a slow element ensures a
robust nonoscillatory behavior.
We apply our results to well-known genetic oscillators, the

Goodwin oscillator and a two-node (inhibitor-activator)
oscillator, and we derive exact (necessary and sufficient)
conditions for the existence of parameters that ensure
oscillations.
Architecture of Candidate Negative Feedback Oscil-

lators. As candidate oscillator architectures, we consider
negative feedback loops of the following form:
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representing the series connections of n ordered subsystems in
which any element has a positive influence, quantified by
parameters bi > 0 (with i = 2, ..., n), on the next one, while u is a
perturbing input that triggers oscillations. Each ordinary
differential equation (ODE) in the model in eq 1 is suited to
model phenomena such as production, conversion, processing,
and degradation of molecular components (mRNA and
proteins) interconnected in a regulatory chain.27 The model
can also capture enzymatic processes that operate at low
substrate concentration relative to the binding affinity of the
enzyme and substrate; in this regime, Michaelian or Hill-type
reaction rates become approximately linear (first-order rates). A
negative feedback loop is generated via the inhibitory effect of
the last element in the chain on the first one, quantified by
parameter b1 > 0. The parameter τi represents the time constant
of process i (which can be seen as the speed of the reaction of
the species xi due to the regulatory effect of xi−1).
A similar negative feedback structure can be found in many

oscillatory systems.17 We now take the Laplace transform of
these ODEs: we formally replace xi(t) with Xi(s) and the
derivative d/dt with the complex variable s, x ̇i(t) → sXi(s). After
Laplace-transformation, the model in eq 1 can be rewritten as a
block-interconnection of elements:
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as shown in Figure 1.
The quantity
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is called the loop gain and has a fundamental role. It is the
product of all the interaction strengths and thus represents the
cumulative strength of the loop. It turns out that the
characteristic polynomial depends on the product κ only, and
not on the individual parameters bi; hence, even if the individual

rates bi are changed, the system behavior remains the same as
long as their product is unchanged (see the Supporting
Information for the detailed derivation). The onset of
oscillations in this negative feedback loop is therefore associated
with two fundamental ingredients:

• The time constants τi, which introduce an overall delay in
the loop;

• A sufficiently large feedback gain κ > 0.

In the next section we ask ourselves whether there is any ideal
relationship between the loop gain and the time constants to
achieve or avoid oscillatory behavior.

Influence of Time Constants on the Oscillatory
Regime. We next investigate how the time constants τi
influence the onset of persistent oscillations. We define τ =
[τ1 τ2 ... τn], the vector of time constants, and consider the
characteristic polynomial associated with the (linearized) system
of ODEs:
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For κ = 0, the roots of pn(s, τ) are λi = −1/τi, real and negative,
hence the system response has an exponentially decreasing
pattern. For large values of κ, pn(s, τ) has complex roots,
associated with oscillations.
The oscillations are damped if the roots have a negative real

part. To have persistent oscillations, the roots of pn(s, τ) must
reach and cross the imaginary axis in the complex plane. This
can happen only if

≥n 3

(as discussed at the end of this section; see also ref 28).
Henceforth, we assume that the necessary condition n ≥ 3 is
verified.
For n ≥ 3, let us increase κ. Then, there exists a critical gain κ*

such that, for all κ > κ*, pn(s, τ) has complex roots with positive
real part (namely, the system becomes unstable). For κ = κ*,
pn(s, τ) has two purely imaginary roots ± jω*, while the other
roots have negative real part. The limit value κ* is associated
with the onset of an oscillation with frequency ω*/2π; we call
ω* critical pulsation. Note that ω* ≠ 0: pn(s, τ) cannot have 0 as
a root for κ > 0, since p(0, τ) = κ + 1 ≠ 0.
We can formally define the critical gain κ* as the smallest

value of κ for which pn(s, τ) has a pair of purely imaginary roots
(corresponding to the stability limit). The value κ* depends on
the time constants τi and we can write

κ τ κ ω τ ω* = > = >p j( ) min{ 0: ( , ) 0 for some 0}n (3)

Which are the most favorable values of τi to promote
oscillations? We address this question in terms of the minimum

Figure 1. Loop of n first order systems: block diagram.
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critical gain, by seeking a value τ* = [τ1* τ2* ... τn*] that minimizes
the critical κ*(τ) enabling the onset of oscillations.
Problem: Find a value τ* that minimizes κ*(τ) in eq 3.
Main result: The problem is solved by a value τ* with

τ τ τ* = * = = *... n1 2

This result is proved in the Supporting Information (Theorem
1): our proofs are based on frequency analysis tools, linear
algebraic tools and principles of convex optimization.
Therefore, an essential factor to promote oscillations in a

negative feedback loop is the homogeneity of the time constants
of the subsystems involved in the loop.
Further, we find that scaling the time constants influences

exclusively the critical pulsation, without affecting the critical
gain: when the time constants are scaled as τi → στi, for arbitrary
σ > 0, the critical gain κ* is invariant, κ*(στ*) = κ*(τ*), while
the critical pulsation scales proportionally to σ: ω* → σω* (cf.
Corollary 1, Supporting Information).
Also, the critical gain κ* is a decreasing function of the

number of elements in the loop (see the Supporting
Information, Proposition 2, for details).
Our result (the critical gain that allows for oscillations is

minimized when all the time constants are equal) indirectly
suggests how to prevent a system from oscillating. This aspect is
relevant in the context of biological and biochemical feedback
loops, in all the situations where it is important to preserve
homeostasis and oscillatory behaviors must be avoided. Being κ*
a decreasing function of n, long feedback chains are more prone
to instability, which can be of an oscillatory type. Hence, a
natural question is which is the best strategy to avoid oscillations
in the loop. Our result suggests that incongruous time constants
lead to a robustly nonoscillatory behavior. Let us now consider
the complementary question: assuming (without restriction)
that the time constants are normalized as

∑ τ = Ti tot

where Ttot is the overall loop delay, which is the best distribution
of time constants to prevent oscillatory behaviors? We find that,
roughly speaking, it is better to have the delay concentrated in a
single subsystem (see the Supporting Information, Proposition
3, for details). Then, a robust strategy to prevent oscillations is,
for instance, including in the loop a single subsystem that is
much slower than the others, so that their time constant is
negligible with respect to the slow part. This result also explains
the previous statement about the necessity of condition n ≥ 3 to
have persistent oscillations. Indeed, setting τi = 0 is mathemati-
cally equivalent to neglecting the ith process, since then 1/(1 +
τis) = 1.
A fundamental consequence of our results is the following: in

a negative feedback loop, the presence of a single slow element is
an ef fective strategy to preserve stability and prevent oscillations.
Indeed, several negative feedback loops in nature are practically
always stable, and this can be explained by noting that the
involved time constants are very different. For example,
biologically, degradation rates of mRNA and proteins may
vary in a broad range and, as foreseen by our results, this
variability could contribute to stabilizing negative loops, making
it difficult to achieve oscillations. Yet, we point out that, when
the kinetics of a molecular species are much slower or much
faster than the rest of the system, they can be simply eliminated
from the model via time scale separation methods;27 this type of

drastic time scale variability may affect the capacity for
oscillations when the system dimension collapses below 3.

Examples.Our results allow us to derive analytical bounds in
the parameter space for the oscillatory regions of general
families of genetic oscillators. These bounds are also numerically
verified in the following sections via random parameter
sampling.29

Goodwin Oscillator. The well-known Goodwin oscillator30 is
associated with the following equations:
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+

−x a
K

K x
b x

N

N
n
N1 1 1 1

(4)
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The model is characterized by the number n of stages, by the
cooperativity (Hill) coefficient N, by the apparent dissociation
constant K, and by the rate constants ai and bi. Rates ai and bi
can model protein translation and degradation, mRNA
processing phenomena, or protein phosphorylation/dephos-
phorylation.31 All these parameters are positive. As shown in the
Supporting Information (Section 2.1), the system admits a
single positive equilibrium. The emergence of sustained
oscillations depends on the choice of the parameters, which
influences the values of both the variables at steady-state and of
the entries of the Jacobian matrix. By applying our main result to
the Goodwin oscillator model, we discover that there exists at
least one choice of the parameter values that leads to oscillations
(namely, for which the linearized system admits complex
eigenvalues with nonnegative real part) if and only if

π >n Ncos( / ) 1n (6)

(the full derivation is in the Supporting Information, Section
2.3). The characteristic equation, equating the characteristic
polynomial to zero, is
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Here, xn̅ is the steady state value of xn derived by solving the
equilibrium equation
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from which existence and uniqueness of the equilibrium are
proven in the Supporting Information (Section 3.1). If we could
arbitrarily choose the rates ai and bi, then we could achieve any
positive steady-state xn̅. Hence, the gain in eq 7,

κ ̅ = ̅
+ ̅

x N
x

K x
( )n

n
N

N
n
N

could take any value in the interval: 0 < κ(xn̅) < N. The value of
the ith time constant for this system is τi = 1/bi. Hence, our
result tells us that the (minimum) critical gain is obtained by
setting b1 = b2 = ... = bn = b (which leads to equal time
constants), hence

κ κ+ + ̅ = < <s b x N(1 / ) ( ) 0, 0n
n (9)

The condition in eq 6 is necessary and sufficient for eq 9 to
admit imaginary solutions. As exemplified in Figure 2, if the
condition in eq 6 is satisfied, oscillations are possible if the rates
ai are large enough with respect to the rates bi; this guarantees a
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large equilibrium value xn̅, hence κ(xn̅) is larger than the critical
gain.
Note that, if the oscillator includes three stages (n = 3), the

condition in eq 6 becomes >N 23 and the minimum value of
the Hill coefficient N to have oscillations is N = 8, consistently
with the results in ref 32.
In Figure 3 we numerically compute the oscillatory region in

the N−n space when ai = a and bi = b, for all i. In each panel, the

black line represents the condition in eq 6 converted to an
equality, and delimits the region where oscillations can occur. As
a further numerical experiment, we fixed ai = a for all i and
randomly generated different values of the parameters bi, taken
from different distributions (normal and uniform distribution)
with the same expected value E[bi] = 1 and variance ϵ. With this
sampling method, the total delay is not necessarily constant for
all samples: the degradation rates are randomly generated and
are drawn from different distributions, which all have the same

average, but which can be more or less spread depending on the
value of the variance ϵ. The lower the variance, the more
homogeneous are the degradation rates bi. Figure 4 shows the

fraction of oscillating samples (parameter choices for which
characteristic polynomial has positive-real-part roots) as a
function of ϵ. As predicted by our analytical results, decreasing
the variance increases the likelihood of oscillations. Choosing
homogeneous time constants favors oscillations, but also other
design decisions are important: for instance, the overall loop
gain needs to be high enough.

A Two-Node Oscillator. Consider a two-node oscillator given
by the feedback interconnection of an activated module and an
inhibited module:9,33−35

α
β̇ =

+
−r

K p
rN N1

1

1 2
1 1

(10)

γ δ̇ = −p r p1 1 1 1 1 (11)
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γ δ̇ = −p r p2 2 2 2 2 (13)

The ODEs of variables r1 and r2 represent mRNA dynamics, and
p1, p2 represent protein translation. As earlier, N is a Hill
coefficient, and K1 and K2 are apparent dissociation constants.
Parameters α1 and α2 are maximal mRNA transcription rates,
and β1, β2 are mRNA degradation rates. Finally γ1, γ2 and δ1, δ2
are protein translation and degradation rates. This model can
serve as a coarse-grained representation of a variety of molecular

Figure 2. Goodwin oscillator: equilibrium conditions for different
ratios ai/bi. The orange line represents the first expression in eq 8, while
the blue lines represent the second expression in eq 8 for different
values of the ratios ai/bi. Their intersections give, on the vertical axis,
the equilibrium values of xn for various choices of ai/bi.

Figure 3. Oscillatory domain of the Goodwin oscillator with K = 1 in
the (n, N) plane, for various choices of homogeneous rates, ai = a and bi
= b for all i. The black line represents π =n Ncos( / ) 1n ; hence, eq 6 is
satisfied in the whole region above. We compute the solutions of eq 9:
red dots indicate an oscillatory behavior, blue dots indicate no
oscillations, while gray dots indicate that no equilibrium can be found
computationally due to numerical problems.

Figure 4. The fraction of oscillating samples of the Goodwin oscillator
is largest when randomly drawn degradation rates are homogeneous.
We simulated the model with K = 1 and n = 5; in the top panels N = 8,
while in the bottom panel N = 10. We took ai = a and randomly
generated rates bi with expected value E[bi] = 1 and variance ϵ. (In each
simulation, the randomly generated parameters are kept constant
during all the integration steps of the ODEs.) We show the fraction of
oscillating samples as a function of the variance ϵ when the rates bi are
taken from a normal distribution (top left, and bottom) and a uniform
distribution (top right). In all panels, 1000 parameter samples are
drawn per data point.
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clocks. Many genetic oscillators result from the interconnected
dynamics of inhibitor-activator elements,25 such as the p53-
mdm-236 and the IκB-NF-κB37 oscillators; this architecture has
also been demonstrated in artificial in vitro transcriptional
oscillators.9,38,39 Here we assume that the mRNA dynamics
evolve on a time scale that is comparable to that of the proteins;
this means that the order of the model cannot be reduced via
time scale separation arguments. On the basis of our main result,
we can prove that there exists at least one choice of parameters
for which the system exhibits sustained oscillations (namely, the
linearized system has complex eigenvalues with a nonnegative
real part) if and only if

>N 2 (14)

The linearized system has characteristic equation
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+ + + + +

+ ̅

+ ̅
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

s s s s
N

K
K p

p

K p

1 1 1 1

0

N

N N

N

N N

1 2 1 2

2 2

2 1

2

1 2 (15)

where p ̅1 and p2̅ are the steady-state values of p1 and p2. The loop
gain

κ ̅ ̅ =
+ ̅ + ̅

p p N
K

K p

p

K p
( , )

N

N N

N

N N1 2
2 2

2 1

2

1 2

ranges in the interval 0 < κ(p ̅1, p ̅2) < N2; it is a decreasing
function of p̅1, and an increasing function of p2̅. In view of our
main result, the minimum critical gain guaranteeing oscillations
is achieved when β1 = β2 = δ1 = δ2 = τ. The corresponding
critical equation is

τ κ κ+ + ̅ ̅ = < ̅ ̅ <s p p p p N(1 / ) ( , ) 0, 0 ( , )4
1 2 1 2

2

therefore no unstable complex eigenvalues, hence no
oscillations, can be found unless N > 2 (the full derivation is
in the Supporting Information, Section 3.3). Numerical
simulations illustrating and confirming this analytical result are
in Figure 5. We have also generated random instances of the

oscillator to show how increasing the variance in the delay
decreases the chances of oscillatory behavior (Figure 6). We
note that in this particular example, if the mRNA dynamics are
much faster than the protein dynamics, the model can be
reduced to include exclusively the protein kinetics; in that case,
oscillations cannot be achieved for any choice of the parameters.
Conclusion and Discussion. We have demonstrated that

homogeneity of the time constants within a negative feedback
loop can facilitate the emergence of oscillations, in that it
minimizes the critical loop gain (minimum gain to achieve

oscillations). We have also shown that scaling of the (uniform)
time constants influences the critical frequency, but does not
affect the critical gain. A converse result is that a candidate
oscillator can be stabilized, i.e., oscillations cannot occur, by
increasing a single (arbitrarily chosen) time constant of the loop
with respect to the others. The negative feedback architecture
we consider is general, and it can be specialized to model many
biomolecular oscillators.25

The gain of the biomolecular feedback loops we consider is
proportional to the ratio of production and degradation rates of
its components, and to the cooperativity coefficient of
regulatory molecules (Hill coefficient N). Maintaining the
lowest gain that can yield oscillations in the network is therefore
tantamount to operating the circuit with minimum consumption
of transcription and translation resources, minimum kinase
activity, as well as with minimum copy number of regulators.
This energy-efficient scenario can be achieved when the time
constants in each process are similar (degradation, transport,
and processing rates). This requirement may be easy to satisfy if
these time constants are globally regulated for all components
(for instance, mRNA and protein degradation).
It must be pointed out that, in our analysis, we have

considered systems consisting of a single negative feedback loop:
although this is a very common structure for biological
oscillators,17,25 it is not the only one. For this particular
structure, we have argued that

• Short negative loops have a stabilizing effect (which
makes the onset of sustained oscillations less likely,
because a higher loop gain is needed);

• Long negative loops can favor the onset of sustained
oscillations, and the most favorable case is that in which
the time constants of the system in the loop are similar;

• If one or two time constants are significantly larger than
the others, then the long loop actually behaves as a short
one and the probability of having sustained oscillations is
smaller (because a higher loop gain is needed for the
onset of oscillations).

However, if several feedback loops are concurrently present,
our analysis does not apply, and the above statements are no
longer true. In particular, our findings are valid in the absence of
self-catalytic reactions (i.e., of positive self-loops). In the
presence of a positive self-loop, also a single negative loop
involving two nodes only can be easily destabilized. For instance,
consider the system

Figure 5. Oscillatory regime of the two-node oscillator. We compute
the solutions of eq 15, with α1 = α2 = α, β1 = β2 = β, γ1 = γ2 = 1, δ1 = δ2 =
1 and K1 = K2 = 1, and indicate with red dots an oscillatory behavior,
with blue dots no oscillations. Parameter sets that give rise to
oscillations cannot be found for N = 2, while they are easy to find for N
> 2.

Figure 6. The fraction of oscillating samples of the two-node oscillator
is largest when randomly drawn degradation rates are homogeneous.
We simulated the model withN = 3, γ1 = γ2 = 1, K1 = K2 = 1, α1 = α2 = α
and randomly generated (βi, δi) with expected value E[(βi, δi)] = (1, 1)
and variance ϵ. (In each simulation, the randomly generated parameters
are kept constant during all the integration steps of the ODEs.) We
show the fraction of oscillating samples as a function of the variance ϵ
when (βi, δi) are taken from a normal distribution (left) and a uniform
distribution (right). 1000 parameter samples are drawn per data point.
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̇ = − −x ax bx1 1 2

̇ = −x cx dx2 1 2

where a, b, c and d are positive parameters. As shown by our
results, this loop cannot be destabilized. However, this system
can exhibit sustained oscillations if a can be negative (take for
instance a = −d): in this case our results no longer hold, because
now x1 is self-catalytic.
In practice, positive self-loops are not very common. Yet, a

positive feedback loop can result from a chain of reactions.
Indeed, different oscillator architectures are based on the
coexistence of positive and negative loops (it is important to
stress that the presence of a negative loop is necessary for the
onset of oscillations14,15). In particular

• A (possibly short) negative loop can be destabilized by
the concurrent presence of another loop that is positive.

An example is the genetic network present in the bread mold
Neurospora crassa, which has been shown in ref 40 to be a
successful biological oscillator; we investigate this case study in
the Supporting Information, where we show that the result
proposed in ref 40 are fully consistent with our analysis.
Negative-feedback oscillators are very common in nature and

appear also very robust. For instance, the Hes1 and Hes7
oscillators in mammalian embryos consist of a negative
autoregulation loop where Hes protein represses its mRNA
production.41 These oscillators could be modeled taking n = 2 in
eq 1; however, in this case the ODE solution does not admit
sustained oscillations even for very large values of N. Addition of
an explicit delay, discrete or distributed, to Hes autoregulatory
models yields oscillatory solutions for physically acceptable
values of N42,43 (Hes1 and Hes7 are dimers). Similar
observations can be made for the p53-mdm-2 and the IκB-
NF-κB oscillators.44 The explicit delay, which captures mRNA
processing and transport steps,45 could be alternatively modeled
as a chain of intermediate subsystems; while the number and
kinetics of these steps are unknown, our results suggest that
oscillations would be more likely to occur if they had similar
time scales. Interestingly, the Hes1 oscillator requires nearly
identical mRNA and protein half-lives (≈ 23 min) to operate.46

Our results are particularly relevant for the design of artificial
negative feedback clocks. While the architecture of the Goodwin
oscillator is attractive due to its simplicity, it has been difficult to
build synthetic examples without including positive feedback,
high Hill coefficients, or additional nonlinearities to destabilize
the system.6,7,16,47 The mathematical models developed to
capture the dynamics of these artificial oscillators often assume
similar degradation rates for all the mRNA and protein species.
However, recent experiments on the famous repressilator circuit
suggest that protein degradation rates in the original design
might have been subject to temporal fluctuations caused by
competition for shared proteolytic machinery, occurring due to
the presence of protein degradation tags meant to reduce their
half-life.48 Removal of the degradation tags resulted in more
regular (although slower) oscillations at the population level. It
is possible that in the absence of degradation tags dilution (due
to cells dividing) becomes the dominant time constant, which
should be uniform for all the repressor proteins. In light of our
results, a more homogeneous protein half-life could explain the
improved robustness of the oscillations.
In conclusion, our work highlights that the variability of time

constants within negative feedback oscillators could have under-
appreciated effects on the dynamics; better estimation of these

parameters could help explain the robustness of many natural
oscillators. Conversely, we expect that the construction or
improvement of artificial oscillators could be facilitated by
ensuring that the modules being interconnected evolve with
similar time scales.

■ METHODS
The formal proofs of our results, which employ mathematical
tools from dynamical systems and systems and control theory, as
well as the detailed mathematical analysis of the proposed
examples, are in the Supporting Information.
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