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Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and programmed cell death 1 (PD-
1) are well-known key immune checkpoints that play a crucial dampening effect on
regulating T-cell homeostasis and self-tolerance. In this study, we aimed to evaluate the
association between immune checkpoints (CTLA-4 and PD-1) and Posner-Schlossman
syndrome (PSS) in a southern Chinese population. A total of 137 patients with PSS and
139 healthy controls from a southern Chinese population were recruited. Five single
nucleotide polymorphisms (SNPs) of CTLA-4 (rs733618, rs4553808, rs5742909,
rs231775, and rs3087243) and five SNPs of PD-1 (rs10204525, rs2227981,
rs2227982, rs41386349, and rs36084323) were genotyped by SNaPshot technique.
Soluble CTLA-4 (sCTLA-4) and soluble PD-1 (sPD-1) were determined by ELISA and
antibody array assay, respectively. The frequencies of T allele at rs733618 and A allele at
rs231775 of CTLA-4 were significantly higher in PSS patients than in healthy controls
(corrected p (Pc) = 0.037; Pc = 0.044, respectively). The haplotype frequencies of CACGG
haplotype (rs733618-rs4553808-rs5742909-rs231775-rs3087243) of CTLA-4 and
TGAGC haplotype (rs10204525-rs2227981-rs2227982-rs41386349-rs36084323) of
PD-1 in the PSS group was significantly lower than those in the control group (Pc =
0.015, p = 0.034, respectively). Circulating plasma levels of sCTLA-4 and sPD-1 in PSS
patients were significantly higher than those in controls (all p < 0.001). The present study
suggests that CTLA-4 and PD-1 genetic polymorphisms are associated with the
susceptibility to PSS in a southern Chinese population. The upregulated circulating
plasma protein levels of sCTLA-4 and sPD-1 might provide some hints regarding the
dysfunction of immune checkpoints in PSS during the active status.
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INTRODUCTION

Posner-Schlossman syndrome (PSS) is eponymously named
after Posner and Schlossman who first described this condition
in 1948 (1). PSS is characterized by recurrent unilateral non-
granulomas anterior uveitis with elevated intraocular pressure
(IOP) (1). The endothelial cell density and progression of retinal
nerve fiber layer loss of young adult patients with PSS is caused
by frequent attacks of high IOP (2, 3). The mechanism of PSS is
still unclear. Many previous studies have reported evidence of
cytomegalovirus (CMV) in the aqueous humor and serum (3, 4).
Ganciclovir eyedrop (2%) is a novel and effective treatment for
PSS patients with high frequent attacks (3). Some previous
studies have found that the adaptive immune system was
dysfunctional in patients with PSS. Pohlmann et al. found that
the expression level of Th1 immune mediator significantly
increased in the aqueous humor of patients with PSS (5). Our
previous research showed that the Th1- and Th17-related
cytokines in the serum might not contribute to PSS (4).
Human leukocyte antigen (HLA) allelic heterogenicity might
contribute to some differences in PSS prevalence among ethnic
populations. Hirose et al. reported that the HLA-Bw54 and HLA-
Bw54-Cw1 haplotype were overrepresented in patients with PSS
in a Japanese population (6). In previous studies, we found that
the HLA-C*14:02 and HLA-E*01:03 alleles, and the HLA-
A*11:01-C*14:02, HLA-B*51:01-C*14:02, and HLA-E*01:03-
G*01:04 haplotypes confer susceptibility to PSS in a southern
Chinese population (7, 8). However, the role of non-HLA genetic
variants in PSS still needs to be investigated.

The adaptive immune system maintaining normal function
needs appropriate balance between the stimulatory and
inhibitory signals (9). The positive costimulatory signal
involves the peptide-HLA engagement of the T cell receptor,
which is associated with PSS (6–9). The inhibitory signal is
caused by the negative immune checkpoints (e.g., CTLA-4 and
PD-1) to spare healthy cells and maintain self-tolerance (9).
CTLA-4, a close homolog to CD28 and located on chromosome
2q33, competes with CD28 to bind B7.1/7.2 to provide an
inhibitory counterbalance at the initial stage of naive T-cell
activation (10). PD-1, located on chromosome 2q37, interacts
with its ligands to suppress activated T-cell at the later stage
of the immune response (9). CTLA-4 and PD-1 contribute
to maintaining ocular homeostasis of the immune
microenvironment, including ocular immune privilege and
anterior chamber-associated immune deviation (11, 12).
CTLA-4 and PD-1 are associated with several autoimmune eye
diseases. The G allele of rs231775 in CTLA-4 is associated with
Vogt-Koyanagi-Harada (VKH) syndrome and thyroid-
associated ophthalmopathy, and the G allele of rs3087243 in
CTLA-4 is associated with scleritis (13–15). The G/G genotype of
rs10204525 in PD-1 is associated with acute anterior uveitis, and
the G/G genotype of rs2227981 in PD-1 is associated with
sympathetic ophthalmia and the occurrence of extraocular
manifestations of VKH syndrome (16, 17). Splenic CD4+ T
cells expressing CTLA-4 and PD-1 contributed to the
induction of anterior chamber-associated immune deviation
(11, 12). High expression of PD-1 mitigated inflammation
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during the active phase of experimental autoimmune uveitis
mouse model (18). PD-1 is highly expressed in the inflammation
sites of herpes simplex, keratitis, autoimmune uveitis, diabetic
retinopathy, and thyroid-associated ophthalmopathy (19). Thus,
CTLA-4 and PD-1 might contribute to the progression of some
eye diseases.

However, the association between the immune checkpoints
(CTLA-4 and PD-1) and PSS is unclear. In the present study, we
investigated 10 SNPs of CTLA-4 and PD-1 and quantitatively
assessed soluble CTLA-4 (sCTLA-4) and soluble PD-1 (sPD-1)
from circulating plasma in a southern Chinese population with
PSS. We aimed to evaluate whether genetic heterogeneity of
immune checkpoints (CTLA-4 and PD-1) and their protein
expression levels contribute to PSS during the active status.
MATERIALS AND METHODS

Study Participants
A total of 137 patients with PSS attending the Clinic of Shenzhen
Eye Hospital were included in the study between January 2018
and March 2020. Patients were diagnosed with PSS according to
the following classical criteria and amendments (1, 3, 4): i)
recurrent attacks of mild discomfort in one eye; ii) elevated
IOP > 21 mmHg with duration of attack. The IOP may reach 50
mmHg without peripheral anterior synechia; iii) a few white
mutton-fat keratic precipitates; iv) no significant decrease or
slight decrease in visual acuity, no visual field loss, and optic
nerve damage in patients with shorter course of disease; and v)
no history of other eye diseases except for refractive error. All
patients were in the active disease phase with either a first attack
or in the early stage of a recurrent one. One hundred and thirty-
nine unrelated subjects were recruited at the Shenzhen Blood
Center from healthy volunteer blood donors without eye disease.
Patients and controls were all southern Han Chinese and
matched for age, sex, and ethnicity. Written informed consent
was obtained from all study participants.

Specimen Collection
The peripheral blood of all participants was collected in EDTA
vial. Plasma was separated by centrifugation (3,000×g, 20 min,
4°C) within 2 h after blood collection. The peripheral venous
blood and plasma were stored at −80°C until further analysis.

DNA Extraction, Polymerase Chain
Reaction Amplification, and Genotyping
The SNPs, that we selected for genotyping in this study could
potentially regulate the function and expression of these genes
based on previous studies in Supplementary Table 1 (13, 15–
17). Genomic DNA was extracted from peripheral blood samples
of all participants using the TIANamp Blood DNA Kit
(TIANGEN Biotech, Beijing, China). PCR amplification was
performed in a 20 ml reaction system, including 1 ml genomic
DNA, 0.5 ml of each PCR primer in a total volume of 20 ml
containing 1× HotStarTaq buffer, 2.0 mM Mg2+, 0.3 mM dNTP,
and 1 U HotStarTaq polymerase (Qiagen, Hilden, Germany).
February 2021 | Volume 12 | Article 607966
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The cycling conditions for CTLA-4 and PD-1 were 95°C for 2
min; followed by 35 cycles at 96°C for 20 s, 62°C; for 2 min, and
72°C for 3 min; and a final extension at 72°C for 10 min. The
amplified samples were maintained at 4°C. SNaPshot multiplex
single-base extension reaction primer sequences of each SNP are
listed in Supplementary Table 2. The extension reaction was
performed in a 10 ml reaction system, including 2 ml purified PCR
product, 1 ml primer (final concentration: 0.8 mM), 5 ml
SNaPshot Multiplex Kit (Applied Biosystems, Foster City, CA,
USA), and 2 ml ultrapure water. The cycling conditions for
extension for CTLA-4 and PD-1 were 96°C for 1 min; followed
by 28 cycles at 96°C for 10 s, 52°C for 5 s, and 60°C for 30 s; with
a final hold at 4°C. Finally, 10 ml of the extension product was
purified with 1 U SAP for 1 h at 37°C and inactivated for 15 min
at 75°C. The resulting data were analyzed with an ABI3130XL
sequencer and GeneMapper version 4.0 Software (Applied
Biosystems, Co. Ltd., USA).

Determination of Plasma Protein Levels of
sCTLA-4 and sPD-1 by Double Antibody
Sandwich ELISA and Confirmed by
Antibody Array Assay
Commercially available ELISA kits were used to measure the
concentrations of sCTLA-4 and sPD-1 (Jianglai Bio, Shanghai,
China) according to the manufacturer’s instructions. The assay
sensitivities for sCTLA-4 and sPD-1 were 0.1 and 1.0 pg/ml,
respectively. The range of detection was 0.25–8 ng/ml and 7.5–
240 pg/ml for sCTLA-4 and sPD-1, respectively. Plasma
samples were added into the microplate wells and incubated
at 37°C for 30 min according to the manufacturer’s instructions
(Jianglai Bio, Shanghai, China). The horseradish peroxidase-
labeled antibody was then added and incubated at 37°C for 30
min. TMB (3,3’,5,5’-tetramethylbenzidine) solution was added
to each well and incubated for 15 min for the color reaction.
The reaction was terminated by adding stop solution. The
absorbance (A) at 450 nm was measured using a microplate
reader (Model 680, Bio-Rad Laboratories Inc., Japan). The
plasma levels of sCTLA-4 and sPD-1 were calculated based
on the A values of the samples.

The plasma protein levels of sCTLA-4 and sPD-1 were
contained using the human immune checkpoint molecule
array (RayBiotech, USA, QAH-ICM-1-1) according to the
manufacturer’s instructions, as described by Chang et al. (20).

Detection of CMV-IgG and CMV-IgM
Antibodies by Indirect ELISA and
Chemiluminescent Immunoassay
The CMV-IgG and -IgM antibodies were determined in the
plasma of a subset of samples including 50 patients with PSS and
54 heathy controls by indirect ELISA (Virion/Serion, Germany)
and chemiluminescent immunoassay (LIASON®, DiaSorin,
Italy) according to the manufacturer’s recommendations.

Statistical Analysis
Statistical analysis was performed using SPSS (version 22.0,
SPSS Inc., Chicago, IL, USA). Age and IOP were compared
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between patients with PSS and controls, using independent-
samples t-test. Hardy-Weinberg equilibrium (HWE) was
evaluated using the chi-squared test. The frequencies of
alleles and genotypes were obtained through direct counting.
We used using PLINK (ver 1.07, http://pngu.mgh.harvard.edu/
purcell/plink/) to construct haplotypes and estimate haplotype
frequencies for both cases and controls (21). Linkage
disequilibrium (LD) and haplotype blocks were estimated
using the Haploview 4.2 program (22). Since sCTLA-4 and
sPD-1 were not consistent with normal distribution as
suggested by the Shapiro-Wilk test, the data were presented
as median and interquartile range (Q1, Q3), and Mann-
Whitney U test was used to compare the differences between
the two groups. The differences in sex, allele frequency,
genotype frequency, and haplotype frequency between cases
and controls were evaluated using the chi-squared test or
Fisher’s exact test. We used Benjamin & Hochberg step-up
false discovery rate (FDR) to correct multiple testing. The value
of p < 0.05 was considered to indicate statistical significance.
Odds ratio (OR) and 95% confidence interval (CI) were
calculated whenever applicable.
RESULTS

Demographic and Clinical Features of
Study Participants
The mean age of the PSS group [72 males (52.5%) and 65 females
(47.5%)] was 39.6±12.5 years. The mean age of the control group
[74 males (53.2%) and 65 females (46.8%)] was 41.3±10.4 years.
No significant intergroup differences were found with respect to
age and sex (p = 0.89 and 0.32, respectively, Table 1). The mean
IOP of the PSS group was 40.9±5.7 mmHg, which was
significantly higher than that of the controls (15.3±3.2 mmHg)
(p < 0.001, Table 1).

CTLA-4 Genotype and Allele Frequencies
Genotype and allele frequencies of CTLA-4 rs733618, rs4553808,
rs5742909, rs231775, and rs3087243 are depicted in Table 2. The
genotype distributions of CTLA-4 SNPs in control groups did
not violate the HWE (all p > 0.05). The frequencies of T/T
genotype at rs733618 and the A/A genotype at rs231775 and
rs3087243 of CTLA-4 were significantly higher in PSS patients
than in healthy controls, but did not survive the FDR correction
(51.82 vs. 35.52%, p = 0.005, corrected p (Pc) = 0.082, OR = 1.81;
21.90 vs. 9.35%, p = 0.004, Pc = 0.122, OR = 2.72; 8.76 vs. 2.88%,
TABLE 1 | The demographic and clinical features of the patients with PSS and
controls.

Feature PSS (n = 137) Control (n = 139) p

Sex (M/F) 72/65 74/65 0.89a

Age (year, mean ± SD) 39.6±12.5 41.3±10.4 0.32b

IOP (mmHg, mean ± SD) 40.9±5.7 15.3±3.2 <0.001b

KPs (Y/N) Y N
February 202
1 | Volume 12 | Article
aChi-squared test; bindependent-samples t-test; PSS, Posner-Schlossman syndrome;
M, male, F, female; IOP, intraocular pressure; KPs, keratic precipitates; Y, yes; N, no.
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p = 0.037, Pc = 0.37, OR = 3.24, respectively). The frequencies of
T allele at rs733618 and A allele at rs231775 of CTLA-4 were
significantly higher in PSS patients than in healthy controls, and
these associations survived the FDR correction (70.80 vs. 58.99%,
Pc = 0.037, OR = 1.56; 40.88 vs. 30.22%, Pc = 0.044, OR = 1.55,
respectively). Our results showed that there were no significant
differences in the genotype and allele frequencies of rs4553808
and rs5742909 in CTLA-4 between PSS patients and controls (all
p > 0.05). The raw genotype data of the samples was shown in
the Supplementary Table 3.

PD-1 Genotype and Allele Frequencies
Genotype and allele frequencies of PD-1 rs10204525, rs2227981,
rs2227982, rs41386349, and rs36084323 are depicted in Table 3.
The genotype distributions of PD-1 SNPs in control groups did
Frontiers in Immunology | www.frontiersin.org 4
not violate HWE (all p > 0.05). Our results showed that there
were no significant differences in the genotype and allele
frequencies of rs10204525, rs2227981, rs2227982, rs41386349,
and rs36084323 in PD-1 between PSS patients and controls (all
p > 0.05). The raw genotype data of the samples was shown in
the Supplementary Table 3.

CTLA-4 and PD-1 Haplotype Frequencies
and Linkage Disequilibrium
Four haplotypes of CTLA-4 and six haplotypes of PD-1 were
detected (Table 4). The haplotype frequency of CACGG
haplotype (rs733618-rs4553808-rs5742909-rs231775-
rs3087243) of CTLA-4 in the PSS group was significantly lower
than that in the control group (29.30 vs. 41.16%, Pc = 0.015, OR =
0.60). The haplotype frequency of TGAGC haplotype
TABLE 2 | Genotype and allele frequencies of CTLA-4 SNPs in the PSS patients and healthy controls.

PSS n = 137 (%) Control n = 139 (%) p Pc OR 95% CI

rs733618
Genotype
TT 71 (51.82) 49 (35.25) 0.005 0.082 1.81 1.12−2.92
CT 52 (37.96) 66 (47.48) 0.110 0.550 0.68 0.42−1.10
CC 14 (10.22) 24 (17.27)

Allele
T 194 (70.80) 164 (58.99) 0.004 0.037 1.56 1.11−2.21
C 80 (29.20) 114 (41.01)

rs4553808
Genotype
AA 103 (75.18) 112 (80.58) 0.280 0.560 0.73 0.41−1.29
AG 28 (20.44) 25 (17.99) 0.605 0.726 1.17 0.67−2.13
GG 6 (4.38) 2 (1.44)
Allele
A 234 (85.40) 249 (89.57) 0.139 0.278 0.68 0.41−1.12
G 40 (14.60) 29 (10.43)

rs5742909
Genotype
CC 104 (75.91) 113 (81.29) 0.275 0.635 0.71 0.40−1.26
CT 27 (19.71) 24 (17.27) 0.605 0.698 1.22 0.67−2.22
TT 6 (4.38) 2 (1.44)
Allele
C 235 (85.44) 250 (89.93) 0.134 0.336 0.67 0.40−1.12
T 39 (14.23) 28 (10.07)

rs231775
Genotype
AA 30 (21.90) 13 (9.35) 0.004 0.122 2.72 1.35−5.47
AG 52 (37.96) 58 (41.73) 0.522 0.746 0.87 0.53−1.38
GG 55 (40.15) 68 (48.92)
Allele
A 112 (40.88) 84 (30.22) 0.009 0.044 1.553 1.10−2.20
G 162 (59.12) 194 (69.78)

rs3087243
Genotype
AA 12 (8.76) 4 (2.88) 0.037 0.370 3.24 1.028−10.31
AG 48 (35.04) 48 (34.53) 0.930 0.930 1.02 0.62−1.68
GG 77 (56.20) 87 (62.59)
Allele
A 72 (26.28) 56 (20.14) 0.088 0.293 1.36 0.92−2.02
G 202 (73.72) 222 (79.86)
February 20
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Values in bold indicate significant differences. p value was calculated using c2 test or Fisher’s exact test and corrected for multiple testing using the FDRmethod. PSS, Posner-Schlossman
syndrome; Pc, corrected p value; OR, odds ratio; CI, confidence interval.
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(rs10204525-rs2227981-rs2227982-rs41386349-rs36084323) of
PD-1 in the PSS group was significantly lower than that in the
control group (0.73 vs. 3.27%, p = 0.034, OR = 0.22), although
this association did not survive the FDR correction (Pc = 0.204).
No significant difference in the other haplotypes was found
between the two groups (all p > 0.05).

LD analysis among five SNPs of CTLA-4 and five SNPs of PD-
1 showed that all pair-wise LD between CTLA-4 SNPs and PD-1
SNPs had strong LD (D’ > 0.9), expect for the weak LD between
rs10204525 and rs2227981 (D’ = 0; Figure 1).

Circulating Plasma Protein Levels of
sCTLA-4 and sPD-1
The circulating plasma protein levels of sCTLA-4 and sPD-1 in
PSS patients (n = 81) were significantly higher than those in
Frontiers in Immunology | www.frontiersin.org 5
controls (n = 83) by ELISA (2.76±0.43 vs. 1.78±0.63 ng/ml, p <
0.0001; 110.31±30.60 vs. 47.98±27.72 pg/ml, p < 0.0001,
respectively; Figure 2). Our study did not find any significant
difference in plasma protein levels of sCTLA-4 and sPD-1
according to the genotypes of CTLA-4 and PD-1 (all p > 0.05;
data not shown).

The circulating plasma protein levels of sCTLA-4 and sPD-1
were confirmed by the human immune checkpoint molecular
array. The circulating plasma protein levels of sCTLA-4 in PSS
patients (n = 52) were significantly higher than those in controls
(n = 55) (16.37±22.73 vs. 4.99±23.53 pg/ml, p < 0.0001; Figure
3A). The circulating plasma protein levels of sPD-1 in PSS
patients (n = 56) were significantly higher than those in
controls (n = 55) (373.35±314.27 vs. 112.40±176.20 pg/ml, p <
0.0001; Figure 3B).
TABLE 3 | Genotype and allele frequencies of PD-1 SNPs in the PSS patients and healthy controls.

PSS n = 137 (%) Control n = 139 (%) p Pc OR 95% CI

rs10204525
Genotype
TT 70 (52.45) 83 (59.71) 0.150 0.500 0.71 0.44−1.14
CT 59 (41.96) 50 (35.97) 0.228 0.570 1.35 0.83−2.19
CC 8 (5.59) 6 (4.32)
Allele
T 199 (72.63) 216 (77.70) 0.168 0.240 0.76 0.52−1.12
C 75 (27.37) 62 (22.30)

rs2227981
Genotype
AA 17 (12.41) 9 (6.47) 0.092 0.552 2.05 0.88−4.77
AG 45 (32.85) 52 (37.41) 0.427 0.641 0.82 0.50−1.34
GG 75 (54.74) 78 (56.21)
Allele
A 79 (28.83) 70 (25.18) 0.334 0.417 1.20 0.83−1.75
G 195 (71.17) 208 (74.82)

rs2227982
Genotype
AA 40 (29.20) 47 (33.81) 0.409 0.646 0.81 0.49−1.34
AG 60 (43.80) 65 (46.76) 0.621 0.690 0.89 0.55−1.43
GG 37 (27.01) 27 (19.42)
Allele
A 140 (51.09) 159 (57.19) 0.150 0.251 0.78 0.56−1.09
G 134 (48.91) 119 (42.81)

rs41386349
Genotype
AA 10 (7.30) 6 (4.32) 0.289 0.510 1.75 6.62−4.94
AG 39 (28.47) 48 (34.78) 0.278 0.596 0.75 0.45−1.26
GG 88 (64.23) 85 (61.15)
Allele
A 59 (21.53) 58 (21.01) 0.882 0.882 1.03 0.69−1.55
G 215 (78.47) 218 (78.99)

rs36084323
Genotype
CC 36 (26.28) 30 (21.58) 0.361 0.602 1.30 0.74−2.26
CT 62 (45.26) 65 (46.76) 0.802 0.859 0.94 0.59−1.51
TT 39 (28.47) 44 (31.65)
Allele
C 134 (48.91) 125 (44.96) 0.354 0.553 1.17 0.84−1.64
T 140 (51.09) 153 (55.04)
February 2021
 | Volume 12 | Arti
The p value was calculated using c2 test or Fisher’s exact test and corrected for multiple testing using the FDR method. PSS, Posner-Schlossman syndrome; Pc, corrected p value; OR,
odds ratio; CI, confidence interval.
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TABLE 4 | CTLA-4 and PD-1 haplotype frequencies of the PSS patients and healthy controls.

Frequency (%) p Pc OR 95% CI

PSS 2n = 274 Control 2n = 278

CTLA-4 rs733618-rs4553808-rs5742909-rs231775-rs3087243
TACAA 26.37 19.86 0.070 0.139 1.45 0.97−2.15
TGTAG 14.29 10.11 0.134 0.179 1.48 0.88−2.49
CACGG 29.30 41.16 0.004 0.015 0.60 0.42−0.85
TACGG 30.04 28.88 0.767 0.766 1.06 0.73−1.53

PD-1 rs10204525-rs2227981-rs2227982-rs41386349-rs36084323
TAGAC 20.80 19.11 0.639 0.639 1.11 0.73−1.68
CAGGC 7.30 4.52 0.203 0.609 1.61 0.77−3.35
CGGGC 20.07 17.46 0.420 0.630 1.19 0.78−1.83
TGAGC 0.73 3.27 0.034 0.204 0.22 0.05−1.02
TAGAT 0.73 1.82 0.450 0.540 0.40 0.08−2.07
TGAGT 50.36 53.82 0.395 0.790 0.87 0.62−1.21
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FIGURE 3 | Expression anaysis of sCTLA-4 and sPD-1 by antibody array assay. (A) Comparison of circulating plasma protein levels of sCTLA-4 between PSS
patients and controls. (B) Comparison of circulating plasma protein levels of sPD-1 between PSS patients and controls. PSS: Posner-Schlossman syndrome;
sCTLA-4: soluble Cytotoxic T-lymphocyte associated protein 4; sPD-1: soluble programmed cell death 1.

Huang et al. PSS and CTLA-4 and PD-1
Comparison of CTLA-4 and PD-1 Allele
Frequencies and Levels of sCTLA-4 and
sPD-1 Between CMV-IgG (+) PSS Patients
and CMV-IgG (+) Controls
A subset of samples including 50 patients with PSS and 54 heathy
controls were available for detection of the CMV antibodies.
None of these samples was positive for CMV-IgM, and all these
samples were positive for CMV-IgG. The frequencies of T allele
of rs733618, A allele of rs231775, and A allele of rs3087243 in
CTLA-4 were significantly higher in CMV-IgG (+) PSS patients
than in CMV-IgG (+) controls, although these associations did
not survive the correction for multiple testings (71.0 vs. 55.6%,
p = 0.021, Pc = 0.21, OR=1.96; 46.0 vs. 29.6%, p = 0.015, Pc =
0.075, OR=2.02; 32.0 vs. 19.4%, p = 0.038, Pc = 0.13, OR=1.95,
respectively; Table 5). No significant difference was found in
allele frequencies of rs10204525, rs2227981, rs2227982,
rs41386349, and rs36084323 in PD-1 between CMV-IgG (+)
PSS patients and CMV-IgG (+) controls (all p > 0.05).
Circulating plasma levels of sCTLA-4 and sPD-1 in CMV-IgG
(+) PSS patients were significantly higher than those in controls
(p < 0.0001; Table 6).
DISCUSSION

Immune checkpoints prevent the excessive immune response by
transferring the inhibitory signals to spare healthy cells and
maintain self-tolerance (9). CTLA-4 and PD-1, the most
widely investigated checkpoints, are reportedly upregulated by
the tumor to escape from immune system monitoring (10). The
HLA polymorphism confers susceptibility to PSS. However, little
is known about the non-HLA genetic background of PSS (3).

In the present study, we genotyped five CTLA-4 SNPs and five
PD-1 SNPs in 137 patients with PSS and 139 healthy controls
from a southern Chinese population. The frequencies of T allele
of rs733618 and A allele of rs231775 in CTLA-4 were
significantly higher in PSS patients than in controls, and these
associations survived multiple testings correction. The
Frontiers in Immunology | www.frontiersin.org 7
frequencies of T/T genotype of rs733618 and A/A genotype of
rs231775 and rs3087243 in CTLA-4 were significantly higher in
PSS patients than in controls, but did not survive the FDR
correction. The CACGG haplotype (rs733618-rs4553808-
rs5742909-rs231775-rs3087243) in CTLA-4 might be the
protective haplotype for PSS. Du et al. reported that the G
allele at rs231775 and ACGG at CTLA-4 rs4553808-rs5742909-
rs231775-rs3087243 might be risk factors for VKH syndrome
(13). Since the risk genotype of rs733618 and rs231775, and the
haplotype of rs4553808-rs5742909-rs231775-rs3087243 of
CTLA-4 in PSS were completely different from those in VKH
syndrome, we considered that CTLA-4 genetic background
might be different between PSS and VKH syndrome (13). SNP
rs231775 of the CTLA-4 gene causes adenine-guanine
dimorphism at codon 17 in the peptide leader sequence (23).
The A and G alleles of rs231775 encodes the CTLA-4 17Thr and
CTLA-4 17Ala, respectively. Sun et al. reported that the CTLA-4
17Thr enhances the interaction between CTLA-4 and B7.1
molecule, and carries greater inhibitory effects on the
proliferation and activation process of CD25+/CD4+ T cell in
PBMCs treated with or without phytohemagglutinin, than the
CTLA-417 Ala (23, 24). SNP rs733618 is located upstream of
the CTLA-4 gene and is a part of the gene’s activator sequence.
The substitution of C allele to T allele of rs733618 could affect the
gene expression by changing the sequence of transcription factor
regulated NF-1 and c/EBPb binding sites (25). We hypothesized
that the A allele of rs231775 and T allele of rs733618 could confer
susceptibility to PSS in the southern Chinese population by
impacting the expression and function of CTLA-4. The
circulating plasma protein levels of sCTLA-4 were increased
during the onset of disease in PSS patients compared with healthy
controls, which also occurs in other autoimmune diseases (e.g.,
autoimmune thyroid disease, Graves’ ophthalmopathy, myasthenia
gravis, and spondyloarthropathies) (26–28). The relevance of
sCTLA-4, primarily secreted by Treg cell, to immune regulation
remains controversial. The sCTLA-4 maintains the ability to bind
to the B7 ligand via the MYPPPYmotif on antigen presenting cells,
and prevents the B7 ligand from combining with CD28 to inhibit T
cell responses (29). Furthermore, the selective blockade of sCTLA-4
February 2021 | Volume 12 | Article 607966
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activates the proliferation of T cells and upregulated the expression
of Th1/Th17-related cytokines (30). The significant antigen-
specific immune responses were increased by using the anti-
sCTLA-4-mAb in vitro and in vivo (30). However, we did not
find significant association between the genotype and expression of
sCTLA-4 (data not shown), probably because we only investigated
a limited number of SNPs in this study. More related SNPs, the
transcriptional regulation and protein modification of CTLA-4 in
the onset of PSS are needed to be investigated in the future. We
concluded that the A allele of rs231775 and T allele of rs733618
Frontiers in Immunology | www.frontiersin.org 8
were risk factors for PSS, and the expression of sCTLA-4 increased
the participation of T-cell regulation in the B7/CTLA-4/CD28
signaling pathway during the onset of PSS.

With regard to another important immune checkpoint, PD-1,
we found that the polymorphisms of PD-1 were not associated
with PSS, except that the TGAGC haplotype (rs10204525-
rs2227981-rs2227982-rs41386349-rs36084323) of PD-1 was
lower in patients with PSS than in the controls. Interestingly,
the expression of sPD-1 increased during the onset of PSS
compared to controls. High expression of sPD-1 might
contribute to the process of PSS through transforming the PD-
1/PD-L1 signaling pathway or regulating the immune response
of the T cell. In some chronic viral infections, higher PD-1 likely
converts effector cytotoxic T lymphocytes into exhausted
cytotoxic T lymphocytes (e.g., human immunodeficiency
virus, hepatitis B virus, hepatitis C virus) (31). High PD-1
expression is associated with emerging and evident CMV
disease and with viremia in liver transplant recipients (32).
PD-1 was also associated with the viremia caused by chronic
CMV infection, and blocking PD-1 signaling might help recover
the function of exhausted T cells in chronic CMV infection (33).
TABLE 5 | Allele frequencies of CTLA-4 and PD-1 SNPs in the CMV IgG (+) PSS patients and healthy controls.

CMV IgG (+) PSS n = 50 (%) CMV IgG (+) control n = 54 (%) p Pc OR 95% CI

CTLA-4
rs733618
T 71 (71.00) 60 (55.56) 0.021 0.210 1.959 1.11−2.21
C 29 (29.00) 48 (44.44)

rs4553808
A 86 (86.00) 96 (88.89) 0.529 0.756 0.768 0.34−1.75
G 14 (14.00) 12 (11.11)

rs5742909
T 14 (14.00) 11 (10.19) 0.398 0.796 1.436 0.62−3.33
C 86 (86.00) 97 (89.81)

rs231775
A 46 (46.00) 32 (29.63) 0.015 0.075 2.023 1.14−3.58
G 54 (54.00) 76 (70.37)

rs3087243
A 32 (32.00) 21 (19.44) 0.038 0.127 1.95 1.03−3.68
G 68 (68.00) 87 (80.56)

PD-1
rs10204525
T 73 (73.00) 83 (76.85) 0.522 0.870 0.814 0.43−1.53
C 27 (27.00) 25 (23.15)

rs2227981
A 27 (27.00) 32 (29.63) 0.674 0.843 0.878 0.48−1.61
G 73 (73.00) 76 (70.37)

rs2227982
A 53 (53.00) 56 (51.85) 0.868 0.868 1.047 0.61−1.81
G 47 (47.00) 52 (48.15)

rs41386349
A 20 (20.00) 27 (25.00) 0.389 0.973 0.750 0.39−1.45
G 80 (80.00) 81 (75.00)

rs36084323
T 53 (53.00) 55 (50.93) 0.765 0.850 1.087 0.63−1.87
C 47 (47.00) 53 (49.07)
F
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Values in bold indicate significant differences. The p value was calculated using c2 test or Fisher’s exact test and corrected for multiple testing using the FDR method. PSS, Posner-
Schlossman syndrome; CMV, cytomegalovirus; Pc, corrected p value; OR, odds ratio; CI, confidence interval.
TABLE 6 | Comparison of plasma levels of sCTLA-4 and sPD-1 between CMV
IgG (+) PSS patients and healthy controls.

n sCTLA-4 (ng/ml) sPD-1 (pg/ml)

CMV IgG (+) PSS 50 2.75±0.46 108.85±29.57
CMV IgG (+) Control 54 1.77±0.63 49.01±32.54
Z 6.848 7.664
p <0.0001 <0.0001
Values in bold indicate significant differences. The p value was calculated using Mann-
Whitney U test. PSS, Posner-Schlossman syndrome; CMV, cytomegalovirus.
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High expression of PD-1 is related to CMV infection, which
might be the potential crucial factor for PSS (3). The sPD-1
enhanced the immune response by enhancing co-delivered
antigen-specific CD8+ T-cell responses and in vivo maturation
of DCs during activation of naive CD8+ T cells, and inhibited the
PD-1/PD-L1 interaction (34, 35). However, the mechanisms of
upregulated expression of sPD-1 in the onset of PSS require
future investigation.

Since the CMV infection might be an important risk factor for
PSS, we analyzed the associations of the CTLA-4 and PD-1 SNPs
and the expression levels of sCTLA-4 and sPD-1 with PSS in the
CMV-IgG (+) samples. Our results showed that rs733618,
rs231775, and rs3087243 in CTLA-4 were significantly
associated with PSS in the CMV-IgG (+) individuals, although
these associations did not survive the FDR correction, probably
due to the limited sample sizes available for detection of the
CMV antibodies (Table 5). The circulating plasma protein levels
of sCTLA-4 and sPD-1 were increased during the onset of
disease in CMV-IgG (+) PSS patients compared with CMV-
IgG (+) healthy controls (Table 6). Our study did not find any
significant difference when plasma protein levels of sCTLA-4 and
sPD-1 were analyzed according to the genotypes of CTLA-4 and
PD-1 (all p > 0.05). We hypothesize that the mechanisms of
increased expression of sCTLA-4 and sPD-1 might be complex
in the onset of PSS. Moreover, the transcriptional regulation and
protein modification of sCTLA-4 and sPD-1 worth to be
investigated in the onset of PSS.

In summary, the results of the present study suggest that the T
allele of rs733618 and the A allele of rs231775 in CTLA-4 might
contribute to the process of PSS in a southern Chinese
population. The CACGG haplotype (rs733618-rs4553808-
rs5742909-rs231775-rs3087243) of CTLA-4 and TGAGC
haplotype (rs10204525-rs2227981-rs2227982-rs41386349-
rs36084323) of PD-1 might be protective factors against PSS in
southern Chinese patients. Moreover, sCTLA-4 and sPD-1 were
increased in the onset of PSS. These findings suggest that the
polymorphism and soluble levels of CTLA-4 and PD-1 might
shed further light on the dysfunction of immune checkpoints
in PSS.
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