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Pseudomonas aeruginosa and Staphylococcus aureus are both opportunistic pathogens
that are frequently associated with chronic lung infections. While bacterial virulence
determinants are critical in initiating infection, the metabolic flexibility of these bacteria
promotes their persistence in the airway. Upon infection, these pathogens induce host
immunometabolic reprogramming, resulting in an airway milieu replete with immune-
signaling metabolites. These metabolites are often toxic to the bacteria and create a steep
selection pressure for the emergence of bacterial isolates adapted for long-term survival in
the inflamed lung. In this review, we discuss the main differences in the host
immunometabolic response to P. aeruginosa and S. aureus, as well as how these
pathogens alter their own metabolism to adapt to airway metabolites and cause
persistent lung infections.

Keywords: immunometabolism, host-pathogen interaction, bacterial persistence, metabolic adaptation, itaconate,
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INTRODUCTION

Healthcare-associated pneumonias, including those associated with COVID-19, are caused by
opportunistic pathogens that readily adapt to the human airway. While the host immune response
to lung pathogens has been extensively characterized (1, 2), less is known about how opportunistic
bacteria survive in the lung despite hostile inflammatory conditions and appropriate
antibiotic treatment.

Bacterial infection of the airway occurs in stages. Initially, environmental pathogens withstand
the host immune response and antibiotic treatment by using virulence factors and acquired
antimicrobial resistance genes to establish infection. Once a nidus of infection is formed, bacteria
alter their metabolism and selectively regulate virulence to promote survival in the limited nutrient
conditions and oxidative environment of the airway (3). Traditional experiments in microbial
pathogenesis, including the use of defined deletion mutants and complemented strains, have been
very effective in defining the virulence factors that are critical for establishing acute pneumonia (4,
5). However, the adaptations that enable bacteria to persist in the airway are not well understood.

To study adaptation of bacteria to the human airway, multiple research groups have used clinical
strains from patients with chronic or persistent pneumonias, such as those with Cystic Fibrosis (CF)
(6–8). The natural history of pulmonary infection in CF typically consists of initial infection with
Staphylococcus aureus, followed by years of S. aureus and Pseudomonas aeruginosa co-infection,
then predominant and intractable P. aeruginosa infection coinciding with increased pulmonary
exacerbations and declining lung function (9). S. aureus and P. aeruginosa strains can thus be
isolated from the same CF patient over years (10, 11). Genomic, transcriptional, and phenotypic
org November 2021 | Volume 12 | Article 7905741
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data from these longitudinal isolates reveal the strategies that
enable these common Gram-positive and Gram-negative
pathogens to adapt to the airway for long-term survival. While
the CF airway is usually polymicrobial, bacterial pneumonia,
especially when attributed to the antibiotic-resistant ESKAPE
pathogens, is often considered a single entity. This review will
discuss the different strategies that P. aeruginosa and S. aureus
use to survive in the human airway as well as the host factors that
drive bacterial adaptation, with a particular focus on the roles of
both host and bacterial metabolism.
P. AERUGINOSA INDUCES A SUCCINATE-
DOMINATED HOST METABOLIC
REPROGRAMMING

The pathogenesis of acute P. aeruginosa infection often involves
lipopolysaccharide (LPS)-displaying bacteria that activate host
pattern recognition receptors (PRRs) like the Toll-like receptors
(TLRs) (12). This bacterial recognition by host cells leads to
downstream proinflammatory cytokine expression and
phagocytic recruitment for bacterial clearance (13, 14).
Recently, it has become increasingly appreciated that this
inflammatory response is driven by changes in the metabolic
activity of immune cells, a process called immunometabolism.

In response to LPS, macrophages become activated through
TLR4 signaling and undergo metabolic reprogramming (15). This
comprises upregulation of aerobic glycolysis and downregulation of
oxidative phosphorylation (OXPHOS) to meet the cell’s energy
requirements (Figure 1). While this metabolic shift may seem
counterintuitive given that OXPHOS is more energy efficient (36
molecules of ATP/glucose molecule), aerobic glycolysis can generate
ATP (2 molecules of ATP/glucose molecule) faster than OXPHOS,
akin to the Warburg effect in cancer cells (15, 16). These metabolic
changes are accompanied by increased production of the metabolite
succinate through glutamine-dependent anaplerosis and the
gamma-aminobutyric acid (GABA)-shunt (17) (Figure 1).
Increased mitochondrial oxidation of succinate to fumarate via
succinate dehydrogenase (SDH/respiratory complex II) and the
resulting elevation of mitochondrial membrane potential (Y)
drive the production of reactive oxygen species (ROS) via reverse
electron transport (RET) (18) (Figure 1). Succinate and ROS
stabilize the host transcription factor hypoxia-inducible factor 1a
(HIF-1a) by inhibition of prolyl hydroxylase (PHD) in the cytosol
(19) (Figure 1). This causes an increase in the transcription of genes
encoding glycolytic enzymes and the proinflammatory cytokine IL-
1b, which is expected to promote bacterial clearance.

It is important to note that, in addition to fueling succinate
production, glutamine-dependent anaplerosis can also increase a-
ketoglutarate levels. a-ketoglutarate promotes anti-inflammatory
pathways through epigenetic changes [reviewed in (20)]. Therefore,
glutaminolysis can drive both pro-inflammatory and anti-
inflammatory metabolic programs, and the ratio of succinate to a-
ketoglutarate is critical for determiningmacrophage polarization (21).

While these metabolic changes have been extensively detailed
in macrophages responding to LPS in vitro, infection with live
Frontiers in Immunology | www.frontiersin.org 2
P. aeruginosa also results in increased succinate accumulation and
production of IL-1b in the murine lung (22). Of note, increased
succinate production is an inherent property of the CF lung, even in
the absence of infection (22), due to a lack of sufficient membrane-
bound CF transmembrane conductance regulator (CFTR) and
impaired activity of the metabolic regulator Phosphatase and
Tensin Homolog deleted on Chromosome 10 (PTEN) (22, 23).

Increases in proinflammatory cytokines do not always clear
pathogens. This is clearly exemplified by the current COVID-19
pandemic, whereby SARS-CoV2-induced cytokine storm results
in excessive inflammation that fails to clear the viral pathogen
and instead contributes to immunopathology and mortality (24,
25). P. aeruginosa also stimulates IL-1b production by activating
the NLRC4 inflammasome in alveolar macrophages, which
enhances bacterial infection in a murine pneumonia model
(26). Dampening inflammasome activation or inhibiting IL-1b
signaling via the use of Il-1r or Il-18r null mice promotes
bacterial clearance and reduces immunopathology (26).

In order to restore homeostatic balance and counteract succinate-
driven inflammation, myeloid cells upregulate the expression of
Immune Responsive Gene 1 (Irg1/Acod1) to produce the
immunometabolite itaconate (Figure 1). Interestingly, this
dicarboxylate, which structurally resembles succinate, dampens
inflammation via its effect on several host pathways described
below. Itaconate is abundantly produced in the host airway during
P. aeruginosa infection as well as in the CF airway (22, 27).
ITACONATE COUNTERACTS SUCCINATE-
DRIVEN INFLAMMATION

Although itaconate was originally discovered in 1836 (28), its
immunoregulatory function was only elucidated in 2016 (29, 30).
Using Irg1 knockout cells and exogenous itaconate, multiple groups
found that itaconate inhibited SDH, thus preventing succinate
oxidation, ROS production via RET, HIF-1a stabilization, and IL-
1b production (29–31) (Table 1). Further investigations have
utilized derivatives like 4-octyl-itaconate (4OI) and dimethyl-
itaconate (DMI) to show that itaconate mitigates inflammation by
modifying cysteine residues, inhibiting glycolytic enzymes that
energetically sustain immune cell activation, preventing NLRP3
inflammasome activation, and activating anti-inflammatory and
anti-oxidant pathways by promoting ATF3 and NRF2 activation
(32, 33, 36–38, 40, 41) (Table 1). These pathways subsequently drive
macrophage polarization. For example, itaconate plays a key role in
IL-33-induced alternatively activated macrophages (AAMs) by
promoting GATA3 expression (42). Itaconate and its derivatives
remain the focus of ongoing investigation, even as a potential
therapeutic agent to treat COVID-19 (43), given their role in the
control of other viruses such as Zika (44) and influenza (45).

Recently, some of the mechanisms of action initially ascribed to
itaconate are being reevaluated in light of major differences in the
effects of itaconate versus its derivatives (34) (Table 1). DMI and
4OI were originally used because of their cell permeability, but
multiple studies have shown that itaconate also reaches the
cytoplasm when administered exogenously to cells (34, 37).
November 2021 | Volume 12 | Article 790574

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tomlinson et al. Immunometabolites Drive Bacterial Adaptation
Direct comparisons of itaconate and its derivatives have revealed
that DMI and 4OI are more electrophilic than itaconate and,
subsequently, target different processes within mammalian cells.
While DMI and 4OI are able to activate ATF3 and NRF2 signaling,
itaconate does not (34) (Table 1). Additionally, itaconate promotes
Type I interferon signaling, while its derivatives suppress IFN-b
production (34) (Table 1). Despite these differences, itaconate and
its derivatives share some core mechanisms of action, including
inhibition of glycolysis, inhibition of succinate oxidation,
suppression of pro-inflammatory cytokine release, inhibition of
the NLRP3 inflammasome, and promotion of ROS generation
through OXPHOS and the pentose phosphate pathway (PPP)
(Table 1). Overall, itaconate regulates inflammation by
Frontiers in Immunology | www.frontiersin.org 3
modulating the metabolic reprogramming that enables immune
cells to release cytokines and antibacterial factors into the
surrounding tissue.
SUCCINATE AND ITACONATE FUEL
P. AERUGINOSA LUNG INFECTION

As host cells undergo immunometabolic reprogramming and
release metabolites, cytokines, and antimicrobial factors into the
lung environment, P. aeruginosa adapts through its own metabolic
flexibility. This metabolic versatility is conferred by a global
regulatory system termed carbon catabolite repression (CCR) that
FIGURE 1 | Immunometabolic response to P. aeruginosa. LPS activates the infected macrophage, stimulating glycolysis and downregulating oxidative phosphorylation
(OXPHOS). This promotes glutamine-dependent anaplerosis, which replenishes succinate for oxidation to fumarate by mitochondrial succinate dehydrogenase (SDH).
The resulting increase in mitochondrial transmembrane potential (ΔY) and over-reduction of the ubiquinone pool reverse electron flow to complex I, where they escape
as reactive oxygen species (ROS). Both ROS and succinate stabilize HIF-1a, which translocates to the nucleus and binds to its target promoter regions, increasing Il-
1b transcription. The succinate-driven inflammation is regulated by the production of the anti-inflammatory metabolite itaconate.
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coordinates the assimilation of a preferred compound over other
potential carbon sources (46). CCR in Pseudomonas is significantly
different from that in Firmicutes or even in the Enterobacteriaceae.
For example, the preferred carbon sources for P. aeruginosa are
organic acids, particularly succinate, whereas S. aureus and E. coli
preferentially consume glucose over other carbon sources [reviewed
in (46)] (Figure 2). Therefore, in a setting replete with succinate,
such as the inflamed airway, P. aeruginosa would benefit from the
abundant supply of its preferred carbon source.

P. aeruginosa grown in a high succinate concentration in vitro
induced more inflammation and succinate release in vivo, and
exhibited increased colonization of the murine airway (22).
However, the continuous assimilation of succinate by P.
aeruginosa, as is the case in the CF airway, results in increased
bacterial production of endogenous ROS via aerobic respiration,
providing a steep selective pressure for ROS-adapted isolates.
These successful isolates increase metabolic flux through the
glyoxylate shunt and the Entner-Doudoroff pathway, bypassing
aerobic respiration to produce extracellular polysaccharides (EPS)
such as alginate, which are used to produce biofilms and shield the
bacteria from oxidant stress (22) (Figure 2). Exogenous ROS from
activated phagocytes also contribute to the selection of these host-
adapted isolates, which are characterized by decreased LPS at their
surface, reduced toxin production, and increased biofilm synthesis
(22, 27) (Figure 3). Of note, increased EPS surface display by these
isolates promotes more itaconate production, creating a positive
feedback loop that drives intractable infection (22, 27).

Itaconate is toxic to many bacterial species because it inhibits
isocitrate lyase (AceA), a key enzyme of the glyoxylate shunt,
which is required for bacterial survival in vivo (47–54).
P. aeruginosa harbors three genes, namely ict, ich and ccl, that
Frontiers in Immunology | www.frontiersin.org 4
enable it to catabolize itaconate and produce the energetic
intermediates acetyl-coA and pyruvate (27, 55). Clinical
isolates from CF airways prefer to use itaconate over succinate
as a carbon source and, unlike the laboratory strain PAO1, are
impaired in their ability to infect Irg1-/- mice (27), exemplifying
how in vivo adaptation alters both the metabolic preferences and
immunostimulatory capacity of these Gram-negative bacteria.
Itaconate thus serves as a key metabolic signal that works in
concert with other metabolites, like succinate, to promote P.
aeruginosa adaptation to the airway.
S. AUREUS INDUCES AN ITACONATE-
DOMINATED IMMUNOMETABOLIC
RESPONSE

As a Gram-positive pathogen lacking LPS, S. aureus induces a
distinct immunometabolic response from the one detailed above
for P. aeruginosa. During S. aureus infection, itaconate, but not
succinate, accumulates in the airway (22, 56) (Figure 3). This
itaconate-dominated response is accompanied by a distinct
cytokine profile, characterized by diminished levels of some
pro-inflammatory cytokines, like IL-1b and IL-6, but not
others, like TNFa (56). The selective reduction in IL-1b and
IL-6 is likely due to the inability of S. aureus to stimulate TLR4-
driven succinate accumulation and HIF-1a stabilization.

The host immune response to S. aureus infection depends on
TLR2, which responds to bacterial cell surface and secreted
factors like lipopeptides (57). TLR2 plays a prominent role in
the immune response to early staphylococcal colonization of the
TABLE 1 | Mechanisms of action of itaconate, and its derivatives.

Confirmed Contested Immune responsive gene1 (Irg1)

Modifies cysteine residues
and inhibits metabolic
enzymes

(31) (32, 33)

Reduces glucose
consumption and lactate
production

(31) (31) (32) (30)

Inhibits SDH and induces
succinate accumulation

(29, 30, 34) (29, 30, 34) (34) (30) (34)

Suppresses IL-1b, IL-6, IL-12,
IL-18 production

(30, 35) (31, 34) (32, 33, 34, 36) (36)
(high doses)

(30, 34, 36) (36)
(high doses)

Promotes IFN-b release and
Type I IFN signaling

(34) (34) (33, 34) (34)

Limits NLRP3 inflammasome
activation

(37, 38) (37) (34) (30)

Promotes OXPHOS and PPP-
driven ROS production

(35, 39) (35, 40)

Alkylates KEAP1 and activates
Nrf2 signaling

(34) (33, 34, 41) (34, 40)

Reduces IkB levels via ATF3 (34) (34) (34, 40)
Novem
ber 2021 | Volume
 12 | Article 790574

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Tomlinson et al. Immunometabolites Drive Bacterial Adaptation
lung, but is not essential for bacterial clearance and host survival
during pneumonia (58), suggesting that there are other pathways
that the host uses to sense and respond to S. aureus during lung
infection. This redundancy is important, given that S. aureus can
produce super antigens that bind and inactivate TLR2 (59).

Though IL-1b and IL-6 are less abundant in the S. aureus-
infected airway, they still play important roles in infection outcomes.
As in P. aeruginosa lung infections, IL-1b does not facilitate
bacterial clearance and instead exacerbates tissue damage during
S. aureus pneumonia. Mice lacking the interferon receptor Ifnlr1
demonstrate reduced IL-1b production along with improved
Frontiers in Immunology | www.frontiersin.org 5
bacterial clearance during S. aureus lung infection, and
administration of recombinant IL-1b to these mice worsens
bacterial burden (60). During S. aureus lung infections, IL-1b is
generated via inflammasome-dependent and independent
mechanisms, including neutrophil elastase (60). These alternative
mechanisms likely sustain IL-1b production during chronic
staphylococcal infections, given that inflammasome-driven
inflammation and tissue damage is dependent on S. aureus alpha
toxin (Hla), which is often downregulated in clinical strains (56, 61).
IL-6, meanwhile, modulates lung inflammation through
mechanisms that depend on the nature of the stimulus and the
FIGURE 2 | Interconnected pathways contributing to central carbon metabolism, LPS, and EPS synthesis in P. aeruginosa and S. aureus. P. aeruginosa and S. aureus
have distinct carbon preferences and metabolic pathways that contribute to pathogenesis. Carbon catabolite repression (CCR) ensures that P. aeruginosa consumes
succinate until it is depleted whereas S. aureus preferentially consumes glucose. The continuous consumption of succinate by P. aeruginosa generates endogenous
bacterial reactive oxygen species (ROS) via increased aerobic respiration. P. aeruginosa adapts by bypassing OXPHOS and upregulating the glyoxylate shunt and
the Entner-Doudoroff pathways, resulting in increased extracellular polysaccharide (EPS) synthesis. S. aureus, meanwhile, is highly dependent on glycolysis and
fermentative metabolism for survival during infection. When glycolysis is interrupted, as it is in itaconate-rich environments, carbon is shunted into EPS synthesis.
November 2021 | Volume 12 | Article 790574
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severity of inflammation, promoting neutrophil infiltration in
response to staphylococcal peptidoglycan but limiting neutrophil
infiltration, cytokine production, and tissue damage in response to
staphylococcal lipoteichoic acid (62).

The role of metabolites in regulating inflammation during S.
aureus lung infection has not yet been defined. The majority of
the studies that delineated the interplay between inflammation
and metabolism used LPS as a stimulus, and thus involved TLR4-
related pathways that may not be relevant to S. aureus infection.
Given that LPS is often used to stimulate immunometabolic
reprogramming, another major question that remains is how S.
aureus induces itaconate production. A recent study of the role of
itaconate in S. aureus endophthalmitis indicates that TLR2
signaling is not sufficient, as heat-killed S. aureus, lipoteichoic
acid, and peptidoglycan do not stimulate IRG1 expression to the
same extent as live bacteria (63). Instead, IRG1 expression can be
mitigated by administration of a mitochondrial ROS scavenger,
suggesting that host mitochondrial stress and/or oxidants
promote IRG1 expression during S. aureus infection (56).
Frontiers in Immunology | www.frontiersin.org 6
Mitochondrial ROS production and itaconate accumulation in
the murine airway depend on S. aureus glycolysis, demonstrating
that bacterial metabolism itself stimulates itaconate generation
during S. aureus lung infection (56). The exact mechanism that
connects bacterial metabolism to host metabolic reprogramming
still needs to be determined.
ITACONATE DRIVES PERSISTENT
S. AUREUS LUNG INFECTION

Just as S. aureus stimulates a distinct immunometabolic response
when compared with P. aeruginosa, it also employs different
strategies for adaptation to the human airway. As mentioned
above, S. aureus preferentially consumes glucose, and its glucose
metabolism is intricately linked with toxin and extracellular
polysaccharide synthesis through carbon catabolite repression,
regulated by CcpA and CodY [reviewed in (64)]. Increased glucose
consumption can also be used to fuel lactate fermentation, which
FIGURE 3 | Impact of immunometabolites on P. aeruginosa and S. aureus adaptation to the lung microenvironment. During infection with P. aeruginosa, airway
immune cells produce succinate, itaconate, and ROS. This creates a strong selective pressure for isolates that adapt via metabolic rewiring, decreased LPS surface
display and toxin production, and increased biofilm synthesis. In contrast, S. aureus infection induces accumulation of itaconate and ROS, but not succinate in the
airway. Both itaconate and ROS select for metabolically-altered S. aureus strains that exhibit decreased glycolytic activity and increased EPS and biofilm production.
November 2021 | Volume 12 | Article 790574
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enables the bacteria to maintain redox balance within the cell in the
setting of oxidant stress (65). As such, glucose consumption is critical
for survival during inflammation, and mutants that are unable to
transport glucose into the cell or metabolize it via glycolysis are
impaired in skin, soft tissue, and lung infections (56, 65–67).

Unlike P. aeruginosa, S. aureus is unable to catabolize itaconate,
and itaconate inhibits S. aureus growth in activated host immune
cells (53). Instead of targeting the glyoxylate shunt, which is absent
in S. aureus, itaconate inhibits staphylococcal glycolysis (Embden-
Meyerhof), mirroring one of its mechanisms of action in
mammalian cells (56). This glycolytic inhibition rewires bacterial
metabolism to promote carbon flux through upstream pathways
that synthesize extracellular polysaccharides used in biofilms (56)
(Figure 2). As such, longitudinal isolates that represent adaption to
the CF lung over 15 years exhibited increased biofilm production in
the presence of itaconate (56) (Figure 3). This differs from the
mechanism by which itaconate promotes P. aeruginosa biofilms,
which involves inducing membrane stress to downregulate LPS
production and promote EPS synthesis (27). Nevertheless, these
adaptive mechanisms converge on biofilm formation, which is
beneficial not just to the microorganism as protection from
phagocytosis and antimicrobial factors, but also to the bacterial
community, which includes both S. aureus and P. aeruginosa during
chronic lung infections.

While S. aureus does not induce succinate accumulation, it is
often in succinate rich environments, particularly during co-
infection with P. aeruginosa in the CF airway. In contrast to its
effects on P. aeruginosa, succinate inhibits S. aureus growth and
biofilm production in a dose-dependent manner, likely by
inhibiting consumption of its preferred carbon sources,
including glucose (22). Accordingly, S. aureus cultured in high
succinate concentrations is impaired in its ability to colonize the
airway and lungs of mice, unlike P. aeruginosa grown in the
presence of high succinate concentrations (22). These studies
reaffirm that common airway pathogens have different metabolic
preferences that are tailored to the immunometabolic response
they induce in the host.
CONCLUDING REMARKS

In recent years, it has become increasingly apparent that
immunometabolism plays a key role in the pathogenesis of
infections. Microbial metabolism has often been neglected in these
studies, withmany research groups instead turning to the use of LPS
as a standard proxy for bacterial stimulation. There is increasing
evidence, however, that microbial metabolic flexibility is not only
critical for bacterial persistence during infection, but also in shaping
the host immunometabolic response (68–70). Importantly, this
metabolic interplay between host and pathogen varies by microbe
and infection site. Future investigations into the immunometabolism
of infection should continue to include diverse pathogens and tissues,
taking care to address the differences in host response to active
microbialmetabolism versus inert PAMPs. These studies should also
address the systemic consequences of immunometabolism, as
comparatively little is known about the activity of metabolites that
are absorbed into the bloodstream during infection.
Frontiers in Immunology | www.frontiersin.org 7
While we have focused on the roles of just a few metabolites
in driving bacterial adaptation, other airway metabolites
produced during infection are likely to influence host-pathogen
metabolic interactions and infection outcomes. For example,
analysis of sputum samples from CF and non-CF patients
revealed higher amino acid concentrations in CF sputum (71).
This is particularly interesting given that both P. aeruginosa and
S. aureus consume amino acids, with a hierarchical preference
for some amino acids over others (72) [reviewed in (73)].
Conversely, amino acid starvation in many pathogenic bacteria
induces virulence gene expression. Thus, it is tempting to
speculate that the abundance of amino acids in the CF airway
progressively leads to decreased virulence gene expression as a
result of increased amino acid consumption.

Other factors that may influence the metabolic interaction
between the host and pathogen include the contribution of
microbiota-derived metabolites or metabolites generated by co-
infecting pathogens. Microbiome-derived metabolites such as
short chain fatty acids have been shown to regulate the function
of key immune cells, including CD8+ T cells and their ability to
recall infection (74). During co-infection of the CF lung, S.
aureus produces acetoin, which is used as a carbon source by
P. aeruginosa, decreasing the toxic effect of accumulated acetoin
on S. aureus and promoting the persistence of both bacteria (75).
These studies highlight the importance of considering the
metabolites originating from organisms other than the host
and pathogen of interest when studying the metabolic
underpinnings of infection pathogenesis.

Microbial adaptation to the host can be difficult to study because
animal models of chronic pulmonary infection are limited. This
problem is often circumvented by using clinical isolates that have
adapted to the human airway. One caveat to this approach is that
these metabolic adaptations may not be maintained over time as the
isolates are repeatedly exposed to artificial in vitro conditions that do
not adequately mimic the tissue microenvironment. Altogether,
while targeting host immunometabolism as an alternative or
complementary therapeutic strategy to enhance the clearance of
multidrug-resistant bacteria is an alluring prospect, host-pathogen
metabolic interactions and additional factors that influence these
dynamics require further study.
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