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The building blocks of complex biological systems are single cells. Fundamental insights
gained from single-cell analysis promise to provide the framework for understanding
normal biological systems development as well as the limits on systems/cellular ability to
respond to disease. The interplay of cells to create functional systems is not well understood.
Until recently, the study of single cells has concentrated primarily on morphological and
physiological characterization. With the application of new highly sensitive molecular and
genomic technologies, the quantitative biochemistry of single cells is now accessible.
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1. INTRODUCTION

In a time when the study of science was the imprimatur of
educated individuals, people turned their attention to the
skyabove through the studyof astronomyand toournatu-
ral environment through the study of biology. Direct
observational biology was the foremost method for scien-
tific discovery. Biological classification relied heavily
upon direct observation of minute but macroscopic
features. Advances in astronomy lent biologists improved
optics which allowed finer, more detailed magnified
observations of objects in their everyday world.

In 1665, the Royal Society published Robert Hooke’s
treatise ‘Micrographia’. Its first run of 2800 copies sold
out within 2 years of its initial publication, making it
the first scientific bestseller. In a series of chapters
entitled ‘Observations’, this text presented strikingly
detailed drawings and descriptions of Hooke’s obser-
vations of shells and the such as made using his
version of the newly developed compound microscope.
Notably, in Observation 18, Hooke provided the first
detailed description of the structure of plants through
his observations of cork, wherein he described the
observed small boxes as cells.
‘I took a good clear piece of Cork, and . . . cut off . . . an
exceeding thin piece of it, and placing it on a black
orrespondence (eberwine@upenn.edu).
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object Plate, because it was it self a white body, . . . I
could exceeding plainly perceive it to be all perforated
and porous . . . these pores, or cells, . . . were indeed the
first microscopical pores I ever saw, and perhaps, that
were ever seen, for I had not met with any Writer or
Person, that had made any mention of them before this.’
This was the first use of the word ‘cell’ to describe a bio-
logical entity. Anton Leeuwenhoek, a Dutch biologist,
described the first living cell. In a series of letters first
published in 1676 and spanning a decade of work,
Leeuwenhoek’s observations were presented to the
Royal Society [1], wherein he called the single-celled
organisms ‘animalcules’. The initial description of a
single-celled organism was met with scepticism, but
was eventually accepted, resulting in his appointment
as a Fellow of the Royal Society in 1680.

These initial observations were expanded over the
next 150 years, resulting in the elaboration of the cell
theory by Theodor Schleiden and Jakob Schwann,
with the addition of the important contribution of
Rudolf Virchow producing what is known as the
Modern Cell Theory [2]. The basic tenets of the
theory state that the cell is the fundamental unit of
structure and function for living organisms, all living
things are made up of one or more cells and that all
cells arise from pre-existing cells. The codification of
the Modern Cell Theory dramatically reduced the
This journal is q 2012 The Royal Society
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Figure 1. Loss of single-cell resolution is endemic to tissue-level analyses. Loss of resolution can be due to: (a) signal dilution, in
which a lowly expressed biomolecule (red triangles) fails to be detected owing to the predomination of other species (white
squares) in the aggregate sample; or (b) signal averaging, in which the biologically relevant ratios of biomolecular species are inac-
curately represented in the aggregate sample (total number of a particular mRNA divided by the number of cells). The nucleus of
the cell is depicted in the green oval situated in each cell.
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reliance of science upon the idea of vitalism heralding
the dawn of modern biology and paving the way for
acceptance of Darwin’s theories of evolution.

Biological investigation at the single-cell level has
advanced over time, resulting in recognition of the exist-
ence of millions of different cell types ranging from
bacteria through plants to eukaryotic cells. Identification
of cell type has traditionally occurred through morpho-
logical and functional phenotyping. The advent of
modern genomics and imaging technologies, such as the
introduction of microscopy during the time of Hooke
and Leeuwenhoek, has heralded a revolution in our
understanding of cells and their functional identity.
In this review, we will present some of the modern work
on single cells, discuss insights provided by this
work and suggest future directions for development of
single-cell analysis.
2. RATIONALE FOR THE STUDY OF
SINGLE CELLS

One of the hallmarks of multicellularity is the specializ-
ation of cells for the performance of different tasks, with
these cells organized into a hierarchy of functionally
and morphologically distinct, but genetically identical,
organ systems and tissues [3]. Inspection of a tissue
cross section with the aid of a strong microscope and
contrast staining would reveal cells with distinct charac-
teristics, specific to the tissue type from which they
derive. Neural tissue would reveal a network of glial
cells and neurons, with long projections that intercon-
nect to facilitate the propagation of signals. Heart
tissue would reveal stacks of filamentous cardiomyocyte
cells, while blood would be composed of smooth,
J. R. Soc. Interface (2012)
concave erythroid cells intermixed with irregularly
shaped leucocytes and platelet cells. These differences
are the phenotypic consequences of a divergent set of
biochemical reactions occurring within each cell,
mediated by a specific recipe of biomolecules—proteins
and RNA—produced from differential expression of the
genes in the organism’s genome.

To effectively study and understand biological
phenomena at the molecular level, cellular variability
must be accounted for. However, this can be difficult to
achieve using standard biochemical techniques, which
vary in their ability to detect and quantify single-cell
quantities of biomolecules. Typical tissue-level or cell-
population-level analyses often result in the loss of
cellular resolution and context (figure 1). On the one
hand, the source material may be dominated by a large
number of cells that do not express a biomolecule of inter-
est, resulting in a dilution of the signal below the lower
detection limit of a technique. On the other hand,
cell populations can average out individual cellular co-
expression patterns, making it difficult to determine,
for example, whether two biomolecules always occur
within the same cell or occur with mutual exclusion.
Thus, targeted single-cell analyses are needed to under-
stand cell-to-cell variability, and ultimately, how subtle
differences in cellular phenotype induce biological
phenomena such as learning and memory, and how
cell-specific changes lead to dysfunction, as in cancer.
3. VARIABILITY AND STOCHASTIC
EVENTS IN GENE EXPRESSION

Although cells of the same type share many distinguish-
ing characteristics, they are generally not identical.
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Living cells are not static—they consume metabolites,
receive external stimuli, adapt to changing microenvir-
onments, grow and divide. All of these processes are
mechanistically grounded in transient or even perma-
nent gene expression changes that are generally not
uniform across all cells. Sensory neurons, for example,
can occur in complex distributions to allow an organism
to respond to stimuli with spatial specificity [4,5]. A dis-
crete stimulus will involve the cascading activation of
many, but not all neurons, thus inducing cell-variable
physiological effects and gene expression changes [6].
Evidence suggests that gene expression changes underlie
the generation of long-term memory [7], which is thought
to involve the enhancement of specific synaptic con-
nections between individual neurons [8] resulting in
experience-dependent neuronal heterogeneity.

Even in the absence of explicit environmental dif-
ferences, cell-to-cell variation would still exist. This is
due to the inherent stochasticity of gene expression,
which requires physical interaction between a relatively
small number of molecular players. When few mole-
cules of reactants exist in a closed volume, as in a cell,
time to interaction is random, resulting in variation
between cells in terms of when, and if, a given gene is
expressed [9–12].

Stochastic gene expression is often subdivided into
two categories, by whether the noise is due to random
interaction at the promoter or transcript of a given
gene (intrinsic variation), or whether the source of noise
is variation in regulatory molecules (extrinsic variation)
[9]. These two classes produce different stereotypic
behaviours. Elowitz et al. designed a reporter system
to monitor these different types of noise, inserting cyan
and yellow fluorescent genes into Escherichia coli,
each attached to identical promoters. Intrinsic noise, or
variations due to random binding of a promoter or tran-
script, is observed as differences in the expression of the
two fluorescent signals within a given cell. Variation in
regulatory molecules or extrinsic noise, such as transcrip-
tion factors, polymerases and ribosomes, results in
consistent expression of these two copies within one cell,
but observed variation between different cells [9]. These
two types of variability occur on different timescales
with intrinsic noise fluctuating at the rate of transcription,
while extrinsic noise persists for the life of the regulatory
machinery. Both the timescale of noise and acell’s environ-
ment (e.g. in a single-cell or multicellular organism)
interact to produce phenotypic and fitness consequences.

Because gene expression underlies the physical charac-
teristics of a cell or organism, random variability in
transcription may result in molecular misregulation or
in variable phenotype among genetically and develop-
mentally identical cells. This generation of difference
may either be harmful or beneficial to an organism, and
regulatory circuits may have evolved to reduce or amplify
noise respectively [13,14]. Random over-expression of a
gene can result in wasted molecular resources, while
random under-expression may reduce the efficiency of
the cell for the activity of a given gene product [14].
All of these cases may incur a fitness cost. The extent
of intrinsic noise in gene expression is a function of
relative rates of transcription, translation, as well as
mRNA and protein degradation. Ozbudak et al. [15]
J. R. Soc. Interface (2012)
demonstrate that efficient transcription and less-frequent
translation result in minimal variability in protein abun-
dance in prokaryotes. In eukaryotes, the rates of
transition between active and inactive DNA significantly
affects noise, with rapid transitions followed by slow
transcription presumptively producing less variability
[16]. Higher gene copy number decreases noise, as do
negative autoregulatory feedback circuits [16]. These
observations suggest genetic or evolvable control of
variability in gene products.

Phenotypic differences between genetically and
developmentally identical cells can also be useful to an
organism, as they facilitate phenotypic plasticity. Two
prime strategies related to beneficial aspects of this
phenomenon are bacterial ‘bet-hedging’ and multicellu-
lar development [17]. ‘Bet-hedging’ allows an isogenic
bacterial population to survive rapid environmental
changes, with some proportion of the population ran-
domly exhibiting an alternate phenotype. As reviewed
by Eldar and Elowitz, even in good growth conditions,
a sub-population of a larger Bacillus subtilis population
remains in a ‘competent state’, without DNA replication
or cell division, at any given time. If the food supply sud-
denly becomes constricted, these non-dividing cells are
better suited to survive. When food again becomes abun-
dant, this population regenerates its initial diversity,
with the majority of cells metabolizing food and dividing.
This binary state results randomly from noise in the
expression of a key regulator, variation that is amplified
and stabilized by the structure of the gene regulatory cir-
cuit. Positive autoregulation of ComK, a gene responsible
for competence, amplifies random instances where its
own expression exceeds a threshold value, creating a
switch that results in biphasic gene expression and the
observed binary phenotype.

Multicellular organisms may directly use stochastic
mechanisms to generate cell-to-cell variability when
deterministic regulation required to produce the desired
spectrum of phenotypes would be exceedingly complex
[18]. Leveraging stochastic mechanisms allows for the
generation of significant diversity without hard-wiring
regulatory circuits to produce all possible outcomes.
Such a stochastic mechanism has been hypothesized
to underlie certain kinds of neuronal diversity. In the
olfactory system, sensory neurons contain over 1000
unique odour receptors, each expressed with only one
specific receptor expressed per cell [19]. Some authors
have suggested that these neurons may be generated
through a positive feedback mechanism that amplifies
gene expression noise to produce on–off expression
of an odorant receptor gene, coupled with a negative
feedback mechanism that represses all other receptors
[20]. With a probability distribution for activation
across odour receptor genes, this system can generate
a population containing the diverse spectrum of
receptors observed.

Although gene expression variation is perhaps the
easiest to imagine in the process of transcription and
translation, random variation also arises in other regulat-
ory processes, including isoform generation, allele-specific
expression, chromatin states, molecular partitioning at
cell division and signalling cascades [13,20–23]. As in
the above cases, the structure of regulatory circuits
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can suppress or amplify this noise, depending on
whether the resulting variability has been beneficial
over evolutionary time.

Most single-cell studies to date that have character-
ized and quantified variability have been performed in
prokaryotic systems, which, from a technical perspec-
tive, are easily accessible single-cell systems. Single-cell
studies in multicellular organisms and more complex
heterogeneous tissues, such as brain tissue, present var-
ious technical obstacles. While a number of techniques,
such as imaging and electrophysiology, can readily
assess single cells, other techniques, such as transcrip-
tome and proteome analysis, are limited by the
amounts of input material from a single cell. In the fol-
lowing text, we review various attempts and technical
improvements that have developed over the past
decade to facilitate the study of single cells.
4. MICROSCOPY TECHNIQUES AND
VISUALIZATION OF SINGLE CELLS

Since the time of Hooke and Leeuwenhoek, microscopy
has come a long way; cells can now be visualized in
intact tissue with nanometre and three-dimensional res-
olution, making it possible to investigate single-cellular
compartments and single molecular interactions in
great detail. The fundamental structure and principles
of compound microscopy are the same as from Hook’s
era, although progress in electronics and computer
science have greatly enhanced the sensitivity of
microscopy for signal-to-noise detection and image res-
olution [24]. For example, bright sunlight was first
replaced with a white light source, and has now been
supplanted by lasers. Detection of magnified objects
with the human eye has been replaced with cameras
and specialized photon-detecting apparatus. In the
past decade, progress in microscopy has focused on
generating higher resolution images of anatomical
structures, improving spectral separation of emitted
light for simultaneous detection of multiple dyes and
higher temporal speed for faster image acquisition.
The availability of multiple light sources such as laser
lines for scanning microscopes and light emitting
diodes for epifluorescence microscopes have expanded
the choice of available fluorochromes and opened
up the possibility of synthesis of wavelength-specific
fluorochromes in the future [25].

The conventional method of using spectral filters has
limitations in separating multiple, closely located emis-
sion spectra and, in the case of low-level fluorescence
detection, is especially sensitive to instrumental arte-
facts such as dark-current (electronic noise) produced
by the detector [26]. Currently, microscopy using
advanced spectral detection methods are based on scan-
ning through the emission spectra or static capture of
the entire emission range with multiple detector
arrays for each wavelength [27]. Both methods are
capable of distinguishing the difference from FITC
and EGFP, which have very similar emission spectra,
separated by only about 20 nm. As the emissions are
dispersed en route to the detector, the number of
detectable photons from each pixel for any specific
J. R. Soc. Interface (2012)
wavelength is also reduced. However, this limitation
can be overcome by choosing efficient fluorochromes
with better quantum efficiency and extinction coeffi-
cients, by using dyes that produce bright emissions,
and by using more efficient detectors such as a
GaAsP photomultiplier tube or electron multiplying
charge-coupled device. The optimal combination of
fluorochrome and detector with spectral deconvolution
allows the use of multiple fluorescent reporter proteins
with multiple physiological indicators at the same
time. Currently, the typical limits of conventional
microscopy allow three channels of detection, whereas
these technologies should extend the number of possible
channels to at least six.

Using different lenses or small scanning area (zoom),
microscopy can be used as a non-destructive investiga-
tive tool for studies of samples ranging from a single
cell in tissue through the resolution of subcellular com-
partments in live samples. The recent development of a
miniaturized microscope that can be mounted on a
mouse head allows monitoring of brain activity with
single-cell resolution while the animal is freely moving
[28,29]. These advances allow us to move forward to a
more comprehensive understanding of the biology of
living organisms in action.

In order to achieve the highest resolution for the
study of cellular anatomy, electron microscopy is the
best approach. Recent serial section scanning electron
microscopy and digital reconstruction have been used
to demonstrate three-dimensional ultrastructure of the
cell [30]. Although EM is costly in terms of both time
and labour, the combination of EM and fluorescence
microscopy also demonstrates the potential future
application of correlating single-cell proteomics to
determine protein function with highly sensitive ima-
ging to determine localization [31]. Using various
fluorescence indicators and proteins, the identification
of single cells in tissue and monitoring of physiological
activity have become part of the daily routine for
many scientists. Since Abbe’s definition of the physical
limitation of resolution in far-field optical systems
roughly 130 years ago, many scientists have devoted
their efforts to overcoming the ‘Abbe’s diffraction
limit’ [32–34]. Recent advances in microscopy achieve
nanometre-level resolution using engineered proteins
or physical properties of fluorescence molecules to suc-
cessfully visualize subcellular structures beyond the
limit of diffraction of light [35,36]. Depending on
the usage of fluorescence proteins or illumination
methods, the microscopy technology can be divided as
photoactivated localization microscopy [36], fluor-
escence photoactivation localization microscopy [37],
stochastic optical reconstruction microscopy [38],
which work by switching the fluorescence proteins on
and off, or by methods using manipulation of illumina-
tion methods such as stimulated emission depletion
[35], ground state depletion [39] and structured illu-
mination microscopy [40,41]. All of these available
super-resolution microscopy techniques can be applied
to live single-cell studies and bring the promise of
high resolution to investigate further details of the
biology of single cells that have yet to be determined
by conventional techniques. Another single-cell-level,
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single-molecule imaging technology is fluorescence res-
onance energy transfer (FRET) [42]. Strictly speaking,
this is not a microscopy technology but instead, usage
of the microscope while taking advantage of the prin-
ciples of fluorescence chemistry. Unlike conventional
fluorescence microscopy using excitation and subse-
quent emission detection where flurochromes are
chosen with separated emission spectra, FRET uses
pairs of fluorochromes in which the emission of one
flurochrome overlaps with the other’s excitation.
Detecting electron transfer between those dyes allows
one to measure the conformational changes of proteins
during biological activity beyond the resolution of
any microscope currently available, as the signal is
dependent on distances measured in angstroms. For
high-resolution imaging in a single cell, using near-
field illumination as excitation, total internal reflection
fluorescence (TIRF) microscopy can also be used to
image single cells [43]. This technology takes advantage
of the property of light reflection to generate high axial
resolution images of samples.

Owing to the physical properties of illumination,
light takes on an hourglass shape with the smallest
point centred on the object of study. This means blur-
ring of the image is always unavoidable. Mathematical
deconvolution based on the point spread function of
optics has been used to address this issue and can be
used to successfully reconstruct crisp images [44].
Using a pinhole in confocal microscopy, without relying
on mathematical data processes, allows one to easily
acquire the desired plane of focus in samples. However,
in order to acquire high temporal resolution line scan in
conventional confocal microscope can serve this pur-
pose, although it produces limits on a real resolution,
as only a single line can be acquired at a time. For ima-
ging an entire cellular region, a spinning disk confocal
with multiple arrays of pinholes in the optical path
can acquire whole-cell-wide biological activities with
high speed [45]. In addition to using physical methods
of manipulating the function of light by limiting its
path with pinholes or by using mathematical decon-
volution, the nonlinear nature of multiphoton excitation
of fluorochromes is also used to decrease blur. This
method, frequently referred to as two-photon microscopy,
eliminates non-specific excitation of surrounding imaging
planes to generate a confocal effect. This method has been
extended to in vivo animal imaging by using a deep pene-
trating long wavelength multiphoton laser, and is also
commonly applied in prepared cells and tissue specimens
[46]. Another advantage of the multiphoton light source is
that it is relatively less phototoxic than single-photon
microscopy and therefore more suitable for long-term
imaging on targeted cells. The illumination of multi-
photon microscopes is still bound by the diffraction
limit, but owing to its defined volume and a non-descan-
ning method for emission collection, future developments
in detector design will continue to increase the precision of
data that can be obtained far beyond that which can be
acquired from the single-photon methods.

The use of photo-labile structures permits lasers
to manipulate the cellular physiology and allow the
capture of substances at the single-cell level [47,48].
Chemicals that are designed for use in either single-
J. R. Soc. Interface (2012)
photon or two-photon applications are incorporated
into caged compounds widely used in single-cell and
subcellular functional studies. Photolysis can be pro-
duced as long as imaging is possible, and thus it can
be performed at a high spatio-temporal resolution as
long as the target can be simultaneously visualized.
Altogether, modern microscopy allows us to identify
the target single cell, monitor physiology, manipulate
physiology and capture the substance responsible for,
or that results from physiological activity. In the
future, the automation of microscopy and higher spec-
tral separation will allow us to image massive
numbers of single cells with a variety of different bio-
logical tags. Imaging techniques provide a method
whereby single cells can be visualized in real time and
some cell biological parameters quantified in the
context of that cell’s specific natural environment.
5. ELECTROPHYSIOLOGY TECHNIQUES
AND THE STUDY OF ION CHANNELS IN
SINGLE NEURONS

The advent of single-cell electrophysiology was brought
on by a series of elegant experiments using the squid
giant axon as a model system as well as the develop-
ment of the patch-clamp to gain insight into ion
channel populations and signalling capabilities of
single neurons [49,50]. Using a glass electrode attached
to equipment capable of measuring millivolt-level
changes in membrane potential or picoamp changes in
ion channel currents, researchers can measure neuronal
electrical responses. Electrophysiology provides a valu-
able tool to gain insight into how neurons and other
cells respond to various electrical or pharmacological
stimuli, and can be used to examine cells in culture,
brain slice or in vivo. As electrophysiology assesses
ionic flow across the plasma membrane, it can provide
insight into the responsible mechanism of such currents.
Although low-throughput, the ion channels contribut-
ing to signalling can be determined by understanding
the ionic properties, the unique characteristics of each
ion channel, and by the use of pharmacological manipu-
lation of the cell to either inhibit, block or activate the
ion channel of interest. It is now routine to test a drug’s
effects using single-cell recording. Variability in ion
conductances can be quantified among single neurons
[51–53] and when combined with other single-cell tech-
niques, such as imaging, can generate a more complete
picture of the phenotype of the investigated cell. For
example, Browne et al. [52] performed single-cell analy-
sis of single thalamic neurons using a combination of
electrophysiology, pharmacology and single-cell PCR
analysis. Differences in GABA subunit expression and
pharmacological responsiveness to clorazepam, an anti-
epilepsy therapeutic, were demonstrated among single
cells. One of the most promising findings was that
single-cell differences in subunit expression were corre-
lated with differential pharmacological responsiveness
suggesting subunit-defined specificity to clorazepam
responsiveness. Combining electrophysiological studies
of function with single-cell RNA profiling techniques
and imaging provides an integrative analysis of live
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functioning cells. Such integrative approaches promise
to highlight the molecular underpinnings of cellular
physiology and functioning.
6. IN SITU HYBRIDIZATION
TECHNIQUES AND RNA DETECTION
IN SINGLE CELLS

Similar to electrophysiology, in situ hybridization (ISH)
is a low-throughput method that allows the study of
single cells. ISH is an imaging technique used to inves-
tigate the number and identity of RNA species in single
cells, and it can be performed on cells or tissue sections
without isolation or manipulation of endogenous RNA.
This first method of visualizing nucleic acids was
established in the early 1970s on the basis of the use
of radioactive material to label oligonucleotide probes
[54]. Ten years later, fluorescence in situ hybridization
(FISH) advanced the technique of ISH as it presented
many advantages in resolution, speed and safety [55].
FISH is performed by hybridizing a labelled nucleic acid
probe (either DNA, RNA or modified nucleic acids)
on a complementary target in fixed and permeabilized
tissue or culture samples. Despite having a lower sensiti-
vity than other methods, ISH is one of the few methods
that can provide subcellular localization information
and can simultaneously show variability between cells
and within subcellular regions. Although the basic
principles of FISH have remained unchanged, high-
sensitivity detection, assaying multiple mRNA species
simultaneously, and automated data collection and quan-
titative analysis have advanced the field significantly. One
caveat to the use of ISH or FISH is that a limited number
of targets can be investigated simultaneously and that the
use of labelled probes allows targeting only the specific
region of the transcript selected a priori [56]. In general,
successful FISH results are achieved when the concen-
trations of the target sequence provide enough contrast
above the background fluorescence.

Many advances in this procedure have been introduced
to avoid the limitation of low-throughput and to allow a
more refined target detection, sensitivity and resolution.
For instance, the use of oligoprobes labelledwithfive fluor-
ochromes allowed the detection of singlemolecules present
at low concentration within a cell with binding of only one
oligonucleotide probe [57]. This technique provided an
advancement in sensitivity of up to two orders of magni-
tude over what was previously possible [58]. Another
improvement in FISH is multiplex labelling of different
RNA species within a single cell. In this method, several
dyes are conjugated to oligonucleotide probes directed to
different RNAs and allowed to simultaneously visualize
several transcription sites active at the time of tissue har-
vesting [59].Thismodification ofFISHhas highlighted the
presence of extensive variability in single-cell gene
expression. Variations in in situ labelling techniques are
continuously introduced and improved on providing a
different level of detection from which to choose. The spe-
cifications, sensitivity and resolution of these techniques
are thoroughly reviewed elsewhere [60–62].

Significant progress in computer-automated data pro-
cessing has enabled researchers to analyse FISH imaging
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data at a much larger scale. For instance, a recent FISH
study in Drosophila embryos showed that the majority of
mRNAs (71% of 3370 genes investigated) were asymme-
trically localized, highlighting the fact that targeted
mRNA localization is a widespread phenomenon occur-
ring at multiple developmental stages and across phyla
[63,64]. FISH has now been developed and used for a var-
iety of organisms and cell types. For single-celled
organisms such as bacteria and yeast, detailed analyses
of gene expression patterns with FISH have revealed
the bursting nature of gene transcription [65–67] in
these organisms.
7. SUBCELLULAR mRNA LOCALIZATION
PATTERNS CAN BE VISUALIZED
USING FISH

Subcellular RNA localization has been conserved
throughout evolution and has been described in a large
variety of species ranging from yeast to mammals. Vari-
ation in subcellular distribution occurs in dividing cells
such as fibroblasts as well as in post-mitotic cells such as
neurons, and is used by the cell to target classes of
RNAs to subcellular sites where they function, e.g.
mRNA to direct protein synthesis to specific regions [68]
or microRNAs for use in modulating local translational
activity. Asymmetric distribution of specific mRNAs in
the cytoplasm was first visualized in the early 1980s
when ISH techniques were used to detect b-actin
mRNA in ascidian embryos [69]. Subsequent studies
demonstrated that asymmetric mRNA localization con-
tributes to the targeting of protein products involved in
developmental processes, such as oocyte differentiation
with the establishment of morphogenesis gradients
[70–72] or early stage development of embryos [73–79].

Single-cell studies are particularly useful in the central
nervous system (CNS), given the high degree of cellular
heterogeneity both among different cell types and
within a single-cell type. In cultured neurons, FISH
studies have highlighted the importance of mRNA local-
ization. A large population of transcripts are confined in
dendrites [80–82], and these transcripts are both locally
translated [83–90] and spliced [91]. Remarkably, the sub-
cellular distribution of transcripts is often non-uniform
and punctate, suggesting that local translation is con-
fined to ‘hot-spots’ [82,87,88,92,93] (figure 2). This
subcellular regulation of transcript targeting and local
translation allows for fast and accurate spatio-temporal
control of cellular responses to environmental changes
or synaptic input, and is critical for the establishment
of synaptic plasticity [94]. Several dendritically localized
transcripts have been described, and include structural
proteins (MAP2), enzymes (CamK2a), growth factors
(BDNF), ligand- or voltage-gated ions channels (gluta-
mate and GABA receptor subunits; calcium channels)
and transcription factors (CREB) [83,95–98].
8. TRANSCRIPTOME PROFILING
OF SINGLE CELLS

Single cell transcriptomics requires the isolation of RNA
from the single cell and can be accomplished using a
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Figure 2. In situ hybridization reveals different patterns of localization in neuronal dendrites. Fluorescent microscopic evaluation
of biotin-conjugated oligoprobes on paraformaldehyde-fixed 14-day-cultured mouse cortical neurons hybridized with biotin-con-
jugated 25mer-oligoprobes detected with streptavidin-Alexa568. For each image, the small bottom left corner panels represent
MAP2 immuno-staining. Patterns of distribution are highlighted with red arrows. (a) Probe against OLFM1 transcript illustrates
a uniform distribution in dendrites; (b) probe against ARHGDIA transcript illustrates a punctated distribution in dendrites.
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Figure 3. Mechanical severing of soma and dendrites from neurons. Rat hippocampal neuron in dispersed primary cell culture
with its soma (red arrow) and dendrites (red circle) before (a) and after aspiration by a glass micropipette of the soma (b)
and dendrites (c).
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variety of methods the most common of which is by using
a patch pipette (described in the electrophysiology sec-
tion above) to puncture the cell and aspirate the
contents (figure 3). This approach can also be used to iso-
late subregions of cells including neuronal dendrites as
illustrated in figure 3.

Transcriptome analysis permits the analysis of mul-
tiple mRNAs simultaneously rather than one or a few
at a time. Such analyses highlight the coordinate
changes in gene expression that occur within cells,
emphasizing an aspect of cell regulation that is missed
in the analysis of one mRNA at a time. Several
approaches can be taken to transcriptome profiling,
including PCR, microarray and RNAseq, each of
which has advantages and disadvantages.

Microarray has been the main high-throughput
method for RNA profiling since its development in
the mid 1990s. It is primarily used to study the global
transcriptome in populations of cells. Before the develop-
ment of microarrays (and even today), many laboratories
relied on PCR to test expression levels of a small number
of genes. However, PCR is limited by the restricted
number of transcripts that can be studied simul-
taneously, and the exponential nature of transcript
J. R. Soc. Interface (2012)
amplification can significantly distort the quantification,
even with techniques such as quantitative PCR. There-
fore, microarrays represent a substantial improvement
over PCR. When samples are prepared using linear
amplification [99], microarray provides quantitation of
thousands of transcripts simultaneously from a single
cell or from a population of cells. A microarray or DNA
chip contains thousands of DNA probes that bind specific
transcripts. Hybridization is quantified by labelling
the amplified cDNA with fluorochromes and uses
hybridization of cognate sequence between the RNA
(or cDNA) and a predesigned cDNA probe (table 1).

The shortcomings of microarrays arise from poor
control of stringency leading to cross-hybridizations, rela-
tively low dynamic range and that quantification relies on
use of pre-determined probes, potentially missing many
previously uncharacterized transcripts. Microarrays
have missed some important regulators of cell phenotypes
in that an additional level of regulation is generated by
isoforms and alternative splicing which are not easily
detected using microarrays. Additionally, when many
cells are combined and analysed by a microarray, there
is an averaging effect where transcripts, only found in a
few cells out of the isolated population, may fall below



Table 1. Comparison of RNA analysis techniques. In comparing the most common RNA analysis procedures with one another
for use in single-cell transcriptomics, each procedure has advantages and disadvantages. The quantitation of signal with ISH is
compromised by the permeability of the tissue while quantitation of qPCR is difficult because of the need to quantitate in the
limited linear range of PCR amplification. Only RNA-seq does not require choice of probe for analysis and hence is the only
procedure that is unbiased in the data that are generated. False-positives (calling a RNA present when it is not) arise in part
from difficulty in controlling for specificity of detection methodology and only ISH can be selectively controlled so that no
false-positives arise. Microarray gives rise to the most false-positives as sequence-specific hybridization hotspots are difficult to
eliminate and control for. False-negatives (calling a RNA absent when it is not) arise most dramatically with ISH and qPCR,
as specific sequences are needed to generate a positive signal, and if those sequences are incapable of binding to the probe
(secondary structure, etc.), then no signal will be generated. False-positives and negatives for RNA-seq are negligible when
performing paired-end 100 base reads but increase if doing shorter sequencing reactions (e.g. single-end 50 base reads).

ISH qPCR microarray RNA-seq

single-cell resolution yes yes yes yes
high-throughput no no yes yes
quantitative with difficulty with difficulty yes yes
unbiased no no no yes
cost $ $$ $$$ $$$
ease of use þþþ þþþ þþ þ
amount of data þ þþ þþþ þþþþ
false-positives 2 þ þþþ þ
false-negatives þþþ þþþ þþ þ
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the detection limit, and thus, may not be recognized as a
present transcript. The variability in expression profiles
between single cells of the same type has now been
shown a number of times, using microarray analysis. We
are now at the point where intracellular variability is
well recognized and should not be ignored.

To improve on the data obtained using microarrays,
researchers have begun to benefit from the results
obtained from high-throughput sequencing of RNA
expression levels. The advent of mRNA sequencing
eliminates the requirement to choose sequences for
investigation, as there is no need to choose targets or
probes. Sequencing can provide a greater depth of infor-
mation regarding transcript variants and gives a more
complete picture of the transcriptome, and, in turn, cel-
lular phenotype. This advancing technology has been
used to assess various biological questions, including
adding a great deal of new information about transcript
sequence variation in a short period of time [100]
and has been used to produce a new paradigm for the
identification of drug targets for pharmaceutical devel-
opment [101,102]. Mapping of sequence reads back to
the genome has revealed previously undetected splice
forms of RNA, and examples of alternative exon use
ranging from skipped sequences, cryptic sequences that
are retained and combinations of specific sequences
suggesting a form of exon selection/choice based on the
presence of particular sequence patterns [103]. Variant
splice forms detected are not limited to exonic coding
region differences, as previously undescribed, retained
introns have been found for a number of transcripts in
various tissues [104]. The splicing, translation and
ultimate function associated with these cytoplasmic
intron-retaining transcripts are only beginning to
emerge. Additionally, alternative 30 and 50 untranslated
regions (UTRs) have also been identified in a number
of tissues, and these forms may in fact be specific to
those cell types or to particular cells of a given type
with the tissue [105]. These features currently fall outside
J. R. Soc. Interface (2012)
where their genes are thought to begin and end, and most
likely would be discovered only by sequencing. These
sequencing results are not entirely unexpected as pre-
vious deposits of transcript sequences are based on the
most abundant isoforms present in cells, and are in turn
mapped back to the genome to define what we think of
as exons, introns, UTR and gene boundaries. While the
first RNA sequencing studies involved sequencing library
construction from bulk prepared RNAs, construction of
libraries from aRNA has proved to be a robust and repea-
table approach to assaying single-cell transcriptome by
RNA sequencing. RNA sequencing promises to greatly
increase the dynamic range, precision and resolution of
RNA measurement. However, there are still several
issues that require refinement, including removing biases
from sequencing chemistry or computational processing.

An example of the type of problem that the single-cell
transcriptomic’s approach may be useful in investigating
is to identify and quantify the mRNAs encoding the pro-
teins involved in establishment of neuronal connectivity
and therefore neuronal systems. Single-cell RNA-seq
is ideally suited for this, as the pre-synaptic ligand-
encoding gene neurexin and the post-synaptic-receptor
encoding gene neuroligin can both undergo extensive
alternative splicing, giving rise to cell-enriched forms of
mRNAs and their translated proteins. The pairing of a
selected neuroligin with its neurexin is critical in elabor-
ating proper synaptic connections [106]. Another set of
players in the CNS wiring schema are the protein
products of DSCAM genes that encode cell surface
IgG-like receptors that act as ‘hydrophobic repulsers’ of
interactions, thereby inhibiting inappropriate synaptic
connections [107]. Elucidation of which alternatively
spliced forms, of each these gene products, are expressed
in pre- and post-synaptic neurons will establish thewiring
capability of these cells. Such wiring capacity is the key to
establishing functional neuronal systems that underlie all
aspects of neuronal functioning, and understanding how
this is molecularly regulated will provide important
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functional and therapeutic insights into neurological and
psychiatric illnesses. Such insights can be garnered only
by using single-cell approaches.
9. APPROACHES TO STUDY GENE
EXPRESSION IN MULTICELLULAR
ORGANISMS IN VIVO

While some approaches to study the expression of mul-
tiple genes in multicellular organisms do exist, there is
still not an ideal method that provides quantitative
genome-scale data from a single brain cell in vivo.
Such a method would prove valuable in several con-
texts. Combining genome-scale transcriptomics data
with other physiological parameters would enable us
to ask more directed questions towards understanding
the underlying molecular regulation of complex
neuronal functions such as learning and memory.

Progress towards this goal, however, has been made,
and the level of cellular resolution largely depends on the
rules of development in the respective cell lineages.
In species with invariant and fixed cell lineages, such as
the larva of Caenorhabditis elegans, automated digital
expression atlases of gene expression have been generated
using either ISH or fluorescent protein reporters [108].
Single-cell datacanbe generated from this simple organism
because the cell lineages are largely invariant between indi-
vidualworms, and thus, the same cells are easily annotated
and identified by spatial discrimination. This approach,
however, is limited when compared with global transcrip-
tomic techniques, as this particular study only assessed 93
genes in 363 cells.And while it is an excellent model system
in many contexts, it does not rival the complexity of cells in
mammalian species where there are hundreds of millions
more cells and cellular interactions.

ISH atlases have been generated for multicellular
mammalian model organisms that do not have fixed
cell lineages, such as mice. The Allen Brain Atlas pro-
vides a comprehensive genome-scale ISH atlas of the
expression pattern of approximately 20 000 genes in
the adult mouse brain [109]. Also, an embryonic mid-
gestation ISH atlas investigated the expression of
approximately 1000 genes in more than 90 distinct ana-
tomical features [110]. In these datasets, the low
channel capacity of in situ technology was complemen-
ted by computational techniques to merge the image
data from multiple animals—thus, creating a synthetic
multiplexed dataset. Furthermore, the Gene Expression
Nervous System Atlas project provides an alternative
approach to investigate gene expression using the
BAC-transgenic mouse engineering system in which
an EGFP and a polyadenylation site are introduced
immediately upstream the ATG start codon of each
gene. The hundreds of available BAC-transgenic
mouse strains provide a valuable tool for tracking the
spatial expression pattern of each gene in various
brain regions, and to some extent, also provide infor-
mation about cell type expression pattern, based on the
morphology of EGFP-expressing cells. While these elab-
orate atlases are valuable tools for discovery-based
investigations or as a reference for one’s own gene
expression data, none of them measure the simultaneous
J. R. Soc. Interface (2012)
expression of multiple mRNAs in the same cell; hence the
synthetic multiplexed datasets do not represent true cov-
ariation pattern among the mRNAs. As cellular function
requires the coordinate expression of multiple genes,
methods to simultaneously measure multiple RNAs
from defined cells or cellular subregions will facilitate
the discovery of these underlying modulators.
10. APPROACHES TO STUDY
TRANSCRIPTOMICS OF SINGLE
CELLS IN VIVO

Model systems that naturally occur as unicellular organ-
isms or as single cells in suspension, such as bacteria,
yeast and blood cells, have with relatively ease been
used to investigate genome-scale gene expression in
single cells [111,112] . Although we have learned a great
deal about the regulation and timing of gene expression
bursts in various contexts from these studies, the extra-
polation of such data to the mammalian nervous system
cannot be justified for many obvious reasons.

To overcome the challenges of brain tissue com-
plexity, several experimental approaches have been
used in the past, including laser capture microdissection
(LCM) [100], fluorescence-activated cell sorting (FACS)
[113,114], immunopanning (PAN) [114,115], translat-
ing ribosome affinity purification (TRAP) [116] and
manual sorting (MS) [117] of reporter labelled cells
from dissociated brain tissue. However, these methods,
except for LCM, are not capable of combining isolation
of RNA from single cells and collection of information
about the specific location or physiological character-
istic of the single cell in intact tissue. Although both
the FACS and MS methods are capable of isolating
single cells, neither of these can do so along with infor-
mation about the cell’s location in the intact tissue.
While LCM does provide this information, it also has
a downside. A comparative study of several in vivo
RNA purification methods [118] found that LCM and
TRAP contained significant levels of contaminating
RNA when compared with FACS, PAN and MS. For
instance, non-GABAergic cell samples contained signi-
ficant amounts of GABAergic-cell-specific transcripts
suggesting that these methods also capture a lot of unin-
tended transcripts. Similar results were obtained for
non-astrocytic samples containing astrocyte-specific tran-
scripts. The same conclusion was drawn, when we did a
similar comparative analysis of the TRAP and PAN
data (D. Lovatt 2011, unpublished data). Given the struc-
tural complexity of brain tissue and that most cell types
including neurons, astrocytes and vascular cells inter-
mingle with one another, it is not surprising that
LCM-derived profiles contain contaminating transcripts.
The TRAP method theoretically is supposed to generate
very clean profiles, but experimental evidence suggests
that it also contains considerable contaminants. In this
case, either unspecific expression of the TRAP construct
or non-specific binding during the affinity purification
step is the presumed cause of this contamination.

An ideal goal of single-cell biology would be to assay
a complex mixture of molecules, e.g. the whole tran-
scriptome, in individual cells within their natural
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tissue context. However, all of the existing methods
have various limitations in this regard. There is no
doubt that a novel approach, which in an unbiased
way isolates mRNA from single cells in vivo, would pro-
vide a powerful tool to study how brain cells function
coordinately to generate systems level physiologies,
but also how cell types outside the nervous system
elicit their specific biological functions and associations.
11. mRNA TRANSLATION VISUALIZED
IN SINGLE CELLS IN VIVO

Cells have developed sophisticated mechanisms to
dynamically respond to environmental perturbations
and developmental programmes. The first level of
regulation involves various well-known transcriptional
and post-transcriptional regulation mechanisms as well
as recently characterized novel mechanisms such as
miRNA, antisense RNA and epigenetic transcription
regulation. Cells also use post-translational regulation,
which is much faster than transcriptional control and
uses activation or deactivation of pre-existing proteins
using kinases and phosphatases. This type of control is
fast and does not require the synthesis of new materials,
and is used widely by the cell to control signal trans-
duction and enzymatic activities. For instance, the
signalling pathways of G-protein-coupled receptors and
the activation/deactivation of transcription factor
Elk-1 [119–122].

Compared with transcriptional regulation and post-
translational regulation, less attention has been focused
on the translational regulation of mRNA. However, over
the past decade, many studies have shown that the
translational regulation is as important and sophistica-
ted as transcriptional regulation, demonstrated by the
use of modern high-throughput measurement technol-
ogies [123–125]. Schwanhausser et al. simultaneously
measured absolute mRNA and protein abundances
and turnover rates for more than 5000 genes in mouse
fibroblasts showing that protein copy number is more
correlated to translation rate than mRNA copy
number. To this end, the coefficient of determination,
R2, between mRNA abundance and protein copy
number is 0.41, while R2 between translation rate and
protein copy number is 0.95 [125]. They also showed
that the influence of degradation of protein is minor.

Besides the global regulation mechanisms, the cell is
known to have localized subcellular translation invol-
ving synthesis of new proteins at the specific
subcellular sites where the protein is needed. This
mechanism enables rapid replenishment of protein
shortly after it is required without the need of trans-
porting it from the soma to its final destination. Local
translation is especially important in morphologically
polarized cells, such as neurons, that have extremely
long processes and need to control complicated synaptic
activities in their distal processes. To show that local
translation can occur, the existence of translational
machinery, such as polyribosomes, translational factors
and mRNAs in dendrites, has been demonstrated, and
the dendritic transport mechanisms of some mRNAs
have been elucidated [87,88,93,104].
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Local translation of dendritic mRNAs is known to be
important in long-term synaptic plasticity, which
modulates post-synaptic receptor abundances at
synapses and therefore may be associated with under-
lying mechanisms of learning and memory [126]. Each
neuron has many synaptic connections with multiple
adjacent neurons, and each synaptic junction may
require a different activity at different times. For this
reason, centralized translation occurring in the cell
soma is not an appropriate mechanism to fulfil the
demands of each synaptic junction over time. Local
dendritic translation shows different regulatory features
when compared to translation in the cell body. Job &
Eberwine [87,88] demonstrated the characteristics of
local translation by transfecting green fluorescent
protein-encoding mRNA into isolated dendrites. Local
translation occurred in confined areas, called ‘transla-
tional hotspots’, and occurred quite rapidly while
translation in the cell body was much slower [87,88].
Moreover, individual translational hotspots on the
same dendrite showed different kinetics after the trans-
lational stimulation by adding the metabotropic
glutamate receptor agonist dihydroxyphenylglycine
(DHPG). There was no apparent correlation between
the position of the hotspot and its translational pattern.
However, this observation suggested that each hotspot
responded differently to the external perturbation. To
further explore this observation, we co-transfected two
different glutamate receptor subunit mRNAs (Gria2
and Gria4 mRNAs) tagged with green or red fluor-
escence protein modules and observed local dendritic
translational activities of two mRNAs by measuring
green and red fluorescent signals. Translational hot-
spots of Gria2-RFP and Gria4-GFP overlapped in
many areas but, in some areas, they were shifted and
even offset each other (figure 4). When we observed
the local translational activities over time, translational
hotspots of two mRNAs showed different kinetics,
which suggested that local translational regulation is
not only regulated by site-specific control, but can
also discriminate two different dendritically localized
mRNAs.

As exemplified earlier, cells show dynamic changes in
their molecular state at various timescales. One of the
fastest timescales is post-translational modification
but recent evidence seems to suggest potential for
rapid dynamics involving localized translation. Work
in our laboratory suggests that localized translation
seems to involve both site-specific and mRNA-specific
dynamics. Thus, cells show complexity not only at the
single-cell level but within subcellular compartments
of the same cell. One of future goal of single-cell analysis
is to understand the regulatory control mechanism for
such fine-scale translational dynamics.
12. mRNA REGULATION BY RNA-
BINDING PROTEINS IN SINGLE CELLS

RNA-binding proteins (RBPs) are integral to all
aspects of RNA biology, including the regulation of
gene expression at the level of pre-mRNA processing,
export, localization, stability and translation. All of
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Figure 4. Live single-cell mRNA translation analysis. GluR2-tomato and GluR4-wasabi mRNAs when translated show distinct
distribution patterns of translational hotspots in dendrites. (a) Fluorescent images of GluR2-tomato and GluR4-wasabi mRNAs
transfected neuron. (b) Magnified images from insets from (a).
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these physiological events are tightly controlled by a
series of interactions with myriad RBPs complexed
as multi-megadalton ribonucleoprotein (RNP) particles
[127,128]. Many of these interactions are transient as
well as motile, as exemplified by the final step of
translation, translocation, which requires coordinated
movement of tRNAs, mRNA, and the 30s and 50s
subunits of the ribosome [129]. RBPs often contain mul-
tiple, highly conserved RNA-binding sequence motifs
that are combined in a modular fashion. This allows for
a number of diverse weak interactions that combine to
generate highly selective or less-specific interactions, con-
formational variation and extensive protein–protein
interactions [130]. RBPs influence the complexity of the
RNA population as well as the spatial and temporal
expression of each transcript within each of the various
compartmentalized domains of a single neuron.

Characterization of RNA–RBP interactions is cru-
cial to understanding the dynamic processes that
encompass RNA biology, and methodologies are
needed that will allow for mapping of these interactions.
In the past decade, systematic efforts to identify the full
complement of cell-specific mRNA transcripts have
been aided by advances in highly paralleled platforms
that have been critical for to identifying native
mRNAs as well as their respective alternatively spliced
[131–133], differentially polyadenylated [134] or RNA-
edited variants [135]. However, a more complete
functional understanding of mRNA regulatory net-
works requires a catalogue of RBP-target mRNA
interactivity and the precise mapping of the target
mRNA footprint that underlies the strength of its
high-affinity binding. Modelling of bona fide target
sequences suggests that mRNAs contain functional
J. R. Soc. Interface (2012)
sequence motifs having a defined secondary structure
that stably assembles at a lower free energy of formation
than expected by random chance [136,137]. As a result,
many in silico prediction algorithms incorporate such a
screen for functional mRNA sequences [138,139].

There are two general approaches to studying
RNA–RBP interactions: targeting a known RBP to
identify the RNAs that interact with it, or targeting a
specific RNA to determine which RBPs bind to it.
In the former category, common analytical methods
are the gel-shift or supershift assays where the mobility
of a RNA in a gel is hindered, or ‘shifted’, by its inter-
action with a RBP or RBP–antibody complex,
respectively. Other various selection procedures have
been used in the past to identify RBP-associating tran-
scripts, including iterative RNA aptamer methods (i.e.
SELEX) [140,141] and immunoprecipitation of RNP
complexes followed by RT-PCR on a few target
RNAs, or microarray analyses or high-throughput
sequencing for a more global screening. All of the
methods described earlier are in vitro methodologies
and as such they are limited in their ability to reflect
the scope and dynamic nature of RNA–RBP inter-
actions that occur in living cells under varying
conditions and stimuli. This is reflected in the technical
constraints of these enrichment strategies, which
encumber them with limited scalability, relatively
narrow dynamic ranges of resolution, low signal-to-
noise ratios and difficulties in separating direct versus
indirect associations. For example, one consistent criti-
cism of immunoprecipitation techniques is the potential
for false-positives due to the fact that the lysis step
allows all the neuronal constituents to mix. As a
result, RBPs and mRNAs normally compartmentalized
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Figure 5. Antibody-positioned amplification and PNA-assisted isolation of RNA-binding protein technologies. (a) Schematic of
the APRA method. Antibodies conjugated to an oligo (blue) are applied to fixed and permeabilized cells from primary cultures.
Association of the antibody with the RBP positions the oligonucleotide in close proximity to RNA interacting with the RBP.
First-strand cDNA synthesis is performed in situ using a degenerate nucleotide sequence at the end of the oligo (dark blue
band). Red bar indicates newly synthesized cDNA. The complexed antibody–DNA is then removed from the cells, and
second strand synthesis is performed in vitro. The antibody is removed from the double-stranded DNA by restriction digest.
The cDNA can then be used for aRNA amplification and microarray analysis. (b) Schematic of the PAIR method. The PAIR
peptide contains a CPP (red), which allows the peptide to enter the cell. Once the cell membrane is crossed, the BPA(blue)-
PNA(green) complex will dissociate from the CPP and hybridize to complementary sequence on target RNA. Application of
UV irradiation cross-links the RBP (red) in near proximity to the BPA. Cells are then lysed and RNase treated. PNA–RBP com-
plexes are isolated using sense oligonucleotides coupled to magnetic beads. This material is proteolysed and further processed for
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within separate neuronal domains may be allowed to
interact in a non-physiological manner. Thus, methods
are needed that will more accurately reflect RNA–RBP
interactions under physiological conditions. A more
optimal approach also necessitates identifying these
interactions within an in vivo-configured RNP complex.

Antibody-positioned RNA amplification (APRA)
was developed to overcome these limitations [142]
(figure 5a). In this technique, a priming/amplification
oligonucleotide is covalently coupled to an antibody
recognizing an epitope on a specific RBP. Using fixed
and permeabilized primary neurons dispersed in culture
or brain sections, the antibody is allowed to bind to the
RBP of interest and positions the priming oligonucleo-
tide in proximity of mRNAs sequestered within the
RNP complex. The priming oligonucleotide contains a
15 nucleotide degenerate sequence at its 30-end, which
allows for the in situ transcription of mRNA sequences
not masked by the RNP complex. Following first-strand
cDNA synthesis, the antibody–cDNA complex is
removed, isolated and converted into a double-stranded
J. R. Soc. Interface (2012)
cDNA. The presence of a T7 RNA polymerase promoter
incorporated into the priming oligonucleotide allows the
target mRNA sequences to be further amplified before
being analysed by microarrays or next-generation
sequencing. As proof of concept, this strategy was
applied to the identification of mRNA cargoes for the
Fmr1 gene product, the fragile X mental retardation
protein (FMRP). Using primary hippocampal cultures,
an initial FMRP APRA screen resulted in 223 putative
positive targets using an approximately 1100 cDNA
macroarray. Of these putative targets, a subset of 83
were selected for secondary screens consisting of filter
binding and UV cross-linking studies to confirm
the presence of a direct interaction with FMRP. Of
these 83 APRA positives, approximately 73 per cent
(61/83) were also positive in the filter binding assay
when compared with control, and 82 per cent (50/61)
of the filter binding assay positives also showed UV
cross-linking. These data show that the APRA method-
ology was quite robust at identifying mRNA cargoes of
FMRP even within an in situ RNP complex containing
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numerous other RBPs and mRNAs. As the APRA-
associated mRNAs are linearly amplified for analysis,
the method can be applied to single cells.

Another in vivo procedure was developed by Darnell
and co-workers [143,144], in which the UV cross-linking
of triturated live cells or plated primary cultures was
coupled with stringent immunoprecipitation methods
to isolate targets of proteins showing RNA-binding
activity. This technique attempted to exploit the intrin-
sic photo-reactivity of nucleic acid pyrimidine base
pairs and some amino acids, most notably the aromatic
residues found in proteins, to covalently couple RNP
components prior to isolation and identification. How-
ever, a multitude of non-specific interactions have
been generated with this approach, requiring careful
secondary screening to eliminate false-positives.

The PAIR approach, peptide nucleic acid (PNA)-
assisted identification of RNPs [145], was developed to
enable the identification of RBPs interacting with an
RNA of interest in vivo (figure 5b). In this methodology,
a PNA complementary to the target RNA is coupled to
a cell penetrating peptide (CPP), and a photoactivata-
ble compound. The CPP, transportan 10 (TP10),
carries the molecule into the cell and detaches from
the PNA after entry, as the disulphide bond between
the CPP and the PNA is reduced. The PAIR PNA
then binds to its complementary RNA in the cyto-
plasm. The PNA–RNA bond is strong and specific, as
the PNA backbone contains no charged phosphate
groups to generate interference, and has a highly flex-
ible structure. When exposed to UV irradiation, the
benzoyl moiety of the photoactivatable amino acid
adduct, p-benzoylphenylalanine (Bpa), is released and
the newly generated free phenylananine radical is then
able to cross-link molecules in close proximity, thus cap-
turing RBPs binding to or found in complex with the
RNA target. For UV cross-linking to occur, the distance
between the two moieties has to be 4.5 Å or less [146],
thus the RBPs found are likely to bind directly to the
RNA in the region of PNA binding or to be part of a mul-
tiprotein complex in the immediate vicinity. After UV
cross-linking, the cells are lysed and the PNA–RBP com-
plexes are isolated using streptavidin magnetic beads
coupled to a biotinylated sense oligo that recognizes the
PNA sequence. Identification of RBPs is then accom-
plished by excising bands from a SDS/PAGE gel,
followedby trypsindigestion andmass spectrometry (MS).

Many of the regulatory sequences of an mRNA are
located in the 50 and 30 UTRs. We used PAIR to
probe for RBPs that bind to three different regions in
the 50 and 30 UTRs of ankylosis (ank) mRNA, a dendri-
tically localized transcript globally expressed in all
neurons. Using PAIR, 23 known RBPs interacting
with ank mRNA were identified [146]. Among them,
some (nucleolin) were found to bind to all regions tar-
geted under all physiological conditions tested (basal,
BDNF, Kþ and DHPG treatments), while other inter-
actions were limited to a specific region or experimental
condition. Curiously, more similarities were found
between binding patterns of PNA3 (located in the
50UTR) and PNA2 (located in the 30UTR) than
between PNA2 and PNA1, which are located within a
few bases from each other in the 30UTR. This might
J. R. Soc. Interface (2012)
be the result of separate, unrelated binding events at
each site, but it is also possible that the binding pattern
is indicative of the transcript folding in a way that
brings the PNA3 and PNA2 binding sites in the 30

and 50UTRs, respectively, in a close proximity to each
other, which might be a mechanism of translational
control [147]. The specificity of the PNA binding and
the short distance required for UV cross-linking will
make PAIR a highly targeted tool for RBP discovery.
Thus, the interactions we have revealed for ank
mRNA are likely to be a subset of all of its RBPs inter-
actions. To expand its scope, more PNAs would need to
be synthesized along the length of the transcript. The
results we obtained by PAIR well capture the complex
picture of the varying types of interactions that occur
between RNA and RBPs: some are more universal in
nature; others are highly specific and dynamically
modified in response to environmental stimuli.
13. SINGLE-CELL PEPTIDOMICS/
PROTEOMICS

While we have had the ability to assess a limited
number of proteins in single cells using immunocyto-
chemical approaches, the analysis of the protein
complement (genomic scale) in single cells is more diffi-
cult than examining the transcriptome. The reason for
this difficulty is the chemical composition of proteins
that are made up of 22 amino acids, some of which can
be chemically modified, thereby creating peptides and
proteins that are differentially charged and structurally
complex. This is in contrast to RNA, which has only
four nucleotides and is always negatively charged (still
can be structurally complex). The standard single-cell
issues of molecule separation and detection become even
more difficult with such chemically complex molecules.

In an effort to deal with these issues, various
approaches are being explored for peptide/protein
analysis. In early studies, Sweedler and colleagues used
matrix-assisted laser desorption ionization (MALDI)
MS to characterize a subset of proteins from single
Aplysia neurons [148,149]. This animal species model
system has the advantage of analysis of large cells
(approx. diameter of 60 m) containing a high abundance
of selected peptides. This approach is complemented
by the work of Dovichi and co-workers where they used
capillary zone electrophoresis to essentially perform gel
separation of proteins based upon the charge-to-mass
ratios of the cellular proteins [150,151]. This approach
works because of the small volume of the capillary
zone tubes, thereby allowing the cellular proteins to be
concentrated in a small volume, resulting in a higher
protein concentration for analysis. Decreasing the
volume of sample and surface area to which the sample
is exposed (which causes losses) is being explored through
the development of Nano-LC–MS/MS which promises
to increase standard MALDI sensitivity by two to
threefold [152].

A recent ingenious effort to increase the sensitivity of
MS methods for protein detection called stable isotope
labelling by amino acids in cell culture (SILAC) invokes
the use of heavy stable, non-radioactive isotopes, such
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as C13 (arginine for example) to in vivo label proteins in
one cellular sample [153,154]. The labelled proteins are
isolated and MS analysed at the same time as a protein
sample from a non-C13 labelled sample. All peptide
fragments with labelled arginine are shifted in their
mass by six units (for single arginine-containing frag-
ments). This difference in mass is easily detectable and
has provided a more sensitive approach to protein detec-
tion. There are currently several laboratories attempting
to use C13 and N15 SILAC to analyse the protein comp-
lement of single cells. This may be enhanced by the use of
Nano-LC–MS/MS, where small amounts of starting
material are presented to the MS lasers in a manner
that makes them more volatile producing a higher yield
of products.

Other single-cell proteomics approaches are focused
around the use of antibodies to specifically capture
proteins. One early example of this is termed immuno-
detection amplified by T7 (IDAT) in which antibodies
to specific proteins were covalently attached to a
double-stranded cDNA containing a T7 RNA polymerase
promoter site [155]. The antibody–antigen interaction is
detected by highly sensitive nucleic acid amplification.
This has also been done using complementarity determin-
ing regions (CDRs) rather than antibodies [156,157] and
using PCR rather than T7 RNA polymerase [158].

Another version of antibody detection of the single-
cell proteome that does not require amplification is
to use TIRF microscopy to assess antibody–protein
interactions. In a recent example of this, single cells are
separated into individual chambers using optical tweezers
after which, the cells are lysed by laser microcavitation
and the liberated proteins are moved into a chamber in
which selected antibodies have been microprinted.
Selected proteins from the single cell bind to their corre-
sponding antibodies and are detected and measured by
TIRF [159]. Protein specification comes from the identity
of the antibody in the microprinted spot. Background
binding of antibodies is one of the most severe limitations
of this approach, decreasing its sensitivity to detection
of hundreds of proteins.

At the moment, the quantitation of the total
single-cell proteome is beyond our technical capabilities.
However, the limited single-cell proteomics abilities
that we currently have do enable selected questions to
be addressed quantitatively. Hope for resolving these
technical issues comes from the fact that only a few
years ago it was impossible to assess the single-cell
transcriptome, which is now readily doable.
14. CONCLUSIONS

Recent developments in measurement technology are
providing increasingly higher resolution information
of the complex molecular dynamics of a cell, both in
single-cell organisms and in multicellular organisms.
As always, higher resolution information leads to sig-
nificant advances in applications. For example, by not
losing information to averaging, our understanding
and inference of complex pathway dynamics or net-
work interaction of molecules are enhanced. In fact,
by providing information about individual molecular
J. R. Soc. Interface (2012)
interactions within each cell, single-cell functional
data may fundamentally change our understanding of
molecular process control. On the more practical side,
having single-cell resolution data will help increase our
ability to discern important molecular therapeutic
targets in two important ways. First, being able to
isolate phenotypically or developmentally distinct sub-
populations of cells (e.g. immediate derivatives of stem
cells) and carrying out a genome-wide unbiased assay
of molecular differences will allow us to identify key mol-
ecular players in a more efficient manner. That is, by
assaying cells with very small molecular differentiation
at a very high resolution, we will be able to more directly
identify key functional differences, in contrast to broad
and noisy inferences that result from tissue-level assays.
Second, it is often the case that responses to therapeutic
agents can be variable at the single-cell level, which is also
reflected in heterogeneous patterns of cell dysfunction in
diseases. Therefore, having single-cell resolution of
responses to therapeutic manipulations will help identify
subpopulations of differentially affected cells and help
eliminate both false-positive and false-negative results.

It is clear that higher resolution information from
single-cell measurements will lead to more refined infer-
ences. However, the emerging data on variation and
complexity at the single-cell level raise some fundamen-
tal questions about the biology of individual cells. One
question examined earlier is the functional and fitness
consequences of cell-to-cell variability. We discussed
before the idea of ‘bet-hedging’ in single-cell organisms
as a life-history strategy mediated by switching individ-
ual cells to different phenotypic states. It is also possible
that tissue-level function in a multicellular organism
requires single-cell diversity. The most obvious case is
the known functional diversity in sensory neurons, but
we can easily imagine functional requirements for
single-cell diversity for the CNS or other organs. On
the other hand, known developmental diseases arising
from fluctuating variation demonstrate the negative
consequences of variation. The existence of many com-
plex genetic circuits, especially the curious proliferation
of paralogous genes with redundant function, has been
suggested to be due to their function in mediating
canalization of the variation.

What is required is a theory of cell phenotype at the
level of individual cells and their integrated function in
tissues. Future work will need to map out molecular
single-cell variability associated with cell phenotypes,
ideally in real-time over the molecular and phenotypic
dynamics. Our grand hope is that with sufficient data
at the resolution of individual cells, we will be able to
develop a theory of control of molecular variation for
each cell and a theory of functional phenotypes that
result from any given molecular state.

The quantitative analysis of single-cell biology
initiated 350 years ago is becoming ever-increasingly
possible, with the discovered complexities providing
unprecedented insights into cellular function. Indeed,
such insights highlight the fact that when study-
ing the smallest unit of cellular systems (the single cell),
the ‘orchestration’ of cellular constituent interactions
is the basis of cellular identity and function. Understand-
ing this orchestration and its complexities in single cells
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promises to provide the ‘score’ that underlies the
development of cellular systems, tissues and organisms.
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