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Abstract 

Background: Falls in older adults remain a pressing health concern. With advancements in data analytics and 
increasing uptake of electronic health records, developing comprehensive predictive models for fall risk is now pos-
sible. We aimed to systematically identify studies involving the development and implementation of predictive falls 
models which used routinely collected electronic health record data in home-based, community and residential aged 
care settings.

Methods: A systematic search of entries in Cochrane Library, CINAHL, MEDLINE, Scopus, and Web of Science was 
conducted in July 2020 using search terms relevant to aged care, prediction, and falls. Selection criteria included 
English-language studies, published in peer-reviewed journals, had an outcome of falls, and involved fall risk model-
ling using routinely collected electronic health record data. Screening, data extraction and quality appraisal using the 
Critical Appraisal Skills Program for Clinical Prediction Rule Studies were conducted. Study content was synthesised 
and reported narratively.

Results: From 7,329 unique entries, four relevant studies were identified. All predictive models were built using 
different statistical techniques. Predictors across seven categories were used: demographics, assessments of care, fall 
history, medication use, health conditions, physical abilities, and environmental factors. Only one of the four studies 
had been validated externally. Three studies reported on the performance of the models.

Conclusions: Adopting predictive modelling in aged care services for adverse events, such as falls, is in its infancy. 
The increased availability of electronic health record data and the potential of predictive modelling to document 
fall risk and inform appropriate interventions is making use of such models achievable. Having a dynamic predic-
tion model that reflects the changing status of an aged care client is key to this moving forward for fall prevention 
interventions.
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Background
Falls are one of the greatest concerns for older adults 
globally, with one in four people aged 65 years and over 
experiencing a fall each year [1]. The incidence of falls 
increases exponentially with age and frailty level and the 
consequences can be substantial to the individual and 
healthcare system [2]. Falls may result in serious physical 
harm or death [3], can have enduring detrimental effects 
on older adult mental health (i.e. fall-related anxiety and 
loss of confidence), and have been found to reduce qual-
ity of life [4]. For adults aged 65 years and over in Aus-
tralia, falls are the largest contributor to injury-related 
hospitalisations (42%), and have an estimated recurrent 
health service expenditure of AUD$3.9 billion dollars 
nationally [5]. In addition to these direct costs, the subse-
quent indirect costs of loss of income or additional carer 
burden is also substantial. Those who live in residential 
(long-term) aged care homes (also known as nursing 
homes or care homes, internationally), or receive services 
from home-based or community care providers, are par-
ticularly vulnerable, with six out of seven people who suf-
fer fall-related injuries residing in these settings [5]. The 
ability for aged care service providers to readily identify 
older adults at risk of first or subsequent falls could assist 
in preventing such adverse events and reduce the associ-
ated negative impacts on health and quality of life.

Falls causing harm are often avoidable and fall pre-
vention is a national safety and quality priority for the 
Australian healthcare system. Evidence-based best prac-
tice guidelines and harm minimisation plans have been 
developed to improve outcomes specific to Australian 
hospitals, community, and residential aged care set-
tings. These guidelines provide standardised advice on 
fall prevention strategies, management procedures for 
common risk factors, injury minimisation, and respond-
ing to falls (including post-fall follow-up) [6]. Promis-
ing evidence for reducing fall incidence in frail older 
people includes multifactorial interventions which look 
for modifiable fall risk factors and tailor interventions 
based on the risk factors identified (e.g., balance gait 
problems, poor vision, weakness, use of mobility aids, 
dizziness, presence of certain comorbidities, and sub-
optimal medication use) [6–10].

Multiple assessment tools to predict falls have been 
designed and applied to older adults accessing home-
based and residential aged care [11]. One of the most 
commonly used tools is the Falls Risk Assessment Tool 
(FRAT) [6, 11]. Usually these types of fall risk assessments 

are completed intermittently: generally on admission; 
when there is a noticeable health deterioration; routinely 
every 3–6 months; or after a fall has occurred [6]. How-
ever, due to the complexity and inter-play of risk factors, 
and the potential for individual variation, even on a daily 
basis, an older adults’ falls risk does not remain static. 
Thus, while existing fall risk tools may capture relevant 
information, their value is limited if that information is 
not contemporary. Electronic health records (EHRs) pro-
vide an avenue through which comprehensive and real-
time information about individuals can be accessed and 
present an opportunity to address this need for dynamic 
fall risk assessments. To the best of our knowledge, in the 
existing literature, there is a lack of a systematic review 
that investigates predictive models using EHRs in aged 
care.

Aged care providers are replacing paper record sys-
tems with electronic systems. These electronic systems 
support improved documentation efficiency and qual-
ity, increased legibility and access to multiple users, and 
often reduce the need for duplicate data collection [12]. 
The integration of multiple types of older adult’s in aged 
care data into a single comprehensive EHR provides 
ready access to contemporary information about a resi-
dent’s health care and risks. This potential can be actual-
ised further by the development of predictive models and 
algorithms which draw on data about risk factors within 
a resident’s record to perform real-time assessments of 
falls risk. A predictive model in healthcare is defined as 
the use of available data to predict the occurrence of a 
health state or outcome that has not yet been observed 
[13, 14]. Predictive models generally combine multiple 
predictors by assigning a weight to each predictor to pro-
duce a probability or risk score [14]. For example, EHR 
data has been used in wide and deep machine learn-
ing to predict the onset of type 2 diabetes [15]. In other 
studies, individual risk scores were calculated for earlier 
prediction of outcomes including mortality in patients 
with severe COVID-19 [16]; and clinical data across 70 
hospitals were used to develop and validate a predictive 
model which identified patients in hospital at high risk 
of readmission early during their stay [17]. Compared to 
traditional modelling such as regression modelling which 
seeks to explain association, predictive models require 
unique consideration for development, validation and 
updating [13].

EHR data have been used to develop predictive mod-
els for fall risk identification and decision support in 
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acute and primary care [18–22]. However EHR uptake of 
information technology in the aged care sector has been 
slower. We sought to determine the current evidence 
base for the design and use of models for predicting risk 
of falls utilising routinely collected electronic health data 
in home-based, community and residential aged care set-
tings. Specifically, we aimed to identify i) how fall risk 
models have been developed; ii) their accuracy and use in 
fall prediction; and iii) how they have been implemented 
to prevent falls.

Method
The planning and the reporting of this review followed 
the PRISMA guidelines [23]. A completed PRISMA 
checklist can be found in Additional 1 and a study pro-
tocol can be found in Additional 2. The study was regis-
tered with PROSPERO (ID = CRD42020198996).

Information sources and search strategy
The search strategy was developed by the research team 
in consultation with a clinical librarian. The databases 
searched included Cochrane Library, CINAHL, MED-
LINE, Scopus, and Web of Science. A search was under-
taken using the search terms (“Assisted living facilit*” 
OR “Community care” OR “Elder care” OR “Home care” 
OR “Housing for the elderly” OR “Long-term care” OR 
“Nursing care facilit*” OR “Nursing home*” OR “Old 
age home” OR “Older adult*” OR “Residential care” OR 
“Residential facilit*” OR “Skilled nursing facilit*”) AND 
(Fall*) AND (“model*” OR “predict*” OR “algorithm” 
OR “screen*”). A full outline of search strategies, includ-
ing database-specific MeSH terms and keywords can be 
found in Additional 3. All collected studies were merged 
in the reference manager EndNote Version 9 [24]. Dupli-
cates were removed before conducting title, abstract, and 
full-text screening. Manual searching of reference lists 
for included was conducted and snowballed articles and 
relevant titles flagged. Relevant titles and abstracts were 
then reviewed against the inclusion criteria with relevant 
studies included in the synthesis. Full-texts of included 
abstracts were independently assessed, using the same 
inclusion criteria with the addition of the setting crite-
rion, by two reviewers (KS, KL).

Eligibility: Inclusion and exclusion criteria
Predefined eligibility criteria were used to determine 
the inclusion of abstracts and full-text articles. The 
eligible population included adults aged 65  years and 
older. The outcome for the predictive models was a 
fall. Articles were assessed against the following inclu-
sion criteria: 1) English-language, 2) Peer-reviewed 
journal article, 3) Full-text available, 4) Utilised a pre-
dictive risk model with routinely collected EHRs, and 

5) Any quantitative study design (e.g., observational, 
randomised-control trial). Studies were excluded if 
they developed a static (once-only) measure of fall 
risk, or if they were derived from sensor monitoring. 
A predictive model was defined as a statistical proce-
dure for assigning an individual a probability of devel-
oping a future adverse outcome in a given time period. 
Our review specifically focused on the use of real-
time, routinely collected data to predict falls. Due to 
the recent application of information technologies and 
predictive models in aged care, we limited our date 
range to published papers from 2000 onwards. A fur-
ther inclusion criterion was added at the full-text stage 
screening: the study involved older adults in residen-
tial, community, or home-based care settings. Articles 
were excluded if falls occurred in an acute or rehabili-
tation setting. This criterion was added at a later stage 
as it was often difficult to assess the setting from study 
abstracts.

Selection and data collection processes
Title and abstract screening were conducted in Rayyan 
[25], a mobile and web-based application for systematic 
reviews, to identify studies that met the inclusion crite-
ria. This step was conducted by four reviewers (KS, KL, 
CL, AE). The two lead reviewers (KS, KL) made the final 
decisions during the screening process on abstracts 
to be included. To ensure inter-rater reliability, a 5% 
blinded review was conducted between KS and KL, 
resulting in an agreement rate of 98.9% and an inter-
rater reliability Cohen’s kappa of 74.45% (substantial) 
[26]. Weekly discussions were held between the four 
reviewers about articles that were ambiguous in rela-
tion to the inclusion criteria. During abstract and title 
screening, relevant articles that did not meet the inclu-
sion criteria (e.g., systematic reviews), were noted for 
snowballing purposes.

Methodological quality assessment of included studies
Critical appraisal of included articles was independently 
performed by two investigators (KS, NW) via the Criti-
cal Appraisal Skills Program (CASP) checklist for Clini-
cal Prediction Rule Studies [27]. This tool was specifically 
developed for evaluating the quality of predictive model-
ling studies. It consists of 11 questions across three sec-
tions: are the results of the study valid (Section A), what 
are the results (Section B) and will the results help locally 
(Section C). The response to each question is either ‘yes’, 
‘can’t tell’ or ‘no’. For an article to pass the CASP checklist 
overall, or any of the three sections, it needs more than 
50% of the responses to be a ‘yes’. A third investigator 
(AN) mediated appraisal discrepancies between the two 
investigators. No study was excluded due to poor quality.
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Data items, extraction and synthesis
One of the investigators (LD) independently extracted 
the data to a purpose-designed Microsoft Excel 2016 
spreadsheet, which was then verified by two investiga-
tors (KS, KL). The following data items were extracted: 
Author, year, country, setting, population, data source 
(what electronic record the information was extracted 
from), study design, statistical model used, deviation and 
validation cohort sizes, outcome of model, fall rate, num-
ber of falls, risk score creation, and the area under the 
curve for the validation cohort. The predictors included 
in the models were tabled and categorised based on the 
investigators’ (KS, KL, JS) clinical and practical experi-
ence. Due to the heterogeneity of the articles, a narrative 
synthesis was conducted to describe similarities and dif-
ferences between the included articles [28].

Results
Study selection
The search identified 16,717 entries from the selected 
databases and a further 22 entries from snowballing 

techniques. After removal of duplicates, 7,329 arti-
cles were screened for title and abstract. In total, 
95 full-text articles were retained for further evalu-
ation and four articles met the inclusion criteria 
(see Fig.  1). The reasons for exclusion were: did not 
include a predictive risk model (n = 71), different set-
ting (n = 10), not empirical research (n = 4), dupli-
cates (n = 3), wrong study type (n = 2) and wrong 
population (n = 1).

Characteristics of included studies
Characteristics of the included studies are provided 
in Table  1. Three studies came from the United States 
[29–31] and one from Canada [32]. Two studies were 
conducted in long-term care facilities [30, 31] and two in 
home care [29, 32]. Three of the studies were published 
in the last five years [29, 30, 32] and the other was pub-
lished in 2005 [31]. Three of the studies were retrospec-
tive [30–32] and one was prospective [29]. None of the 
four studies had implemented the predictive model into 
practice [29–32].

Fig. 1 Study selection process (PRISMA), adapted from Page et al. (2021) [23]
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Quality assessment
Three [29, 30, 32] of the four studies passed the CASP 
tool criteria based on overall percentage of ‘yes’ responses 
(score = 54.5%-72.7%). One study [31] did not pass this 
criteria (score = 27.3%), but was included in the synthe-
sis of data (Table 2). Three out of four studies had a vali-
dation cohort [29, 30, 32], however, only one study was 
externally validated [29]. Two studies had good applica-
bility of their findings to the broader aged care setting 
[29, 30].

Model development and presentation
The four studies used different modelling techniques 
to develop the predictive model including: likelihood 
basis pursuit [31]; repeated events survival model [30]; 
machine learning approaches using decision tree [29]; 
and random forest [32]. The model outcome measures in 
all studies were defined as a binary outcome (i.e., whether 
the client/resident experienced at least one fall), with two 
studies [29, 31] limiting the outcome assessment to the 
first three months of the study period. The number of 
predictors used in model development ranged from six 
[31] to over 130 [32]. The presentation of final models 
varied across studies. Two studies reported model output 
as probabilities based on the combination of variables in 
the model [31, 32]. Two studies developed risk categories; 

one was based on a decision tree [29] and the other based 
on a score which was then converted to a risk decile with 
the highest decile indicating the highest risk of a fall [30]. 
With the exception of Volrathongchai, Brennan [31] the 
other authors reported the rate of falls in their studies. 
Lo, Lynch [32] reported a 5.14% fall incidence rate. Two 
studies reported fall rates across their risk categories, 
ranging from 5.0–35.0% and 2.3–32.3% [29, 30].

Model performance and evaluation
All studies except one [31] reported model performance 
in the derivation (training) [30, 32] and or validation 
(testing) sample [29, 30]. One study reported the Akaike 
Information Criterion (AIC) to compare the perfor-
mance of four models in both derivation and validation 
cohorts [30]. Another used balanced accuracy to assess 
the accuracy of three models against a baseline model 
and found an accuracy of 0.51–0.62 depending on the 
model [32]. This study also utilised the area under the 
receiver operating characteristic curves (AUC), reporting 
values ranging from 0.60–0.67 [32]. One study conducted 
an external validation using samples from four differ-
ent regions in Canada (Ontario, Manitoba, Alberta and 
British Colombia) and reported C-statistics (AUC) rang-
ing from 0.55–0.60 [29] None of the studies reported the 
sensitivity and specificity of their predictive models.

Table 2 Critical Appraisal Skills Program checklist

a  Section A focuses on validity of study results and whether it is worth continuing; Section B focuses on the study results; Section C identifies the applicability of the 
results and findings

Section a Study Volrathongchai et al. 
(2005) [31]

Marier et al. 
(2016) [30]

Kuspinar et al. 
(2019) [29]

Lo et al. (2019) [32]

A 1. Is the Clinical Prediction Rule clearly defined? Yes Yes Yes Yes

A 2. Is the population from which the rule was 
derived included an appropriate spectrum of 
patients?

Yes Yes Yes Yes

A 3. Was the rule validated in a different group of 
patients?

No No Yes No

A 4. Were the predictor variables and the outcome 
evaluated in a blinded fashion?

No No No No

A 5. Were the predictor variables and the outcome 
evaluated in the whole sample selected initially?

No Yes Yes No

A 6. Are the statistical methods used to construct 
and validate the rule clearly described?

Yes Yes Yes Yes

B 7. Can the performance of the rule be calculated? No No No Yes

B 8. How precise was the estimate of the treatment 
effect?

No Yes No Yes

C 9. Would the prediction rule be reliable and the 
results interpretable if used for your patient?

No Yes Yes Yes

C 10. Is the rule acceptable in your case? No Yes Yes Can’t tell

C 11. Would the results of the rule modify your deci-
sion about the management of the patient or the 
information you can give to him/her?

No Yes Yes Can’t tell

Overall Score Percentage of ‘yes’ responses 27.3% 72.7% 72.7% 54.5%
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Synthesis: risk factor predictors
Many person-level predictors were used in the mod-
els (Table  3). We identified seven categories: (1) Demo-
graphics, (2) Assessments conducted with the client or 
resident, for example, cognitive performance scale,  (3) 
Fall history,  (4) Medication,  (5) Health conditions, (6) 
Physical abilities and (7) Environmental factors.

Discussion
Our review identified four studies reporting the develop-
ment of nine predictive models using electronic health 
records in residential and home-based aged care services. 
These models were used to identify individuals receiving 
aged care services most likely to experience a fall in the 
near future based on factors identified through routinely 
collected data. Only one study conducted an external val-
idation [29]. However, the limited information presented 
about the predictive performance of the identified mod-
els in this review means that they have limited utility for 
other organisations considering applying these models 
for people in their care.

Using electronic health record data
Many risk factors for falls have been identified in the 
literature, with a strong predictor of a fall being a previ-
ous fall [10]. Whilst the use of electronic health data can 
provide access to an extensive set of variables and thus 
add to the accuracy of predictive models, only one study 
explored a model to predict a fall for first time fallers 
[29]. The predictors included in the models identified in 
this review varied substantially based on the modelling 
technique used, demonstrating the multifactorial nature 
of risk factors associated with a fall, however, none of the 
models were good at predicting a fall as indicated in the 
statistical model performance tests. Additionally, elec-
tronic health record data has limitations regarding the 
recording of falls, including being miscoded, the poten-
tial for missing data due to incidents of falls not being 
recorded (particularly for those that live at home receiv-
ing aged care services), and the scarce sharing of falls 
information data between health systems (such as hospi-
tals and residential aged care).

Predicting fall severity
To advance the field of real-time predictive fall risk mod-
elling, it would be useful to not just predict a fall but also 
the potential outcome of that fall. For example, falls are 
often categorised as an injurious fall, a fall resulting in 
hospitalisation, or a non-injurious fall [33]. None of the 
studies included in the review explored the concept of 
injury impact or severity. By using these categories, pro-
viders would be able to highlight individuals at increased 
risk of a fall resulting in hospitalisation compared to 

individuals with a non-injurious fall and help tailor the 
appropriate interventions and resources required [9].

Predictive model methods
One of the main methodological limitations of the 
studies included in this review was the use of sub-
optimal statistical methods to develop the prediction 
models. It is important to consider falls as recurrent 
events as they can occur multiple times. Any statisti-
cal or machine learning methods used to predict falls 
should therefore account for the potential recurrence 
and correlation of the outcome data. Of the four stud-
ies in this review, only one study [30] utilised a method 
that is appropriate for modelling recurrent events (i.e., 
repeated events survival model). Although several suit-
able methods are currently available [34, 35], most fall-
related studies utilise inappropriate statistical methods. 
In a systematic review by Donaldson et al. that included 
83 fall prevention randomised controlled trials, only 
one-third of the trials utilised suitable statistical meth-
ods [35].

The choice of statistical methods to model recur-
rent events is dependent on the research question and 
the nature of the available data. If data on the time of 
the event are not of interest or not measured, Pois-
son or negative binomial models can be used [34]. On 
the other hand, if data on the time of the event are 
relevant, survival analysis-based approaches can be 
used. Most commonly used survival analysis-based 
approaches for recurrent events include the Andersen-
Gill,  Wei, Lin and Weissfeld,  Prentice-Williams-Peter-
son, and Frailty models; all of which are extensions of 
the Cox proportional hazard model and implemented 
in standard statistical software packages including 
R, SAS and Stata [34, 36, 37]. Frailty models have the 
added advantage of incorporating random effects to 
account for certain unmeasured or unknown factors. 
If survival time is measured in discrete values (e.g., 
weeks to fall occurrence),  discrete time survival mod-
els can be utilised [38].

Advanced methods such as joint models (techniques 
that allow simultaneous modelling of longitudinal and 
survival data) [39],  landmark models  [40], and machine 
learning based on deep learning approaches [41] have 
been utilised for dynamic prediction of recurrent events. 
If data are characterised by a multilevel (hierarchical) 
structure, statistical methods that account for both the 
potential correlation of recurrent outcomes and the clus-
tering effect (that is, the potential correlation between 
outcomes of patients in the same facility) should be used. 
Examples of this may include using discrete time sur-
vival, frailty, joint or landmark models in a multilevel 
framework [39, 40, 42, 43].
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Implementing predictive models
Other sectors have demonstrated significant benefits 
from implementing predictive models for a wide range of 
conditions, including cerebrovascular and hypertensive 
diseases [44], diabetes [45], and nursing outcomes more 
generally [46]. Dashboards are one method that could be 
used for implementing risk models in aged care—dash-
boards have been used successfully in primary care set-
tings to integrate information across data sources and 
present these data together to improve patient care [47]. 
Additionally, predictive models used in tandem with clin-
ical decision support have been shown to improve patient 
outcomes [47] and should be considered when deploying 
risk models in aged care settings.

The combination of accurate and dynamic predictive 
models coupled with clinical decision support software 
and implementation of evidence-based strategies to pre-
vent falls has the potential to substantially reduce the rate 
of falls and fall-related injury in some of the most vulner-
able members of our society. Combining accurate pre-
dictive models with implementation of evidence-based 
strategies to reduce falls [9] would equip aged care staff 
with adequate information and resources to reduce falls.

Implications of findings
Future research should focus on using optimal statistical 
techniques when developing predictive models in RAC 
by considering a fall as a recurrent event and account-
ing for potential reoccurrence and correlation of the out-
come data. End-user engagement during development 
phases of these predictive models would ensure that 
resulting models are relevant and usable by those moni-
toring and treating falls in older people. Whilst predictive 
models hold great potential for identifying risk in real-
time, the implementation and evaluation of these mod-
els within aged care services is critical to determine their 
true effectiveness and cost-effectiveness for health and 
wellbeing outcomes. This would provide pivotal evidence 
for policy makers to make decisions around the need for 
future predictive models in RAC, exploring other adverse 
outcomes as well.

Limitations and strengths
This systematic review has several limitations. Firstly, the 
review was limited to studies published in English, and 
therefore, we may have missed some predictive models 
for falls published in other languages. Secondly, there 
may be predictive models for falls in those receiving 
aged care services that have been published in the grey 
literature, which would have been missed by our search. 
Thirdly, the limited availability of research on this topic 
resulted in an inability to pool results. Lastly, we found 
inconsistent terminology was used to describe fall risk 

models in the literature, meaning we might have missed 
articles using different terminology, though we had clini-
cal expertise within our authorship team and we con-
sulted a clinical librarian regarding our search strategy 
to minimise this. The strengths of the systematic review 
included adhering to the PRISMA guidelines, using a 
broad search strategy to ensure all articles were captured, 
and a rigorous screening process.

Conclusions
Large amounts of data are collected and stored electroni-
cally during day-to-day routine practice by aged care 
services. These data could be used to predict individuals 
at risk of falls and help guide interventions to lessen fall 
risk. We systematically reviewed the literature on pre-
dictive models for falls using electronic health records 
of individuals receiving residential, home or community 
aged care services. Our systematic review represents the 
limited contemporary evidence on predictive models for 
falls risk in aged care services, highlighting the need for 
more research and robust statistical methods applied to 
falls predictive models.
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