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Abstract
In competing risks settings where the events are death due to cancer and death
due to other causes, it is common practice to use time since diagnosis as the
timescale for all competing events. However, attained age has been proposed as
a more natural choice of timescale for modeling other cause mortality. We exam-
ine the choice of using time since diagnosis versus attained age as the timescale
when modeling other cause mortality, assuming that the hazard rate is a func-
tion of attained age, and how this choice can influence the cumulative incidence
functions (𝐶𝐼𝐹s) derived using flexible parametric survival models. An initial
analysis on the colon cancer data from the population-based Swedish Cancer
Register indicates such an influence. A simulation study is conducted in order
to assess the impact of the choice of timescale for other cause mortality on the
bias of the estimated 𝐶𝐼𝐹𝑠 and how different factors may influence the bias. We
also use regression standardizationmethods in order to obtainmarginal𝐶𝐼𝐹 esti-
mates. Using time since diagnosis as the timescale for all competing events leads
to a low degree of bias in 𝐶𝐼𝐹 for cancer mortality (𝐶𝐼𝐹1) under all approaches.
It also leads to a low degree of bias in 𝐶𝐼𝐹 for other cause mortality (𝐶𝐼𝐹2), pro-
vided that the effect of age at diagnosis is included in the model with sufficient
flexibility, with higher bias under scenarios where a covariate has a time-varying
effect on the hazard rate for other cause mortality on the attained age scale.
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1 INTRODUCTION

In a competing risk setting (𝐾 ≥ 2 events), the cause-specific cumulative incidence function (𝐶𝐼𝐹), that is, the risk of
having event 𝑘 by time 𝑇, can be derived nonparametrically (Aalen & Johansen, 1978), semiparametrically, either via
cause-specific hazard (CSH) Cox models (Kalbfleisch & Prentice, 2011) models or subdistribution hazard models (Fine &
Gray, 1999) and parametrically via CSH models (Lambert et al., 2017). We choose to focus on parametric CSH models in
this study.
In competing risks analyses using CSH models, usually one common timescale is used for modeling all competing

events. For example, for individuals diagnosed with a type of cancer, the main event of interest is death due to cancer with
a competing event being death due to other causes. Time since diagnosis is generally accepted to be the natural choice of
timescale for death due to cancer, with the models including age at diagnosis as a covariate, and is used as the timescale
for all competing events in most cases. However, attained age, is argued to be a more natural choice of timescale for other
cause mortality (Korn et al., 1997; Lee et al., 2017; Thiébaut & Bénichou, 2004) as the hazard rate can be perceived more
as a function of attained age rather than a function of time since diagnosis. When using attained age as the timescale for
death due to other causes we need to account for left truncation, that is, for the fact that individuals start being at risk at
the age they are diagnosed with cancer. In this case, age at diagnosis is part of the data structure set-up, with individuals
entering at their age at diagnosis (Canchola et al., 2003). As left truncation changes the structure of the risk sets for other
cause mortality, it is expected that the hazard model under time since diagnosis timescale and the model under attained
age will not yield the same results. Thus, the choice of timescale can influence the 𝐶𝐼𝐹 estimates due to the different
estimated hazard rates for other cause mortality. This choice is likely to have greater influence on the estimation of the
𝐶𝐼𝐹 for other cause mortality.
When the hazard rate is a function of attained age rather than a function of time since diagnosis, choosing time since

diagnosis as the timescalemay lead to biased estimates, both due tomodeling the effect of age at diagnosis with just a linear
term in the model and due to the influence of other factors in single-event survival analyses (Chalise et al., 2015; Korn
et al., 1997; Thiébaut & Bénichou, 2004). For competing risks analyses, Lee et al. (2017) compare the choice of timescale for
modeling death due to other causes within a semiparametric framework. They show that, when the hazard rate for other
cause mortality is a function of attained age, using time since diagnosis as the timescale may lead to biased estimation of
the 𝐶𝐼𝐹 for other cause mortality, unless the hazard rate has a Gompertz distribution.
It is unclear how the biaswhen estimating the𝐶𝐼𝐹smay be influenced if a covariate of interest presents nonproportional

hazards for other causemortality on the attained age scale. It is also unclear to what degree the variance of the distribution
of age at diagnosis and the complexity of how the effect of age at diagnosis is included in the model, influences the 𝐶𝐼𝐹s
estimates. Chalise et al. (2012) discussed such an influence on the bias of parameter estimates derived from Cox models
in single-event survival settings. The exploration of different shapes of hazard rates for other cause mortality (Lee et al.,
2017) and different sample sizes is also of interest.
The aim of this paper is to extend previous work in a competing risk setting where cancer patients are followed from

diagnosis and the events of interest are death due to cancer and death due to other causes, using flexible parametric
survival models where different timescales can be used for other cause mortality and study the potential influence of
various factors on the bias of the 𝐶𝐼𝐹 estimates.
In the remainder of this paper, Section 2 describes the competing risk setting and defines cause-specific 𝐶𝐼𝐹s under

the common timescale approaches (time since diagnosis as timescale for all competing events) and the different timescale
approach (attained age as timescale for other cause mortality), using flexible parametric survival models. In Section 3, we
present an example using colon cancer data from the population-based SwedishCancer Register. In Section 4, a simulation
study is performed to assess bias, coverage, and relative precision in the estimation of the 𝐶𝐼𝐹 of each event by the “com-
mon” and “different” timescale approaches under a variety of scenarios. In Section 5, we define and apply standardized
𝐶𝐼𝐹s as a useful summary measure. Finally we discuss key issues in Section 6 and conclusions in Section 7.

2 METHODS

2.1 Definition of hazard, survival, and 𝑪𝑰𝑭 functions under the alternative timescales

In a competing risks setting, 𝐾 competing events (𝑘 = 1, 2, .., 𝐾) are considered. The CSH for event 𝑘 is the instantaneous
rate of experiencing event 𝑘, conditional on surviving up to time 𝑡. The timescale could be time since diagnosis or attained
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age. If time 𝑇 since diagnosis up to event 𝑘 is used for the CSH model, then age at diagnosis is usually included as a
covariate, that is, if 𝑎0𝑖 is the age at diagnosis of the i-th individual and 𝑋𝑖𝑋𝑖𝑋𝑖 are other covariates of interest, then the CSH
for event 𝑘 on the time since diagnosis timescale is defined as:

ℎ𝑡𝑖𝑚𝑒
𝑘

(𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) = lim
Δ𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡, 𝐾 = 𝑘|𝑇 ≥ 𝑡,𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )

Δ𝑡
. (1)

When attained age𝐴 is used as the timescale of aCSHmodel, age at diagnosis is a component of the timescale (𝐴 = 𝑎0 + 𝑇)
and the CSH function can be defined either as a function of attained age or a function of time since diagnosis:

ℎ
𝑎𝑔𝑒

𝑘
(𝑎|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )) = lim

Δ𝑎→0

𝑃(𝑎 ≤ 𝐴 < 𝑎 + Δ𝑎,𝐾 = 𝑘|𝐴 ≥ 𝑎,𝐴 ≥ 𝑎0𝑖 ,𝑋𝑖𝑋𝑖𝑋𝑖)

Δ𝑎

= lim
Δ(𝑎0𝑖+𝑡)→0

𝑃((𝑎0𝑖 + 𝑡) ≤ 𝐴 < (𝑎0𝑖 + 𝑡) + Δ(𝑎0𝑖 + 𝑡), 𝐾 = 𝑘|𝑇 ≥ 𝑡, 𝐴 ≥ 𝑎0𝑖 ,𝑋𝑖𝑋𝑖𝑋𝑖)

Δ(𝑎0𝑖 + 𝑡)

= ℎ
𝑎𝑔𝑒

𝑘
(𝑎0𝑖 + 𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ).

(2)

The cause-specific survival functions of an individual 𝑖 for event 𝑘 can be expressed in terms of hazards as a function of
time since diagnosis both under the time since diagnosis timescale and the attained age timescale:

𝑆𝑡𝑖𝑚𝑒
𝑘

(𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) = exp

⎛⎜⎜⎝−
𝑡

∫
0

ℎ𝑡𝑖𝑚𝑒
𝑘

(𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) 𝑑𝑢

⎞⎟⎟⎠ (3)

under time since diagnosis timescale and

𝑆
𝑎𝑔𝑒

𝑘
(𝑎|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) =

𝑆
𝑎𝑔𝑒

𝑘
(𝑎|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )

𝑆
𝑎𝑔𝑒

𝑘
(𝑎0𝑖|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )

=
exp

(
− ∫ 𝑎

0
ℎ
𝑎𝑔𝑒

𝑘
(𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )𝑑𝑢

)
exp

(
− ∫ 𝑎0𝑖

0
ℎ
𝑎𝑔𝑒

𝑘
(𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )𝑑𝑢

) = exp

(
−∫

𝑎

𝑎0𝑖

ℎ
𝑎𝑔𝑒

𝑘
(𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )𝑑𝑢

)

= exp

(
−∫

𝑡

0

ℎ
𝑎𝑔𝑒

𝑘
(𝑎0𝑖 + 𝑤|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )𝑑𝑤

)
= 𝑆

𝑎𝑔𝑒

𝑘
(𝑎0𝑖 + 𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )

(4)

under the attained age timescale, conditional on the individual surviving at least until age at diagnosis.
The cause-specific 𝐶𝐼𝐹 for event 𝑘 as a function of time since diagnosis 𝑡, 𝐶𝐼𝐹𝑘(𝑡), is defined as 𝐶𝐼𝐹𝑘(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐾 =

𝑘). For survival following a cancer diagnosis, we consider two competing events, death due to cancer (𝑘 = 1) and death
due to other causes (𝑘 = 2). Death due to other causes can be modeled either with time since diagnosis, 𝑇, or attained
age,𝐴, as the timescale. Thus, the hazard for death due to cancer (𝑘 = 1) can be defined as ℎ𝑡𝑖𝑚𝑒

1
(𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ). The hazard for

death due to other causes (𝑘 = 2) under the attained age timescale can be defined as ℎ𝑎𝑔𝑒
2

(𝑎|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) = ℎ
𝑎𝑔𝑒

2
(𝑎0𝑖 + 𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ).

The cause-specific 𝐶𝐼𝐹𝑠 can be expressed in terms of CSH and survival functions on the time since diagnosis timescale
based on the definitions of Equations (1) through (4).
For the common timescale approach (indexed by 𝑆𝑆𝑆), the 𝐶𝐼𝐹 for cause 𝑘 (𝑘 = 1, 2) can be defined as:

𝐶𝐼𝐹𝑆
𝑘
(𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) =

𝑡

∫
0

𝑆𝑡𝑖𝑚𝑒
1

(𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) 𝑆
𝑡𝑖𝑚𝑒
2

(𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) ℎ
𝑡𝑖𝑚𝑒
𝑘

(𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) 𝑑𝑢. (5)

Following Lee et al. (2017) who defined the 𝐶𝐼𝐹𝑠 allowing different time scales for two failure types, under attained
age as the timescale for other cause mortality, that is, using different timescales (indexed by D), the 𝐶𝐼𝐹 for death due to
cancer (𝑘 = 1) can be defined for time since diagnosis timescale as:

𝐶𝐼𝐹𝐷
1
(𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) =

𝑡

∫
0

𝑆𝑡𝑖𝑚𝑒
1

(𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) 𝑆
𝑎𝑔𝑒

2
(𝑎0𝑖 + 𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) ℎ

𝑡𝑖𝑚𝑒
1

(𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) 𝑑𝑢, (6)
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while the 𝐶𝐼𝐹 for other cause mortality (𝑘 = 2) can be expressed for the time since diagnosis or attained age timescale:

𝐶𝐼𝐹𝐷
2
(𝑎0𝑖 + 𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) =

𝑡

∫
0

𝑆𝑡𝑖𝑚𝑒
1

(𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) 𝑆
𝑎𝑔𝑒

2
(𝑎0𝑖 + 𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) ℎ

𝑎𝑔𝑒

2
(𝑎0𝑖 + 𝑢|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 ) 𝑑𝑢. (7)

The CSHs can be modeled semiparametrically or parametrically. We focus on the application of flexible parametric
survival models when modeling the CSH functions.

2.2 Flexible parametric survival models

Royston and Parmar (2002) developed a class of flexible parametric models later extended by Lambert and Royston (2009)
that allow both for right censoring and left truncation. This approach uses restricted cubic spline functions 𝑠𝑠𝑠 to flexibly
model the effect of the logarithm of time since diagnosis, 𝑠(ln 𝑡|𝛾𝛾𝛾,𝑚0𝑚0𝑚0) or attained age, 𝑠(ln 𝑎|𝛾𝛾𝛾,𝑚0𝑚0𝑚0) for the log baseline
cumulative hazard, with𝑚0𝑚0𝑚0 knots and parameters 𝛾𝛾𝛾.
A flexible parametric proportional hazards model on log cumulative hazard scale ln(𝐻𝑡𝑖𝑚𝑒) with time since diagnosis

as the timescale, 𝑡, including age at diagnosis, 𝑎0, as a linear covariate is:

ln [𝐻𝑡𝑖𝑚𝑒(𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )] = 𝑠𝑡𝑖𝑚𝑒(ln 𝑡|𝛾𝛾𝛾,𝑚0𝑚0𝑚0) + 𝛽𝛽𝛽𝑇𝑋𝑖𝑋𝑖𝑋𝑖 + 𝛽𝑎0𝑎0𝑖 (8)

with 𝛽𝛽𝛽 the coefficients for the covariates𝑋𝑋𝑋, and age at diagnosis 𝑎0 a covariate with coefficient 𝛽𝑎0 .
The effect of age at diagnosis can be included more flexibly as a restricted cubic spline, \boldmath 𝑔()\unboldmath ,

with knots,𝑚𝑎0
𝑚𝑎0𝑚𝑎0

, and spline term coefficients, 𝛾𝑎0𝛾𝑎0𝛾𝑎0 .

ln [𝐻𝑡𝑖𝑚𝑒(𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )] = 𝑠𝑡𝑖𝑚𝑒(ln 𝑡|𝛾𝛾𝛾,𝑚0𝑚0𝑚0) + 𝛽𝛽𝛽𝑇𝑋𝑖𝑋𝑖𝑋𝑖 + 𝑔(𝑎0𝑖 |𝑚𝑎0
𝑚𝑎0𝑚𝑎0

,𝛾𝑎0𝛾𝑎0𝛾𝑎0). (9)

The model can incorporate covariate–timescale interactions to relax the proportional hazards assumption. The inter-
action between age at diagnosis and time since diagnosis as well as interactions between covariates 𝑋𝑋𝑋 and time since
diagnosis is modeled via splines:

ln [𝐻𝑡𝑖𝑚𝑒(𝑡|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )] = 𝑠𝑡𝑖𝑚𝑒(ln 𝑡|𝛾𝛾𝛾,𝑚0𝑚0𝑚0) + 𝛽𝛽𝛽𝑇𝑋𝑖𝑋𝑖𝑋𝑖 + 𝑔(𝑎0𝑖 |𝑚𝑎0
𝑚𝑎0𝑚𝑎0

,𝛾𝑎0𝛾𝑎0𝛾𝑎0) +

𝐷∑
𝑗=1

𝑠𝑡𝑖𝑚𝑒(ln 𝑡|𝛿𝑚𝛿𝑚𝛿𝑚,𝑚𝑗𝑚𝑗𝑚𝑗) 𝑍𝑖𝑍𝑖𝑍𝑖 (10)

with 𝐷𝐷𝐷 the number of time dependent effects,𝑚𝑗𝑚𝑗𝑚𝑗 , the knots for the 𝑗th time-dependent effect with parameters, 𝛿𝑚𝛿𝑚𝛿𝑚, and
the covariates vector 𝑍𝑍𝑍 = (𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0).
The above approaches all use time since diagnosis as the timescale.When using attained age as the timescale, themodel

will be:

ln [𝐻𝑎𝑔𝑒(𝑎|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )] = 𝑠𝑎𝑔𝑒(ln 𝑎|𝛾𝛾𝛾,𝑚0𝑚0𝑚0) + 𝛽𝛽𝛽𝑇𝑋𝑖𝑋𝑖𝑋𝑖, (11)

with each beta coefficient interpreted as the log hazard ratio for other cause mortality across attained age under the
assumption of proportional hazards.
Similarly with Equation (10), covariate–timescale interactions can be incorporated when using attained age as the

timescale:

ln [𝐻𝑎𝑔𝑒(𝑎|𝑋𝑖𝑋𝑖𝑋𝑖, 𝑎0𝑖 )] = 𝑠𝑎𝑔𝑒(ln 𝑎|𝛾𝛾𝛾,𝑚0𝑚0𝑚0) + 𝛽𝛽𝛽𝑇𝑋𝑖𝑋𝑖𝑋𝑖 +

𝐷∑
𝑗=1

𝑠𝑎𝑔𝑒(ln 𝑎|𝛿𝑚𝛿𝑚𝛿𝑚,𝑚𝑗𝑚𝑗𝑚𝑗) 𝑋𝑖𝑋𝑖𝑋𝑖. (12)

During the estimation process of the model parameters under the attained age timescale and accounting for left trun-
cation, each individual contributes information to the likelihood from the age at diagnosis 𝑎0𝑖 up until the attained age of
the event or the censoring 𝑎𝑖 (see the Supporting Information). After fitting the models, the cumulative hazard functions
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can be predicted for the whole range of the attained age timescale. Age at diagnosis is included in the prediction process
by subtracting the cumulative hazard predicted for an attained age value equal to age at diagnosis𝐻𝑎𝑔𝑒(𝑎0) from𝐻𝑎𝑔𝑒(𝑎)

with 𝑎 ≥ 𝑎0. From the𝐻𝑎𝑔𝑒(𝑎) − 𝐻𝑎𝑔𝑒(𝑎0) difference the predictions for 𝑆
𝑎𝑔𝑒

𝑘
(𝑎|𝑎0) and ℎ𝑎𝑔𝑒𝑘

(𝑎|𝑎0) can be derived.
2.3 Estimation of CIFs

After fitting cause-specific parametric hazard models, we have analytical expressions for the CSH and survival functions.
These can be incorporated into Equations (5) − (7) to derive the estimates of the 𝐶𝐼𝐹s via Stata command standsurv.
Gaussian quadrature is used to numerically approximate the integral of Equations (5) − (7). The delta method is used to
derive the standard errors and confidence intervals of the 𝐶𝐼𝐹s (Hinchliffe & Lambert, 2013).

3 MOTIVATIONAL EXAMPLE

We illustrate how the choice of timescale for other cause mortality, and the level of complexity for age at diagnosis for
other cause mortality, can influence the estimated 𝐶𝐼𝐹𝑠 for cancer and other cause mortality. This serves as motivation
for the simulation study.

3.1 Data

The nationwide population-based Swedish Cancer Register was established in 1958 (National Board ofHealth andWelfare,
2019). From 2005 until 2017 there were 53,630 adult individuals diagnosed with colon cancer. Information on date of death
was retrieved from the Causes of Death Register maintained by the Swedish National Board of Health andWelfare. Record
linkagewas facilitated by the unique civic registration number assigned to all Swedish citizens. For patients that presented
multiple colon cancers (n = 4180 individuals) only the first primary cancer was included. Patients whose cancer was
detected during autopsy (n= 507) were excluded. Individuals are classified as dying from colon cancer, from other causes
or still being alive at the end of the follow-up period, on December 31, 2017, being censored at that date (50.5% censoring).
The median age at diagnosis was 71.4 years (range 18–106) with an average follow-up time of 4.6 years. The research was
approved by the Karolinska Institutet Ethical Review Board.

3.2 Common versus different timescales approach when estimating the 𝑪𝑰𝑭𝒔

We use four different modeling approaches. The first approach uses time since diagnosis as the timescale for cancer
mortality and attained age as the timescale for other cause mortality (different timescales approach). The three other
approaches use time since diagnosis as timescale both when modeling cancer and other cause mortality (common
timescale approaches), with an increasing level of complexity in modeling the effect of the age at diagnosis for other
cause mortality. All approaches use the same CSH model for cancer mortality. The covariate of interest 𝑋 is gender.

(1) For death due to cancer (𝑘 = 1), in all approaches, time since diagnosis is the timescale used, with 5 degrees of
freedom (𝑑𝑓) for the baseline hazard. The main effect of age at diagnosis was included in the model using restricted
cubic splines with 5 knots (4 𝑑𝑓) while its time-dependent effects were included with restricted cubic splines with 3
𝑑𝑓 (total of 4× 3 = 12 terms).

(2) For other cause mortality (𝑘 = 2) four different approaches were used,
∙ Approach a—Attained age: Attained age as the timescale, with 5 𝑑𝑓 for the baseline hazard, without any inclusion
of age at diagnosis in model.

∙ Approach b—Linear: Time since diagnosis as the timescale, with 5 𝑑𝑓 for the baseline hazard, and age at diagnosis
included in model as a linear term.

∙ Approach c—Splines: Time since diagnosis as the timescale, with 5 𝑑𝑓 for the baseline hazard, and age at diagnosis
included as a restricted cubic spline function with 𝑑𝑓 = 4.
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Subfigures a and b have two x axes, one for each timescale. Approach a−Attained age uses attained age 
as timescale while Approaches b, c and d use time since diagnosis as timescale.

Approach a− Attained age Approach b− Linear Approach c− Splines

Approach d− Splines/int Cox semi−parametric approach

F IGURE 1 Estimated other cause mortality rate, 𝐶𝐼𝐹1 for death due to cancer and 𝐶𝐼𝐹2 for other cause mortality for females
Note: The estimated other cause mortality rate is given on the time since diagnosis scale (a) and attained age scale (b) for Approaches
a—Attained age and d—Splines/Int. 𝑎0 stands for the age at diagnosis, 𝐶𝐼𝐹1 for death due to cancer (c,d) and 𝐶𝐼𝐹2 for other cause mortality
(e,f) up to 10 years after diagnosis for ages at diagnosis 70 and 80 for females as estimated by the alternative parametric approaches
(Approaches a—Attained age, b—Linear, c—Splines, and d—Splines/Int and the semiparametric different timescales approach)

∙ Approach d—Splines/Int: Time since diagnosis as the timescale, with 5 𝑑𝑓 for the baseline hazard, and age at
diagnosis included as a restricted cubic spline function with 𝑑𝑓 = 4 plus a restricted cubic spline function for the
interaction between age and time since diagnosis with 𝑑𝑓 = 3 (total of 4 × 3 = 12 terms).

– In all models, gender is included as a main effect together with restricted cubic splines with 3 𝑑𝑓 for the time-
dependent effect on the timescale.

A different timescales approach using Cox proportional hazardmodels is also provided in order to serve as a comparison
of reference based on previous work done by Lee et al. (2017). Age at diagnosis is included in both cancer mortality and
other cause mortality models with restricted cubic splines.
Figure 1a,b shows the estimated other cause mortality rate as a function of time since diagnosis for the single timescale

approaches and as a function of attained age (blue color) for the different timescale approach (Approach a—Attained age)
for ages at diagnosis 70 (Figure 1a) and 80 (Figure 1b) for females. The single timescale approaches give different other
cause mortality rate estimates compared to Approach a—Attained age, detecting a higher initial rate, with the estimates
from Approach d—Splines/Int being the ones closest to those of Approach a—Attained age. This higher initial other
cause mortality rate on the time since diagnosis timescale could be potentially attributed to cause of death misclassifica-
tion in the death certificates (dying early on after cancer diagnosis but mistakenly classified as having died from other
causes) or to incidental cancer diagnosis (being hospitalized for another reason, getting diagnosed with cancer and die
soon afterwards due to the initial cause for hospitalization). For the attained age timescale, a risk set is comprised of peo-
ple with different combinations of age at diagnosis and time since diagnosis. Thus, the hazard shape on the attained age
timescale does not estimate an early peak. Figure 1c–f depicts the estimated𝐶𝐼𝐹𝑠 from the different parametric approaches
plus the semiparametric approach (dashed blue line) for selected ages at diagnosis (70, 80) for females. Figure 1c,d shows
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estimated 𝐶𝐼𝐹𝑠 for death due to cancer, with all the approaches giving similar estimates. Figure 1e,f shows the estimated
𝐶𝐼𝐹𝑠 for other cause mortality. It can be observed that the choice of the timescale for other cause mortality has influence
on the estimates of 𝐶𝐼𝐹2, due to the different estimates for other cause mortality rates (Figure 1a,b). When the level of
complexity in modeling the effect of age at diagnosis increases, the 𝐶𝐼𝐹2 estimates of the common timescale approaches
get closer to the 𝐶𝐼𝐹2 estimate of Approach a—Attained age, still presenting differences for the first 2 years after diag-
nosis. The semiparametric different timescales approach yields results very close to those of Approach a—Attained age,
as expected. Table A1 of the Supporting Information shows the 𝐶𝐼𝐹 point estimates and 95% confidence intervals from
the flexible parametric approaches for selected ages at diagnosis and times since diagnosis for females. Figure A1 of the
Supporting Information shows the aforementioned estimated measures for males while Figure A2 shows the estimated
𝐶𝐼𝐹 differences between females and males for the different approaches. Figure A3 of the Supporting Information shows
the estimated cumulative hazard rates in females.

4 SIMULATION STUDY

4.1 Aims

The simulation study aims to assess the performance of the approaches that use time since diagnosis as the timescale
for other cause mortality in the estimation of cause-specific 𝐶𝐼𝐹𝑠 when the hazard for other cause mortality is a func-
tion of attained age, in a setting of survival following a cancer diagnosis, with death due to cancer and death due to
other causes being the competing events. The common timescale approaches include Approach b—Linear, Approach c—
Splines, Approach d—Splines/Int). The different scenarios assess the impact of the proportional/nonproportional hazards
assumption (on the attained age scale), the variance of age at diagnosis, the sample size, and the shape of baseline hazard
for other cause mortality on the bias of the common timescale approaches. The different timescale approach (Approach
a—Attained age) serves as a comparison of reference.

4.2 Estimands and performance measures

The estimands of interest in this study are 𝐶𝐼𝐹1(𝑡) and 𝐶𝐼𝐹2(𝑡). The performance measures used to evaluate the meth-
ods are the bias, coverage, and the relative precision. The true 𝐶𝐼𝐹𝑠 were obtained using numerical integration with
the integrand evaluated at 3001 timepoints using the integ command in Stata (StataCorp, 2005). The bias is estimated
as the difference between the true 𝐶𝐼𝐹 value and the mean of the 𝐶𝐼𝐹 estimates from the simulated samples. The rela-
tive precision compares each common timescale approach with the different timescale approach. The relative precision
compares the precision of each common timescale approach to that of the different timescale approach. When compar-
ing two estimation approaches (A and B), the relative precision of Approach B compared to Approach A is estimated by
100 × (

𝑉(�̂�𝐴)

𝑉(�̂�𝐵)
− 1). Monte Carlo standard errors and convergence from each approach are also presented.

4.3 Data generating mechanism

We generated age at diagnosis 𝐴0 and gender 𝑋 (𝑋 = 0 males, 𝑋 = 1 females). Age at diagnosis was generated from a
normal distribution𝑁(70, 𝑠𝑑𝑎0). The standard deviation was either 𝑠𝑑𝑎0 = 10 or 𝑠𝑑𝑎0 = 15. The covariate𝑋 was generated
from a Bernoulli distribution with probability 𝑝 = 0.5 of assigning 𝑋 = 1 to each simulated individual (female gender).
All scenarios consist of𝑚 = 1000 simulations with a sample size of either 𝑛 = 2000 or 𝑛 = 500, with administrative cen-
soring at 10 years. For simulating the survival times for death due to cancer (𝑘 = 1), a mixture ofWeibull distributions was
used for the baseline hazard (𝜆1 = 0.713, 𝛾1 = 0.766, 𝜆2 = 0.007, 𝛾2 = 0.791, 𝑝𝑚𝑖𝑥 = 0.281) (Figure 2a), with a quadratic
effect of age at diagnosis (𝛽1𝑎𝑔𝑒 (𝑎0𝑖 − 65) + 𝛽2𝑎𝑔𝑒 (𝑎0𝑖 − 65)2, 𝛽1𝑎𝑔𝑒 = −0.00307, 𝛽2𝑎𝑔𝑒 = 0.00013) and a null effect of the
gender covariate 𝑋 (𝛽 = 0,𝐻𝑅 = 1). For other cause mortality (𝑘 = 2), there are scenarios under different shapes of base-
line hazards: (a) an adapted form of Weibull distribution incorporating a small initial hazard (ℎ(𝑎) = 𝑐 + 𝜆 𝛾 𝑎𝛾−1 with
𝑐 = 0.01, 𝜆 = 1.002𝑒 − 24, 𝛾 = 12.274), (b) a Gompertz Makeham distribution (ℎ(𝑎) = 𝑐 + 𝜆 exp (𝛾 𝑎) with 𝑐 = 0.01, 𝜆 =

7 × 10−4, 𝛾 = 0.087), and (c) a hazard form which we refer to as “Polynomial” (log𝐻(𝑎) = (𝑧1 𝑎
2 + 𝑧2 𝑎 − 𝑧3) with
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F IGURE 2 Scenarios of baseline hazards for cancer and other cause mortality
Note: (a) Baseline hazard for cancer mortality as a mixture of Weibull distributions and (b) different baseline hazard distributions for other
cause mortality

𝑧1 = −13.26 × 10−4, 𝑧2 = 0.331, 𝑧3 = −18.15) (Figure 2b), representing higher other cause mortality in ages over 70. The
other cause mortality hazard functions were chosen to be broadly similar to that of individuals diagnosed with colon
cancer in Sweden. The simulated sample size ensures there are sufficient events at low ages at diagnosis. The effects
of gender on other cause mortality on the attained age timescale included proportional (𝛽 = −0.356, 𝐻𝑅 = 0.7) or non-
proportional hazards. In the latter case a quadratic form that gives 𝐻𝑅 = 0.4 at 20 years of age, 𝐻𝑅 = 0.5 at 50 years of
age, and𝐻𝑅 = 1 at 100 years of attained age was chosen (𝐻𝑅(𝑎)𝑋 = exp (𝛽1𝑋 + 𝛽2𝑋 𝑎 + 𝛽3𝑋 𝑎2 with 𝛽1𝑋 = −0.997, 𝛽2𝑋 =

0.0023, 𝛽3𝑋 = 7.667 × 10−5). Based on the parameters set above, censoring varies from 44% to 48% for scenarios under the
adapted form of Weibull distribution and from 37% to 39% for the rest of the scenarios.

4.4 Scenarios structure

Figure 3 presents the simulation scenarios, with four hierarchical levels in the simulation structure of the scenarios. The
top level is the sample size 𝑛 = 2000 (Scenarios 1–12) or 𝑛 = 500 (Scenarios 13–24). Then, proportional or nonproportional
effects of gender on the hazard for other cause mortality for attained age (second level). The third level is the standard
deviation of age at diagnosis (𝑠𝑑𝑎0 = 10 or 𝑠𝑑𝑎0 = 15). The bottom level is the shape of the baseline hazard for other cause
mortality (adapted Weibull, Polynomial, Gompertz Makeham).

4.5 Modeling approaches

There are four modeling approaches to estimate the cause-specific 𝐶𝐼𝐹s. Approach a—Attained age, the different
timescale approach, serves as the comparison reference. Approach b—Linear, Approach c—Splines, and Approach d—
Splines/Int will be the common timescale approaches with different levels of flexibility when modeling the effects of age
at diagnosis for other cause mortality.
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F IGURE 3 Diagram of scenario structure in the simulation
Note: PH stands for proportional hazards for gender (non-PH for non-proportional hazards). 𝑎0 stands for the age at diagnosis. The scenarios
are numbered from 1 to 24

Approaches
Cause I (𝑘 = 1): All modeling approaches are the same for death due to cancer (𝑘 = 1), using time since diagnosis as

timescale, with 5 df for the baseline hazard, with age at diagnosis included in themodel using restricted cubic splines with
5 knots (4 𝑑𝑓). Proportional hazards are assumed for gender, as, based on the DGM, the effect of gender is constant over
time since diagnosis.
Cause II (𝑘 = 2): Approach a—Attained age, Approach b—Linear, Approach c—Splines, Approach d—Splines/Int are

the same as in Section 3.2. Under scenarios where the effect of gender is proportional for the other cause mortality rate
on the attained age timescale, we fit cause-specific proportional hazard models, so the estimated hazard ratio of gender is
constant on the timescale used. Under scenarios where the effect of gender is nonproportional on other cause mortality
rate on the attained age scale, the CSH models allow for nonproportional hazards on the timescale used by the model.
Hence, the estimated hazard ratio for other causemortality is a function of time since diagnosis for the common timescale
approaches and a function of attained age for Approach a—Attained age.

4.6 Results

For brevity, we focus on 𝐶𝐼𝐹s at ages 70 and 80 years at diagnosis under scenarios with sample size 𝑛 = 2000 for females.
In Table 1 and Table 2, the bias, coverage (%), and relative precision (relative to Approach a—Attained age) are shown
for time since diagnosis 𝑡 = 5 for 𝐶𝐼𝐹1 and 𝐶𝐼𝐹2. Tables with performance measures for 𝑡 = 10 are shown in the Sup-
porting Information, in Tables A2 and A3. The Supporting Information also includes performance measures for 𝑡 = 5

under scenarios with sample size 𝑛 = 500 (Tables A4 and A5, Figure A6). Performance measures for males are given in
the Supporting Information (Tables A6, A7). The choice of timescale and the factors under study influence the estimated
other cause mortality and through it the estimation of the 𝐶𝐼𝐹s. The other cause mortality estimates influence the 𝐶𝐼𝐹2
estimates to a greater magnitude than the𝐶𝐼𝐹1 estimates. Thus, more focus is given in presenting the performance results
for 𝐶𝐼𝐹2.

4.6.1 CIF for death due to cancer—𝐶𝐼𝐹1

Table 1 shows that, for 𝐶𝐼𝐹1, all approaches have negligible biases and good coverage. This is expected, as 𝐶𝐼𝐹1 is pre-
dominantly influenced by the cancer mortality rate, which is appropriately modeled by all approaches. In addition, the
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F IGURE 4 Nested loop line plot of bias in 𝐶𝐼𝐹2(𝑡) from each approach over the scenarios
Note: The bias of the different approaches is given for ages at diagnosis (60,70,80) and times since diagnosis (1,5,10). Order from outer to inner
loops: proportional/nonproportional hazards of gender on attained age (2 levels); standard deviation of age at diagnosis (2 levels, increasing);
shape of baseline hazard for other cause mortality (3 levels). The periodic turn of the loops is illustrated by the black lines at the bottom of
each plot

relative precision of the common timescale approaches (Approach b—Linear, Approach c—Splines, and Approach d—
Splines/Int) versus the different timescale approach (Approach a—Attained age) is close to 0, indicating a similar level
of precision.

4.6.2 CIF for death due to other causes—𝐶𝐼𝐹2

In order to get a better overview of the bias in 𝐶𝐼𝐹2(𝑡), a nested loop plot (Rücker & Schwarzer, 2014) of bias of the
approaches over scenarios with sample size 𝑛 = 2000 and different ages at diagnosis and times since diagnosis was
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generated. Each row specifies the age at diagnosis (60, 70, or 80) and each column specifies the time since diagnosis 𝑡
(1, 5, or 10) (Figure 4). The Supporting Information includes a nested loop plot of bias that was generated over scenarios
with sample size 𝑛 = 500 (Figure A6) with results very close to those of Figure 4. An alternative way of depicting the bias
of each approach via dot plots is presented in the Supporting Information via Figures A4 and A5.

Proportional/nonproportional effects of the covariate of interest on attained age.
The first six scenarios have proportional hazards and the second six scenarios nonproportional hazards for gender on
attained age. It can be observed that for ages at diagnosis 60 and 70 and times since diagnosis 5 and 10 the common
timescale approaches using splines for the effect of age and allowing for nonproportional hazards of gender on the time
since diagnosis timescale, are having difficulties in fully capturing the time-varying effects of gender on the attained age
scale, resulting in a small increase in bias under the nonproportional hazards cluster of scenarios (scenarios 6–12). The
same observation seems to hold for ages at diagnosis 80 and time since diagnosis 10 but only for the subcluster of scenarios
with small variance of age at diagnosis.

Variance of age at diagnosis.
Scenarios 1 to 3 and 7 to 9 have low variance (𝑠𝑑𝑎𝑔𝑒 = 10) and scenarios 4 to 6 and 10 to 12 have high variance of age at
diagnosis (𝑠𝑑𝑎𝑔𝑒 = 15). For ages at diagnosis 60 and 70 and times since diagnosis 5 and 10, scenarios under nonproportional
hazards for gender with high variance in age at diagnosis tend to have a slightly increased bias compared to their low
variance counterparts. However, for age at diagnosis 80 and time since diagnosis 10 under nonproportional hazards for
gender, the lower variance in age at diagnosis scenarios present higher bias. Low variance in age at diagnosis leads to
small risk sets and fewer events for older ages at diagnosis, thus influencing the estimates.

Shape of baseline hazard for other cause mortality.
Scenarios 1, 4, 7, 10 have an adapted Weibull baseline hazard, scenarios 2, 5, 8, 11 have a polynomial baseline hazard, and
scenarios 3, 6, 9, 12 have Gompertz Makeham baseline hazard. Scenarios with small “changes” translate to low sensitivity
to the shape of the baseline hazard for other cause mortality, with big “changes” indicating the opposite. Approach b—
Linear is highly sensitive to this factor for most ages at diagnosis and times since diagnosis for most scenarios, presenting
increased bias. For age at diagnosis 80 and time since diagnosis 5 and 10, all approaches are sensitive to the shape of the
baseline hazard, leading to higher bias. In older ages at diagnosis the risk sets are smaller with different baseline hazards
lead to different number of other cause mortality events, influencing the (𝐶𝐼𝐹2 estimations.

Sample size.
Figure A6 of the Supporting Information contains scenarios under the small sample size (𝑛 = 500) with results similar
with Figure 4, suggesting that sample size does not seem to significantly influence the bias in 𝐶𝐼𝐹2(𝑡). Tables A4 and A6
of the Supporting Information correspond to Tables 1 and 2, with performance results under scenarios with sample size
of 500.

Relative precision and coverage.
In Table 2 depicting scenarios under 𝑛 = 2000, for𝐶𝐼𝐹2, Approach b—Linear, is more precise than Approach a—Attained
age, an attribute that cannot support the use of Approach b—Linear due to its high bias in 𝐶𝐼𝐹2. With increasing com-
plexity when modeling the effect of age, the precision of Approach c—Splines and Approach d—Splines/Int tends to be
lower than Approach a—Attained age in most scenarios, with the exception of scenarios 11 and 12 for age at diagnosis 80.
The coverage of Approach a—Attained age is close to 95% for all scenarios. For scenarios where bias was small (< 0.01)
under Approach c—Splines, the coverage was over 90.2% for age at diagnosis 70 and over 91.3% for age at diagnosis 80.
For scenarios where bias was small (< 0.01) under Approach d—Splines/Int, the coverage was over 82.5% for age at diag-
nosis 70 and over 92.5% for age at diagnosis 80. Factors that affect the precision is the overall complexity of the model,
adding to the variance of the estimations, as well as the risk set structure, which differs between the different timescale
approach and the common timescale approaches. The relative precision of the single timescale Approaches b—Linear
and c—Splines with Approach a—Attained age serving as comparison, tends to be higher under the smaller sample size
scenarios showing that the precision of Approach a—Attained age is more sensitive to changes in sample size compared
to the single timescale approaches. Moving to a smaller sample size, the convergence of Approach d—Splines/Int was
substantially reduced to a range of 27% to 60%. If comparisons are drawn between Table 2 (n = 2000) and Table A5 (n =
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500) regarding performance measures for 𝐶𝐼𝐹2, the coverage tends to be higher for the smaller sample sizes, especially
for scenarios under adaptedWeibull shape for other cause mortality and for nonproportional hazard scenarios for gender.

5 ESTIMATION OFMARGINAL 𝑪𝑰𝑭s USING REGRESSION STANDARDIZATION

Regression standardization is a useful technique for summarizing the marginal probability of each competing event
through averaging over the same covariate distribution. If the 𝐶𝐼𝐹 estimates are influenced by confounders in the model
(e.g., age at diagnosis) but presenting the overall effect of a certain covariate on the 𝐶𝐼𝐹s is of interest (e.g., gender), then
regression standardization over the confounders allows direct comparability between different groups (males vs. females)
(Cole et al., 2015; Kipourou et al., 2019). We derive the marginal (standardized) 𝐶𝐼𝐹s for females and males as well as 𝐶𝐼𝐹
differences, using the𝐶𝐼𝐹s estimated from the alternative approaches in themotivational example (Approach a—Attained
age, Approach b—Linear, Approach c—Splines, Approach d—Splines/Int).
The marginal 𝐶𝐼𝐹s are derived under two counterfactuals, one where everyone is female and one where everyone is

male, forcing the same age distributions for both values of the gender covariate (standardization over the combined age
distribution). In the unlikely situation that age at diagnosis is the only confounder, the difference between 𝐶𝐼𝐹𝑓𝑒𝑚𝑎𝑙𝑒𝑠

𝑘
(𝑡)

and 𝐶𝐼𝐹𝑚𝑎𝑙𝑒𝑠
𝑘

(𝑡) would be the average causal effect (Young et al., 2020) but in practice more detailed potential con-
founders would be required. Even if that is not the case, the derived marginal 𝐶𝐼𝐹s would be the 𝐶𝐼𝐹s over a common
age distribution.
After fitting a 𝐶𝑆𝐻model for death due to cancer and a 𝐶𝑆𝐻model for other cause mortality we can derive conditional

𝐶𝐼𝐹 estimates for every individual in the study. In order to derive themarginal𝐶𝐼𝐹 for each competing event, the exposure
of interest 𝑋 (gender) is forced to take a specific value (e.g., female) for all individuals. Then, the average of all predicted
individual 𝐶𝐼𝐹s for each event is derived over the distribution of covariates𝑍𝑍𝑍, in this case age at diagnosis, and is defined
as standardized or marginal 𝐶𝐼𝐹.

𝐶𝐼𝐹𝑆
𝑘
(𝑡|𝑋 = 𝑥,𝑍𝑍𝑍) =

1

𝑁

𝑁∑
𝑖=1

𝐶𝐼𝐹𝑘(𝑡|𝑋 = 𝑥,𝑍𝑍𝑍 = 𝑧𝑖𝑧𝑖𝑧𝑖). (13)

Contrasts of the marginal 𝐶𝐼𝐹s can then be made between the different groups,

𝐶𝐼𝐹𝑆
𝑘 𝑑𝑖𝑓𝑓

(𝑡|𝑍𝑍𝑍) = 1

𝑁

𝑁∑
𝑖=1

𝐶𝐼𝐹𝑘(𝑡|𝑋 = 1,𝑍𝑍𝑍 = 𝑧𝑖𝑧𝑖𝑧𝑖) −
1

𝑁

𝑁∑
𝑖=1

𝐶𝐼𝐹𝑘(𝑡|𝑋 = 0,𝑍𝑍𝑍 = 𝑧𝑖𝑧𝑖𝑧𝑖). (14)

The estimated marginal 𝐶𝐼𝐹s and 𝐶𝐼𝐹 differences may differ depending on the modeling approach used. However, as
the marginal 𝐶𝐼𝐹 is an average over all predictions, one may expect the variation between the different approaches to be
less than the estimates conditional on covariates. Figure 5 shows that the estimates of the marginal 𝐶𝐼𝐹s for cancer and
other cause mortality between the common timescale approaches (Approach b—Linear, Approach c—Splines, Approach
d—Splines/Int) are almost identical both for males and females. The marginal 𝐶𝐼𝐹2 estimates of the different timescale
approach (Approach a—Attained age), albeit similar, present differences compared to the estimates of the single timescale
approaches, suggesting that the choice of timescale influences themarginal𝐶𝐼𝐹2 estimates. Themarginal𝐶𝐼𝐹1 difference
is close to zero under all the approaches. Thatmeans that themarginal probability of deathwhen standardizing over age is
similar for males and females. For other cause mortality the results in marginal 𝐶𝐼𝐹2 difference show a higher probability
of death for males versus females, with the difference increasing over time since diagnosis.

6 DISCUSSION

We compared using attained age versus using time since diagnosis as the timescale when modeling other cause mortality
in competing risk settings where cancer patients are followed from diagnosis and the events of interest are death due
to cancer and death due to other causes, using flexible parametric survival models. The motivating example illustrated
that the choice of timescale for other cause mortality can influence the 𝐶𝐼𝐹 estimates for other cause mortality. The
simulation showed how the choice of timescale and different modeling assumptions can lead to differences in bias and
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F IGURE 5 Standardized 𝐶𝐼𝐹s for cancer (𝐶𝐼𝐹1) and other causes (𝐶𝐼𝐹2)
Note: (a) Females, (b) males. Panel (c) shows the difference in standardized 𝐶𝐼𝐹s (Males – Females)

other performancemeasures. We studied how several factors (proportional/nonproportional hazards of a covariate on the
attained age scale, variance in age at diagnosis, shape of the baseline hazard for other cause mortality and sample size)
may influence the bias of the different approaches.
In all scenarios there was negligible bias for the 𝐶𝐼𝐹 of death due to cancer for all approaches. This is expected as the

𝐶𝐼𝐹 of death due to cancer is predominantly influenced by the cancer mortality rate, which is appropriately modeled by
all approaches. Regarding other cause mortality, using time since diagnosis as a common timescale generally led to low
bias for the 𝐶𝐼𝐹2 provided that the effect of age at diagnosis is modeled with sufficient complexity. The assumption of
a simple linear association between age at diagnosis and other cause mortality is likely to be unreasonable, leading to
high bias for the 𝐶𝐼𝐹 for other cause mortality. Additionally, greater modeling complexity can lead to lower precision
and lower convergence under small sample sizes. This is the trade-off in using models specified on the time-on-study
timescale for other cause mortality that includes the effect of age at diagnosis with a high degree of complexity. The time-
varying effects of a covariate on the other cause mortality rate that is a function of attained age (as assumed in the DGM)
are difficult to be fully captured by CSH models that assume the hazard is a function of time since diagnosis, resulting
in a small but not negligible degree of bias in the 𝐶𝐼𝐹 for other cause mortality. Even though the motivating context is a
large epidemiological study, the choice of timescale also applies in smaller studies where the issue of a time-varying effect
can also be of particular interest. Smaller sample sizes tend to lead to better relative precisions for the single timescale
approaches compared to larger sample sizes, with Approach c—Splines being preferable as it is less biased compared
to Approach b—Linear and does not suffer from convergence issues under small sample sizes as opposed to Approach
d—Splines/Int. However, the different timescale approach still is the recommended approach, especially if there is an
indication of nonproportional hazards on the attained age scale.
Previous work by Lee et al. (2017) compares the common timescale modeling approach (with age at diagnosis as linear

function) with the different timescales approachwhen estimating the𝐶𝐼𝐹s in competing risks with use of semiparametric
models, comparing two scenarios of baseline hazards for other cause mortality. We used flexible parametric models and
extended the exploration to scenarios with nonproportional effects of the covariate of interest on the hazard for other



1176 SKOURLIS et al.

causemortality on the attained age timescalewhile studying different shapes of hazards for other causemortality, different
variances in age at diagnosis, and sample sizes.
The marginal estimates of 𝐶𝐼𝐹s are a useful summary tool. The models we have presented here are simple in that we

have only incorporated age and gender. When modeling more covariates it becomes infeasible to present results for many
combinations of covariates and it is particularly useful to present marginal estimates. As shown in the colon cancer exam-
ple, the marginal estimate is likely to be more stable than conditional predictions, even when using different approaches
when modeling the CSH. This is similar to the work of Syriopoulou et al. (2019) who showed that standardized relative
survival estimates were insensitive to different modeling assumptions.

7 CONCLUSIONS

In a competing risks setting where cancer patients are followed from diagnosis and the events of interest are death due to
cancer and death due to other causes, it is possible to obtain estimates of𝐶𝐼𝐹swith negligible bias using flexible parametric
survivalmodels. Even if the hazard rate for other causemortality is a function of attained age, using time since diagnosis as
a timescale should lead to 𝐶𝐼𝐹 estimates for other cause mortality with small bias, as long as age at diagnosis is modeled
with sufficient complexity. However, if a covariate has time-varying effects on the attained age scale, those effects are
difficult to be fully captured by CSH models that assume the hazard is a function of time since diagnosis, resulting in
small but not negligible bias in the 𝐶𝐼𝐹 for other cause mortality. When attained age is the natural choice of timescale
for other cause mortality, using attained age instead of time since diagnosis offers a simpler, unbiased model, less prone
to misspecification.
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