
TOO L S F OR P RO T E I N S C I E N C E

Int&in: A machine learning-based web server for active
split site identification in inteins

Mirko Schmitz1,2,4 | Jara Ballestin Ballestin1,2,5 | Junsheng Liang1,2 |

Franziska Tomas1,2,6 | Leon Freist3 | Karsten Voigt3 |

Barbara Di Ventura1,2 | Mehmet Ali Öztürk1,2

1BIOSS and CIBSS Research Signalling
Centers, University of Freiburg, Freiburg,
Germany
2Institute of Biology II, University of
Freiburg, Freiburg, Germany
3Institute of Biology III, University of
Freiburg, Freiburg, Germany
44HF Biotec GmbH, Freiburg, Germany
5Bioprocess Innovation Unit,
ViraTherapeutics GmbH, Rum, Austria
6Department of Molecular Life Sciences,
University of Zurich, Zurich, Switzerland

Correspondence
Barbara Di Ventura and Mehmet Ali
Öztürk, BIOSS and CIBSS Research
Signalling Centers, University of Freiburg,
Freiburg, Germany.
Email: barbara.diventura@bio.uni-
freiburg.de; mehmet.oeztuerk@bioss.uni-
freiburg.de

Funding information
Deutsche Forschungsgemeinschaft,
Grant/Award Number: 422681845;
Horizon 2020 Framework Programme,
Grant/Award Number: 101002044

Review Editor: Nir Ben-Tal

Abstract

Inteins are proteins that excise themselves out of host proteins and ligate the

flanking polypeptides in an auto-catalytic process called protein splicing. In

nature, inteins are either contiguous or split. In the case of split inteins, the

two fragments must first form a complex for the splicing to occur. Contiguous

inteins have previously been artificially split in two fragments because split

inteins allow for distinct applications than contiguous ones. Even naturally

split inteins have been split at unnatural split sites to obtain fragments with

reduced affinity for one another, which are useful to create conditional inteins

or to study protein–protein interactions. So far, split sites in inteins have been

heuristically identified. We developed Int&in, a web server freely available for

academic research (https://intein.biologie.uni-freiburg.de) that runs a machine

learning model using logistic regression to predict active and inactive split sites

in inteins with high accuracy. The model was trained on a dataset of 126 split

sites generated using the gp41-1, Npu DnaE and CL inteins and validated using

97 split sites extracted from the literature. Despite the limited data size, the

model, which uses various protein structural features, as well as sequence con-

servation information, achieves an accuracy of 0.79 and 0.78 for the training

and testing sets, respectively. We envision Int&in will facilitate the engineering

of novel split inteins for applications in synthetic and cell biology.
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1 | INTRODUCTION

Inteins are small intervening proteins translated within
host proteins that perform a so-called protein splicing
reaction to excise themselves out of their flanking

external polypeptides (exteins), which are ligated through
a new peptide bond (Di Ventura & Mootz, 2019). Along-
side contiguous inteins, which originate from a single
gene (Figure 1a), split inteins (Figure 1b) encoded by two
separate genes are of particular interest because they
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allow for a greater variety of applications (Waldhauer
et al., 2015; Pan et al., 2016; Ye et al., 2018; Villiger
et al., 2018; Lopez-Igual et al., 2019; Palei et al., 2019;
Wang et al., 2019; Palanisamy et al., 2019; Purde
et al., 2020; Choi et al., 2021). In the trans-splicing reac-
tion, the N-terminal intein fragment (the ‘N-intein’)
must first form a complex with the C-terminal intein
fragment (the ‘C-intein’). After this step, the splicing
reaction takes place resulting in the fusion of the N- and
C-exteins (Figure 1b). In the past, inteins have been arti-
ficially split to obtain either a split intein out of a contigu-
ous one (Mootz & Muir, 2002; Brenzel et al., 2006) or two
intein fragments with low affinity for each other that
could be induced to splice when in close physical proxim-
ity (Mootz & Muir, 2002; Tyszkiewicz & Muir, 2008; Yao
et al., 2020). By controlling the physical proximity of the
intein fragments with an external trigger such as light
(Tyszkiewicz & Muir, 2008) or a chemical (Mootz &
Muir, 2002), protein splicing is achieved in a conditional
way, allowing interesting applications in synthetic and
chemical biology (Mootz et al., 2003; Wong et al., 2015;
Böcker et al., 2019) and cell biology (Lee & Muir, 2023).
Alternatively, the intein fragments can be fused to pro-
teins whose interaction one wishes to determine. If the
proteins interact, splicing occurs leading to the accumu-
lation of a splice product, such as a fluorescent protein,
which can be easily quantified and is stable over time
unless otherwise engineered (Yao et al., 2020). We call a
split site allowing the splicing reaction to occur active,
while one corresponding to two intein fragments unable
to splice inactive.

So far, active split sites in inteins have been found
with heuristic approaches (Wu et al., 1998; Mootz &
Muir, 2002), or taking very simple protein structure

considerations into account (Otomo et al., 1999). The
existing SPELL algorithm (https://dokhlab.med.psu.edu/
spell/) that was developed to computationally predict
split sites in proteins for the construction of chemoge-
netic and optogenetic split proteins (Dagliyan
et al., 2018), is inadequate for the specific case of inteins:
we found that for �80% of inteins collected from the lit-
erature (Aranko et al., 2014) no split sites could be pre-
dicted (33 inteins without any predicted split sites versus
8 with predicted sites (3D structures were predicted with
AlphaFold2 (Jumper et al., 2021) as implemented in
ColabFold (Mirdita et al., 2022); Source Data, File S1)).
Moreover, for the split sites predicted to be active by
SPELL, one site was experimentally shown to be active,
while another to be inactive (Table S1). A different
recently reported computational approach, ProteinSplit
(http://elixir.fkkt.um.si/ProteinSplitIndex.html), is tailor-
made for the prediction of ligand-mediated protein
dimerization (Rihtar et al., 2023), and therefore unsuita-
ble for the purposes of predicting active split sites in
inteins. The ability to identify new active split sites in any
intein of choice in an easy and confident manner would
represent a breakthrough in the field and encourage a
wider range of intein-based applications.

Here we apply machine learning (ML) to create an
algorithm to predict active split sites in inteins. ML is a
branch of artificial intelligence aiming to design algo-
rithms that learn to recognize patterns in input datasets
and make useful predictions on data not seen before.
Given their power, ML algorithms started to pervade
almost any research field, including molecular biology.
ML approaches can be grouped into 4 different categories
(Jovel & Greiner, 2021; Kouba et al., 2023): (1) supervised
learning; (2) unsupervised learning; (3) semi-supervised
learning; and (4) reinforcement learning. In supervised
learning, models are trained on labeled data, where the
connection between input and correct output is manually
done to allow the algorithm to learn the connection and
apply it later on a new, unlabeled dataset. Unsupervised
learning models find hidden patterns or intrinsic struc-
tures in unlabeled input data. These models are particu-
larly useful if labeled data are unavailable or too costly to
obtain. In semi-supervised learning, the training data
consist of a combination of labeled and unlabeled data.
Reinforcement learning is a type of machine learning
paradigm where the program learns to make sequential
decisions to maximize cumulative rewards. The selection
of the ML algorithm depends on diverse factors. If label-
ing data is a possibility, and the task is not about finding
anomalies or reducing the dimensionality, then super-
vised learning is a natural choice. Lately, many ML algo-
rithms have been put forward in the field of structural
biology and protein design using a variety of learning

(a) (b)

FIGURE 1 Schematic representation of the protein splicing

reaction carried out by contiguous (a) and split (b) inteins.
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methods (Khurana et al., 2018; Wang et al., 2019, 2023;
Ferruz et al., 2022; Watson et al., 2023). Further informa-
tion about the methodology, pitfalls and outlook of ML
applications in protein engineering can be found in
recent reviews (Villalobos-Alva et al., 2022; Kouba
et al., 2023; Khakzad et al., 2023).

We used supervised learning to create an algorithm
that combines several sequence and structural features,
global or local in respect to the split site, and applies a
logistic regression classification method on these features
to predict the likelihood that a split site will be active. It
moreover shows separation power with regard to the
splicing efficiency, meaning it can be used to distinguish
split sites that lead to fragments that reassemble effi-
ciently and those that do not. The latter ones are particu-
larly valuable for the creation of novel conditional split
inteins. We validate the algorithm using data taken from
the literature as well as generated by us and show that it
has an accuracy of 0.79 for the training set and 0.78 for
the testing dataset. The algorithm is freely available
for academic research on the Int&in web server (https://
intein.biologie.uni-freiburg.de/), while the source code of
a standalone program is available on Github (https://
github.com/bleblebles/Int-In/).

2 | RESULTS

2.1 | Creation of a dataset of active and
inactive split sites in inteins

To train the machine learning model, we needed unbi-
ased information not only on active sites—which are eas-
ily retrievable from the literature, but also on inactive
ones. Therefore, we decided to generate a dataset of split
sites using three inteins: gp41-1 (Carvajal-Vallejos
et al., 2012), Npu DnaE (Iwai et al., 2006) and CL
(a cysteine-less intein) (Bhagawati et al., 2019). To cover
the whole sequence space of each intein, we randomly
selected split sites to be experimentally tested with the
only rule being that intein fragments had to be at least
four residues long, because we reasoned that three or less
residues would unlikely reassemble with the cognate
fragment (Appleby et al., 2009; Mootz, 2009). The split
sites were experimentally tested using Western blots as
readout with antibodies allowing for the detection of the
constructs made of the N-extein and the N-intein (N-con-
struct), the C-intein and the C-extein (C-construct), as
well as the splice product (Figure 2a,b, Source Data,
File S2). As exteins we selected proteins known to be sol-
uble in Escherichia coli: the maltose binding protein
(MBP; N-extein), and thioredoxin (TRX) and SUMO with
a FLAG tag (fused together; C-extein). To maximize the

splicing reaction, we added the so-called “local exteins”
(3–5 amino acids preceding the N-intein and 3–5 follow-
ing the C-intein) (Lockless & Muir, 2009; Carvajal-Valle-
jos et al., 2012; Stevens et al., 2017; Bhagawati
et al., 2019). These were separated from the exteins with
a flexible linker (Figure 2c). We tested a total of 126 split
sites (36 for gp41-1, 44 for Npu DnaE and 46 for CL)
(Figure 2d). We considered active a site for which a band,
albeit faint, could be detected at the size of the splice
product. Of the 126 tested split sites, 64 were found to be
inactive, and 62 to be active (Figure 2d). Efficiency of
splicing varied across the split sites (Figure S1, and
Source Data, File S3). Notably, inteins split at unnatural
sites might exhibit a higher propensity for N- and/or C-
cleavage, which are side-reactions of the main splicing
reaction (Shah & Muir, 2013). Our design makes it diffi-
cult to assess this quantitatively, because the difference
in size between the N-construct and the N-extein (i.
e., the potential product of a N-cleavage) as well as
between the C-construct and the C-extein (i.e., the poten-
tial product of a C-cleavage) is too small to be detected
on a Western blot for many split sites. A different
approach should be adopted to specifically account for N-
and C-cleavage. Nonetheless, our calculations of splicing
efficiencies at least indirectly reflect the presence of such
side-reactions, which compete with the main splicing
reaction and therefore inevitably lead to less splice prod-
uct. We tried to indicate the presence of these side reac-
tions as best as possible for split sites where the size
difference allowed us to distinguish their products from
the precursors (Figure S1).

2.2 | Finding structural and biochemical
properties with predictive power

Next, we sought to find evolutionary, structural and bio-
chemical properties within inteins that may be helpful in
discriminating between active and inactive split sites.
These properties were extracted from the inteins'
sequences and structures (for gp41-1 and Npu DnaE,
crystal structures (PDB id: 6QAZ and PDB id: 4KL5,
respectively), while for CL a structure generated through
the ColabFold implementation (Mirdita et al., 2022) of
AlphaFold2 (Jumper et al., 2021); Source Data, File S4).
We considered the following properties: (i) binding affin-
ity between the two resulting intein fragments, given its
strong influence on whether a complex is formed or not
(Figure 3a) (Vangone & Bonvin 2015, 2017);
(ii) conservation of the residues around the split site
(either based solely on sequence or based on spatial prox-
imity in the 3D structure), as conserved regions are typi-
cally structurally or functionally important and should
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(a)

(c)

(d)

(b)

FIGURE 2 Generation of the dataset of split inteins for the development of the algorithm used in the Int&in web server. (a) Schematic

representation of the experimental setup. MBP, maltose binding protein. TRX, thioredoxin. +Ctrl, positive control consisting of the MBP-

TRX-SUMO-FLAG fusion protein, additionally having the gp41-1 local exteins between MBP and TRX. Split1, Split2, examples of split sites

that will be analyzed. (b) Exemplary Western blot showing the splicing activity of Npu DnaE split at the indicated sites. NX, intein split at

the amino acid at position X from the first amino acid of the intein (the N-terminus). +Ctrl Full, positive control consisting of the full-length

intein, artificially expressed as contiguous intein. �Crtl, negative control consisting of untransformed cells. *, precursor (N-intein visualized

with the anti-MBP antibody, or C-intein visualized with anti-FLAG antibody). >, splice product.?, likely degradation product. Loading

control, RNA polymerase beta-subunit. The N-extein (MBP) is approximately 42 kDa. The C-extein (TRX-SUMO-FLAG) fusion protein is

expected to be around 26 kDa. The longest gp41-1 fragment is expected to be about 13 kDa. Thus, the N-/C-inteins (N-intein: MBP + N-

terminal intein fragment; C-intein: C-terminal intein fragment + TRX-SUMO-FLAG) are expected to be maximally 55 and 39 kDa

respectively. The local exteins are expected to contribute minimally to the final size of the proteins. Notably, the splice product and the

C-constructs run at a higher molecular weight than expected. (c) Schematic representation of the construct design for gp41-1, Npu DnaE and

CL inteins split at various sites. The “split cassette” used to create the split versions is not visualized for simplicity. See Materials and

Methods for details. NE, N-terminal local exteins. CE, C-terminal local exteins. (d) Sequences of the inteins used to generate the dataset and

location of split sites. The color code indicates active (cyan) and inactive (orange) sites as experimentally assessed via Western blot. The

numbers indicate residue positions.
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better not be tampered with (Figure 3a); (iii) relative sur-
face accessibility of the residues around the split site, con-
sidering that residues exposed on the protein surface are
likely to contribute less to overall protein stability than
those residing in the core, and might thus be a good pre-
dictor for active split sites (Figure 3a); (iv) secondary
structure elements, as regions with loops may contribute
less to protein structure and could be favorable to locate
split sites (Figure 3a); (v) affinity between the the first n
residues of the C-intein and the full N-intein (what we
call C-fragment docking) (Figure 3a). We considered this
property having in mind the ‘capture and collapse’

mechanism introduced by Shah and colleagues, who
investigated the naturally split Npu DnaE intein through
NMR (Shah et al., 2013). The partially folded N-intein
binds to the unfolded C-intein in a process termed cap-
ture, leading to an intermediate structure formed by the
fully folded N-intein electrostatically bound by the still
unfolded C-intein. During the collapse step, the C-intein
folds, generating the functional split intein complex.
Assuming generalizability of this mechanism, we decided
to consider the C-fragment docking energy as a measure
of how easily the intermediate structure of the intein
forms.

(a)

(b) (c)

(d)

FIGURE 3 Protein sequence and structure properties with predictive power for discriminating between active and inactive split sites in

inteins. (a) Depictions of the binding affinity, conservation (conserved residues are shown in red and non-conserved residues in blue),

secondary structure (helices and beta sheets are shown in green and unstructured elements in blue), C-fragment docking (binding energy of

the last 10 amino acids of thC-fragment to the N-fragment) are shown. (b) ANOVA F-scores for the different properties. (c) ANOVA F-scores

for the mean of several sums of residues' properties for conservation and relative accessible surface area. (d) Boxplots of active and inactive

split sites. A two-sided Mann–Whitney U test was used for all properties but conservation and C-fragment docking for which a two-sided

t-test was used. *, p-value <0.05; **, p-value <0.01; ***, p-value <0.001.
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To evaluate the ability of each property to distinguish
between active and inactive split sites, we calculated the
F-value (Figure 3b), which is a metric that indicates how
good the property is at correctly identifying active split
sites, while minimizing mistakes. For the cases including
additional residues beyond the split site itself, we calcu-
lated the F-value using the mean of the value of that spe-
cific property for different combinations of residues
(Figure 3c). For ‘conservation’, we found that
considering residues at positions 0, +1 and +3 gave the
highest F-value (Figure 3c). Spatial conservation did not
yield better results than sequence-based conservation
(Figure S2; see Section 4 for the detailed explanation of
how it was calculated). Therefore, the mean sequence-
based conservation of residues at positions 0, +1 and +3
was finally used for this property. For ‘relative surface
area’, residues �1 and +1 were used for the final prop-
erty. For ‘C-fragment docking’, the highest F-value was
obtained when including eight residues. All the tested
properties were able to discriminate, in a statistically sig-
nificant manner (Figure 3d), between active and inactive
split sites, being, thus, promising for building the
machine learning model.

2.3 | Generating the machine
learning model

Once we identified several features that can individually
distinguish active from inactive split sites, we needed to
build the decision-making algorithm—the classifier—
which leverages these features to make predictions on
unseen data. For selecting the most suitable one for our
specific purpose of active split site identification in
inteins, we compared several classifiers (Gaussian Naive
Bayes, XGBoost, Logistic Regression, Decision Tree, and
Support Vector Machine) with all possible feature combi-
nations based on their performance measured by a 10-
fold cross validation (10 CV) of the Matthews correlation
coefficient (MCC) averaged over 10 runs (10 � 10-fold
cross validation) (Figure 4a, Figure S3). The logistic
regression classifier operating on all the features (namely,
sequence conservation, relative accessible surface area,
binding affinity, C-fragment docking energy and second-
ary structure) performed best (average 10 � 10 cross-vali-
dated MCC of 0.55, with standard deviation of 0.02).
Therefore, it was used to generate the final model
(Figure 4b, Table S2).

With the training dataset, the model had an MCC of
0.57, an accuracy of 0.79 (10-fold cross-validated accuracy
of 0.784 ± 0.118), a precision of 0.79 and a recall of 0.77
(Figure 4c). The ROC (receiver operating characteristic)
curve, which indicates the performance of a classification
model at all classification thresholds in terms of true and

false positive rates, had an area under the curve of 0.84
(Figure 4d). The model was able to correctly predict 82%,
78% and 76% of the active split sites for Npu DnaE, gp41-
1 and CL, respectively (Figure S4).

The model relies on a threshold to define a split site
as active or inactive. Considering that the probability p is
a value from 0 to 1, we set the default classification
threshold at 0.5, so that any split site with a predicted
probability p ≥ 0.5 is classified as active, while those with
p < 0.5 are classified as inactive. With this threshold, the
true positive and negative rates are 0.79 and 0.78, respec-
tively. The threshold can be, however, adjusted to specifi-
cally increase one of these rates, something that might be
required in specific cases (Figure 4e). By employing two
different classification thresholds, the true positive or
true negative rate can be individually increased. As
changing the classification threshold also reduces the
number of predicted split sites, we set the limit for these
thresholds so that the number of predicted split sites does
not go below half of the total number of experimentally
validated active/inactive sites. Setting the threshold to
0.6, the true positive rate can be increased from 0.79 to
0.83; setting it to 0.4, the true negative rate can be
increased from 0.78 to 0.84. Using these two thresholds,
we created four categories of prediction certainty: active
split sites (p ≥ 0.5), inactive split sites (p < 0.5), active
with high probability (p ≥ 0.6), and inactive with high
probability (p < 0.4).

Next, we were interested in knowing whether the
model could be used to differentiate split sites character-
ized by lower or higher splicing efficiency (Source Data,
File S2). To this end, the probability of a site to be active,
as outputted by the model, was plotted for three groups:
inactive split sites, split sites with moderate splicing effi-
ciency (<50% of the splicing efficiency) and split sites
with high splicing efficiency (≥50% of the splicing effi-
ciency). We found a significant difference between inac-
tive and moderate efficiency sites, as well as between
moderate and high efficiency sites (Figure 4f).

2.4 | Model validation

To assess the performance of the model, we extracted
from the literature a dataset of 97 split sites in inteins, of
which 57 active and 40 inactive, from 41 different inteins
(Aranko et al., 2014) (Table S3). We excluded Pfu RIR1-1
and Pfu RIR1-2, as they were split inside their homing
endonuclease/stirrup domain, as well as gp41-1 and Npu
DnaE, since they are already contained in the training
dataset. Given the presence of different inteins in this
dataset, we reasoned it was well suited to evaluate the
generalizability of the model, which was obtained with
data from three inteins. It is important to note that this
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FIGURE 4 Legend on next page.
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testing dataset, even though quite diverse from the point
of view of the variety of inteins included, is unbalanced
due to the prevalence of split sites clustering around the
naturally occurring ones, as well as to the over-represen-
tation of active split sites (so-called class imbalance;
40 inactive vs. 57 active sites).

We generated the 3D structures of all the inteins with
AlphaFold2 (Jumper et al., 2021) (implementation in
ColabFold (Mirdita et al., 2022); Source Data, File S1),
inputted them into the model, and then calculated per-
formance measures (Figure 5a,b). We found an MCC of
0.55, an accuracy of 0.78 (10-fold cross-validated accuracy
of 0.732 ± 0.152), a precision of 0.76, a recall of 0.91 and
a ROC of 0.83. Applying the same thresholds used with
the training dataset, the true positive rate could be
increased to 0.85 from 0.76, while the true negative rate
decreased slightly from 0.83 to 0.82 (Figure 5c). The latter
may be due to the imbalance of the dataset mentioned
above.

To check for the effect of class imbalance, we
employed an undersampling strategy based on the Near-
Miss (version 3) technique (Lemaître et al., 2017), which
selects samples from the majority class based on their
closeness to samples in the minority class. Using this
undersampled testing dataset, we obtained an MCC of
0.62, an accuracy of 0.79 (10-fold cross-validated accuracy
of 0.75 ± 0.158), a precision of 0.71, and a recall of 0.98
(Figure S5). Together, these results show that the logistic
regression-based model performs similarly with the liter-
ature-derived validation dataset as with the training data-
set containing sites spanning the whole sequence space
of three inteins.

2.5 | The Int&in web server

To allow researchers of varying levels of computational
knowledge to make use of this model, we opted for mak-
ing it available through a freely-accessible web server

(https://intein.biologie.uni-freiburg.de), which is free of
charge for academic usage. The Int&in web server evalu-
ates each amino acid of a given intein sequence for its
potential to be an active split site, and provides an easy-
to-use web interface to quickly evaluate the results. Users
can anonymously upload their experimentally deter-
mined or modeled protein structures and receive a per-
sonalized link to visualize the results. Additionally, we
provide the option to submit batch runs with multiple
.pdb files. Finally, users can register for an account,
which ensures that past jobs are easily retrieved and can
be analyzed at a later point (past jobs may be deleted
after 30 days). After all calculations are executed on the
backend, usery are notified via email (if an address was
provided at job submission; otherwise, the job can be
accessed through the personalized link that appears after
job submission), and can access an interface consisting of
a structure window, a list of split sites and several graphs
showing the values of the individual properties as well as
the model predictions. All files generated by the Int&in
web server as well as the raw data from third party pro-
grams (conservation calculations and secondary structure
calculations) can be downloaded.

3 | DISCUSSION

Here we described Int&in, a web server that relies on a
machine learning algorithm to predict active and inactive
split sites in inteins. Before embarking in the development
of this web server and the model it relies on, we checked
the literature and found SPELL, a web server for the predic-
tion of split sites in proteins specialized in the task of pro-
tein functional reconstitution by means of ligand- or light-
regulated heterodimerizing systems (Dagliyan et al., 2018).
Indeed, locating functional split sites in proteins is a highly
desirable task, because splitting proteins into two dysfunc-
tional halves, which can be brought back into close physical
proximity to regain activity, is a useful technique in cell and

FIGURE 4 Int&in machine learning model creation with the training dataset. (a) Illustration of the workflow for identifying the best

feature combination and classifier. (b) 10 � 10 CV MCCs plotted with their respective feature combinations. The following letters are used to

code for the following features: C = conservation, B = binding affinity, R = relative accessible surface area, D = C-fragment docking,

S = secondary structure. (c) Confusion matrix of the Int&in machine learning model based on the logistic regression classifier with the

following features: conservation, relative accessible surface area and secondary structure. (d) ROC curve of the Int&in machine learning

model compared to a random classifier. (e) Plot showing the probability threshold adjusted from 0 to 1 with increments of 0.05 plotted

against the true positive and true negative. The respective rates of true positives are shown for three different thresholds: 0.4 (red), 0.5 (gray)

and 0.6 (blue).(f) Plot showing the separation of the inteins according to different splicing efficiencies as predicted by the model. The

inactive group shows no activity whatsoever (n = 64), the moderate efficiency group contains all split sites leading to inteins with an activity

<50% (n = 20) and the high efficiency group contains all split sites leading to inteins with an activity ≥50% (n = 42). The two-sided Mann–
Whitney U test was used for significance calculation, since the moderately efficient and highly efficient groups are not normally distributed.

*, p-value <0.05; **, p-value <0.01; ***, p-value <0.001.
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synthetic biology to control and/or understand biological
processes (Cali & Brini, 2021; Mahameed et al., 2022; Varn-
Buhler et al., 2022). The algorithm behind SPELL makes
use of an energy function and several structural and
sequence-based parameters to determine functional split
sites. Because it was generated from a limited data set of
27 functional split sites from 16 different proteins, it is diffi-
cult to assess whether the rules employed by SPELL truly
reflect the full range of sites at which a protein can be split.
This was not the main goal of the SPELL algorithm, which
aims to maximize the number of true positive sites while
keeping the number of false positive sites at a minimum.
This means that several functional split sites that are not
deemed optimal by the algorithm are lost, which can be
problematic when wishing to split a protein in a specific
region. For inteins in particular, the possibility to find split
sites in specific regions can be crucial to, for instance, gener-
ate very short intein fragments, which can be more easily
chemically synthesized and used in protein semisynthesis
(Ludwig et al., 2006; Mootz, 2009; Burton et al., 2020) or be
more amenable to control via caging within the light-

sensitive light oxygen voltage (LOV) domain (Wong
et al., 2015). Interestingly, when applied to 41 individual
inteins, SPELL predicts no split sites for around 80% of the
inteins tested (Table S1). Additionally, when we applied the
same energy profile used by SPELL, which is conceptually
equivalent to the binding energy we use, we found no sig-
nificant difference between inactive and active split sites
(Figure S6a,b). This indicates that SPELL is not particularly
suitable to predict active split sites in inteins. Very recently,
another algorithm, ProteinSplit, has been developed to spe-
cifically predict how to split a protein of interest for func-
tional reconstitution via a ligand (Rihtar et al., 2023). Since
this model requires a ligand, it is not immediately applica-
ble to the vast majority of inteins, which spontaneously
splice and are not ligand-dependent.

Our model uses binding affinity between the resulting
intein fragments, as well as conservation, relative accessi-
ble surface area, C-fragment docking energy and second-
ary structures of and around the split site to calculate a
probability score. Trained on randomly distributed split
sites from three different inteins amounting to 126 sites

FIGURE 5 Int&in performs well on a testing dataset. (a) Confusion matrix of the Int&in machine learning model with the dataset of

split sites from literature. (b) ROC curve of the Int&in machine learning model compared to a random classifier. (c) Plot showing the

probability threshold adjusted from 0 to 1 with increments of 0.05 plotted against the true positive and true negative rates. The rates are

shown for three different thresholds: 0.4 (red), 0.5 (gray) and 0.6 (blue).
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in total, the model achieved an accuracy of 0.78 with an
untrained dataset consisting of 41 different inteins with
split sites gathered from literature. Given their reliance
on the training dataset to learn the patterns in the data, it
is not surprising that machine learning algorithms
strongly depend on the size of the training dataset, with
larger ones leading to better predictive power (Sordo &
Zeng, 2005). We were pleased to see that our model per-
forms well despite the modest size of the training dataset.

As the model was not trained with any knowledge of
the efficiency of splicing of each site, but nonetheless
managed to output probabilities that show a significant
difference between split sites associated with moderate
and high splicing efficiencies, we speculate that the prop-
erties used in the model are also predictive of splicing
efficiency associated with each split site, and thus Int&in
could be used also to predict efficiencies. By testing the
model on a dataset coming from the literature, character-
ized by a variety of inteins with different exteins
expressed in different model organisms, we have shown
generalizability as well as wide applicability of our
model. Nonetheless, in cases where the local exteins are
changed or truncated the model's output may show dis-
crepancies, considering the model was trained on results
generated with the optimal local exteins for each intein.

Additionally, we would like to encourage researchers
to share the “negative data” (in the case of inteins, split
sites that result in non-splicing inteins) as well, since such
data would be equally informative as “positive data” and
would prevent class imbalance issues in future ML algo-
rithms' development. While the presence of class imbal-
ance was not problematic for our particular application, it
might be quite deleterious in others. In general, training
ML models on diverse and large datasets would result in
improved generalization, reduced overfitting, enhanced
model complexity, improved accuracy and stability, better
data representation and better learning performance.

The source code for a standalone version of the tool as
well as the files for feature selection, model training and
testing can be accessed at https://github.com/bleblebles/
Int-In/. Since the Int&in web server is user-friendly, and
requires no prior knowledge of bioinformatics or computa-
tional biology, we believe it will boost research on these
fascinating proteins as well as applications based on them.

4 | MATERIALS AND METHODS

4.1 | Non-covalent bond determination
in Int&in

A list of residues that are in proximity to each other
(10 Å at most) is created and the existence of non-

covalent bonds (hydrogen bond, salt bridge, van der
Waals, pi-pi and pi-cation) is determined, as outlined
below.

4.2 | Hydrogen bonds

A hydrogen bond between two atoms is considered to be
present if the angle between the hydrogen donor (D) and
the hydrogen acceptor (A) is ≤63� and the distance
between them is ≤3.5 Å (40). N, O, S and atoms may be
acceptors and/or donors with the exception of NH3,
which cannot be an electron acceptor. Moreover, C atoms
may be donors, to account for backbone hydrogen bonds
(Gu et al., 1999). Donor atoms additionally need at least
one hydrogen atom covalently bound to them.

4.3 | Salt bridges

A salt bridge between two residues is considered to be
present if they have opposite charge and the distance
between any of the nitrogen atoms in the side chain of
the positively charged residue and the oxygen atoms
(or the sulfur of cysteine) in the side chain of the nega-
tively charged residue is ≤4 Å (Barlow &
Thornton, 1983).

4.4 | Aromatic interactions

π–π interactions are attributed to aromatic amino acids if
the centroids of their aromatic rings are at most 7.5 Å
from each other and none or only one of the aromatic
rings is positively charged (Bhattacharyya et al., 2002).
Cation-π interactions are considered to be present if the
distance between the centroid of the aromatic ring of a
neutral aromatic amino acid and any nitrogen atom of
the side chain of a positively charged lysine or argine is
≤6 Å (Gallivan & Dougherty, 1999).

4.5 | van der Waals

A van der Waals interaction is considered to be present
between any carbon–carbon, carbon–sulfur, carbon–oxy-
gen (glutamine OE1 and asparagine OD1) and carbon-
nitrogen (glutamine NE2 and asparagine OE1) if their
distance is ≤0.5 Å (Lovell et al., 1999). The van der Waals
radii (NACCESS radii) of the two potentially interacting
atoms is subtracted from the distance between the atoms
to get the distance between the atoms' surfaces (Hubbard
et al., 1993).
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4.6 | C-fragment docking energy
determination in Int&in

The docking energy between the first eight residues of
the C-intein and all residues of the N-intein is calculated
by attributing different energies to each non-covalent
interaction depending on its type (and distance, in the
case of hydrogen bonds):

Non-covalent
interaction Energy (kJ/mol)

Hydrogen bond For distances between D and
A ≤ 1.5 Å: 115.0

For distances between 1.5 Å < D and
A ≤ 2.2 Å: 40.0

For distances between 2.2 Å < D and
A ≤ 3.5 Å: 17.0

Salt bridge 20.0

Aromatic
interaction

Pi–pi interaction: 9.4
Pi–cation interaction: 9.6

van der Waals 6.0

The energies have been used according to the RING
3.0 web server (Clementel et al., 2022).

4.7 | Relative accessible surface area
determination in Int&in

The accessible surface area of each residue is calculated
with the ‘rolling ball’ algorithm by Shrake and Rupley
(1973). The van der Waals radius as defined in NACCESS
(Hubbard et al., 1993) is used, 100 sampling points are
evenly placed on this sphere through the Fibonacci lat-
tice method (Gonzalez, 2010) and a probe radius of 1.4 Å
is used. To calculate the relative accessible surface area
(RelASA) of a residue, the accessible surface of a residue
(ASA) is divided by its maximum accessible surface (Max-
ASA) as defined in NACCESS (Hubbard et al., 1993):

RelASA¼ ASA
MaxASA

4.8 | Conservation determination in
Int&in

The conservation is calculated by first using HMMER
(3.3) homologous sequences in the Uniref90 database
(version 2021_03) (Eddy, 1998; Suzek et al., 2015). Only
entries with an E-value ≤0.0001, an alignment length of

≥70 and a minimum of 35% sequence identity with the
input sequence portion are kept to filter out false posi-
tives or too small sequences. If multiple domains are
found, they are considered as unique hits and subjected
to the same filters as described above. If there are more
than 2000 sequences, due to technical limitations of the
multiple sequence alignment software, these are sampled
as follows: first, the number of total sequences is divided
by 2000, then the resulting number is iteratively added to
itself and the sums, rounded down, are used to sample
the sequences. For instance, if 2500 sequences are found,
2500/2000 gives an interval of 1.25, leading to the follow-
ing sequences being selected: 1, 2, 3, 4, 6, 7, 8, 9, 11,….
This procedure enables reproducible results while sam-
pling through the whole HMMER output. The resulting
sequences are then used to create a multiple sequence
alignment (MSA) with the sequence in the .pdb file sub-
mitted by the user with the MUSCLE program
(Edgar, 2004). The resulting MSA is then used to create
clusters of sequences with ≥95% similarity (blank spaces
in the MSA are not considered) between each other. One
representative sequence out of each cluster is then taken
for further evaluation. Due to program-related restric-
tions, the clusters are once again sampled according to
the same principles described above to a maximum of
150 cluster sequences. For inteins, in most cases there are
no more than 150 clusters, thus sampling does not occur.
The clustered sequences are then passed to Rate4Site
(Pupko et al., 2002; Mayrose et al., 2004), which calcu-
lates conservation scores. The conservation scores are
then normalized to a scale of 0 and 1 according to the fol-
lowing formulas, similarly to how the bins are created in
the ConSurf web-server (Ashkenazy et al., 2016):

NormCons¼ 1� Cons�PositiveConsmin

PositiveConsmax �PositiveConsmin

� �
�0:5

for sites that have a positive conservation (non-conserved
sites), with NormCons being the normalized conserva-
tion, Cons being the current residues' conservation, Posi-
tiveConsmin being the minimal positive conservation out
of all residues, and PositiveConsmax being the maximal
positive conservation of all residues and

NormCons¼ 1� Cons�NegativeConsmin

NegativeConsmax �NegativeConsmin

� �
�0:5þ0:5

for sites that have a negative conservation (conserved
sites), with NormCons being the normalized conserva-
tion, Cons being the current residues'
conservation, NegativeConsmin being the minimal nega-
tive conservation out of all residues, and
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NegativeConsmax being the maximal negative conserva-
tion of all residues.

4.9 | Spatial conservation determination

Spatial conservation was calculated based on mean, mini-
mum and maximum conservation values of all residues
that have a specified maximum distance from the split
site. For this, Cα-atom positions were used, while the
split site position was denoted as the middle of Cα-atom
positions of the two flanking residues at the split site.

4.10 | Binding affinity determination in
Int&in

The binding affinity between two fragments is calculated
through the PRODIGY prediction model established by
Vangone and Bonvin (2015, 2017). The model is imple-
mented in the backend of the Int&in web server by refac-
toring the code from Python to C#. The surface
accessibility is calculated through an implementation of
the algorithm by Lee and Richards (1971) and Mitter-
nacht (2016) as outlined in the FreeSASA source code,
with 20 sphere slices and the van der Waals radii and
maximally accessible surface areas as defined by the
NACCESS program (Hubbard et al., 1993).

4.11 | Secondary structure
determination in Int&in

The secondary structure of a sequence is calculated with
the DSSP program (Kabsch & Sander, 1983; Joosten
et al., 2011). A split site is considered to be in a secondary
structure if both flanking residues are part of a
secondary structure.

4.12 | Computational resources needed
for Int&in

The Int&in web server consists of two distinct parts: a
backend written in C# (.Net 3.1) and Python 3 performing
the calculations, and a web GUI written in PHP and Java-
Script. After submitting a file, the file is stored for at least
30 days on the server and is accessible through a personal-
ized unique key. The file as well as the user options are
passed from the web GUI to the backend to perform the
calculations. The current job status can be accessed
through the personalized unique key given to the user. If
the user provided an email at submission, a notification

will be sent when the job has finished. Otherwise, they will
have to check the personalized link to see if the job has
finished. The backend makes use of the following libraries:
DotNetZip (https://github.com/haf/DotNetZip.Semverd),
MailKit (https://github.com/jstedfast/MailKit) and Mime-
Kit (https://github.com/jstedfast/MimeKit). Additionally,
the following programs are used for the indicated tasks:

• PDB2PQR v2.1.1—to generate the structure at a pH of
7 and to add hydrogens

• DSSP (3.0.0)—to generate the secondary structure
• HMMER (3.3)—to identify homologous proteins in the

UniRef90 database (2021_03)
• Muscle (v3.8.1551)—to create a multiple sequence

alignment (MSA) of the sequence contained in the .pdb
file submitted by the user and maximum 2000
sequences extracted from the HMMER output

• Rate4Site (3.0.0.)—to generate the conservation score
out of maximum 150 clustered sequences from
the MSA

• Python, with the following two libraries: scikit-learn
(1.1.0) and pandas.

The web-based GUI makes use of the following Java-
Script libraries: jQuery (https://github.com/jquery/
jquery), NGL viewer for molecular representation (Rose &
Hildebrand, 2015) and dygraphs for chart plots (https://
github.com/danvk/dygraphs). The web-based GUI also
lets the user create an account to have an overview of the
submitted jobs. The account information is stored in a
MYSQL database. Passwords are hashed for security.

4.13 | Property significance tests

To assess if the difference between the group of split sites
predicted to be active and that of split sites predicted to
be inactive was significant when using a defined prop-
erty, we applied either the t-test or the Mann–Whitney
U test (scipy.stats.ttest_ind, mannwhitneyu), depending
on whether the groups were considered normally distrib-
uted or not, respectively. Normal distribution was evalu-
ated using the Shapiro–Wilk test, the normaltest function
from scipy and the Anderson-Darling test (scipy.stats.sha-
piro, normaltest, anderson).

4.14 | Property optimization with
ANOVA F-scores

The ANOVA F-scores were calculated with the sklearn
library in Python.

(sklearn.feature_selection.SelectKBest, f_classif ).
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4.15 | Feature combination selection

Different combinations of features were evaluated on dif-
ferent models (from sklearn.naive_bayes.GaussianNB,
xgboost.XGBClassifier, sklearn.linear_model.LogisticRe-
gression, sklearn.tree.DecisionTreeClassifier, and
sklearn.svm.SVC) by calculating the 10x Cross-validated
(sklearn.model_selection.KFold with shuffle set to true)
Matthews correlation coefficient (MCC, sklearn.metrics.
matthews_corrcoef), which was then averaged over
10 runs with different seeds (from numpy.random.seed,
seeds 0–9 were used).

4.16 | Model creation

The logistic regression model (from sklearn.linear_mo-
del.LogisticRegression (Pedregosa et al., 2011); with the
‘liblinear’ solver, which was selected due to the smaller
dataset), was trained in Python on the training dataset.
To evaluate the model in terms of accuracy, precision,
recall, and MCC confusion matrices were generated
(sklearn.metrics.accuracy_score, precision_score, recall_-
score, matthews_corrcoef, confusion_matrix). The confu-
sion matrix representation was generated through
seaborn (Waskom, 2021). The model was saved
through the pickle library in Python.

4.17 | Protein structures

The crystal structures of gp41-1 and Npu DnaE (PDB id:
6QAZ and PDB id: 4KL5, respectively) were used. The
structures were additionally modified in PyMol to remove
any extein sequences and mutate residues so that they
would represent the native structures. For the gp41-1
intein structure, the first three extein residues (SGG)
were removed and the fourth alanine (which inactivates
the intein) was mutated back to cysteine. For Npu DnaE
chain A was used for the computational experiments and
the first three extein residues were also removed and the
fourth alanine residue was mutated to cysteine; addition-
ally, the last four extein residues (ADNG) in the structure
file were also removed. CL as well as all other inteins
from the literature data set were modeled through the
ColabFold implementation (Mirdita et al., 2022) of
AlphaFold2 (Jumper et al., 2021).

4.18 | Plasmid construction

For the expression of all intein constructs in E. coli, the
pTrc99A vector was used. A list of all used primers and

amino acid sequences of exemplary plasmids is given in
the Appendix, File S5. For PCR amplification the Phusion
Flash High-Fidelity PCR Master Mix (2�) from Thermo-
Scientific and the Biometra TOne 96G thermocycler from
Analytik Jena were used. Plasmids were constructed
using the NEBuilder® HiFi DNA Assembly Cloning Kit
from New England Biolabs.

The mbp gene coding for the maltose binding protein
(MBP) was amplified from pETM41 via PCR with primers
pTrc_MBP_fw and MBP_gp41_rev (Figure S7a, upper left
panel). Note that the gene in the final plasmids contains
a mutation in the first base of the second codon, which
means that the protein has lysine instead of glutamic acid
at that position. Since the anti-MBP antibody worked
well we decided against removing the mutation. The trx
gene coding for thioredoxin (TRX) was amplified from
pETTrx with primers TRX_fw and TRX_SUMO_rev
(Figure S7a, upper middle panel). Plasmids pETM41 and
pETTrx were a kind gift of Gunter Stier (Heidelberg Uni-
versity). The Saccharomyces cerevisiae smt3 gene coding
for SUMO was amplified from pTB324_AmiB (kind gift
of Thomas Bernhardt, Harvard Medical School, Boston)
with primers SUMO_fw and SUMO_rev (Figure S7a,
upper right panel). The N- and C-fragments of the gp41-1
gene were amplified with primers gp41-1_fw and gp41-
1_N_merge_rev, and primers gp41-1_rev and gp41-
1_C_merge_fw, respectively, from pSiMPlk (Palanisamy
et al., 2019) (Figure S7a, lower left panel). The backbone
fragments were amplified with primers pTrc_BB_rev and
CoLE1_fw as well as CoLE1_rev and SUMO_BB_fw from
pTrc99A in order to have shorter fragments. All frag-
ments (backbone 1, backbone 2, mbp, gp41-1 N-frag-
ment, gp41-1 C-fragment, trx, sumo; Figure S7b, upper
panel) contain overhangs allowing for assembly yielding
pTRc-MBP-gp41-1-TRX-GS-SUMO-FLAG (Figure S7b,
lower left panel). Subsequently, GS linkers (one GS linker
consists of the following sequence: GGGGSGGGGS) were
added upstream of the local exteins of the N-intein and
downstream of the local exteins of the C-intein
(Figure 2c) in pTRc-MBP-gp41-1-TRX-GS-SUMO-FLAG
plasmid with primers MBP_GS_rev and CoLE1_fw,
Intein_GS_TRX_fw and CoLE1_rev as well as
GP41_GS_Nextein_fw and GP41_Cextein_rev yielding
pTRc-MBP-GS-gp41-1-GS-TRX-GS-SUMO-FLAG
(Figure S7b, lower right panel). pTRc-MBP-GS-GS-TRX-
GS-SUMO-FLAG containing the N- and C-exteins and
the native local extein sequences for gp41-1 (positive con-
trol) was generated from pTRc-MBP-GS-gp41-1-GS-TRX-
GS-SUMO-FLAG using primers GS_GP_N_and_-
C_Ext_fw, CoLE1_rev and GS_Next_rev and CoLE1_fw.

The constructs with Npu DnaE and CL were con-
structed using pTRc-MBP-gp41-1-TRX-GS-SUMO-FLAG
as template. The gene coding for full-length Npu DnaE
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was amplified with primers MBP_GS_rev and CoLE1_fw,
Intein_GS_SUMO_fw and CoLE1_rev as well as
Npu_CExtein_rev and Npu_NExtein_fw yielding pTRc-
MBP-GS-Npu_DnaE-GS-TRX-GS-SUMO-FLAG. The gene
coding for CL was amplified from pTT32 and pTT43 (kind
gift of Henning Mootz, University of Münster; Bhagawati
et al., 2019). Specifically, the N-intein was amplified from
pTT32 with primers AesN_GS_fw and AesN_rev, while the
C-intein was amplified from pTT43 with primers AesC_fw
and AesC_GS_rev. The two backbone fragments were
amplified from pTRc-MBP-GS-gp41-1-GS-TRX-GS-SUMO-
FLAG with primers MBP_GS_rev and CoLE1_fw,
Intein_GS_SUMO_fw and CoLE1_rev. The four fragments
were then assembled into pTRc-MBP-GS-CSIntein-GS-
TRX-GS-SUMO-FLAG.

To clone the different split sites, we generated a so-
called ‘split cassette’, containing a stop codon, a frame-
shifted stop codon followed by a random spacer DNA, a
ribosome binding site (Elowitz & Leibler, 2000) and
a start codon. This split cassette was inserted in the
intein-containing plasmid via two overlapping primers
encoding the split cassette in their overhangs and anneal-
ing to the sequence of the intein at the respective split
site (see Source Data, File S5 for a list of representative
and unique plasmid sequences and a full list of primers.
The split cassette primers contain the name of the respec-
tive intein and the split site). Two primers annealing to
the backbone (CoLE1_fw and CoLE1_rev) were used to
generate two fragments with the primers containing the
split cassette. Note that all constructs contain the same
exteins and the same flexible linkers (GGGGSGGGGS)
that separate them from the local exteins. The only differ-
ence among constructs is the local exteins, which are spe-
cific to the intein (Figure 2c).

4.19 | Bacterial cell lysis

Individual colonies were picked and used to start over-
night (ON) cultures, which were grown at 37�C with
250 rpm shaking in the multitron pro incubator (Infors
AG). The next morning, a volume of (100/OD) � 3 μL of
the ON culture was used to inoculate a fresh tube with
3 mL LB medium plus ampicillin (100 mg/L). The tubes
were subsequently shaken at 37�C and 250 rpm for
90 min, after which 3 μL of 1 M Isopropyl β-d-1-thioga-
lactopyranoside (IPTG) were added to each tube. The
tubes were then put again inside the incubator and shook
for 2 h and 30 min at 37�C 250 rpm. Afterwards, the
OD600 of each culture was measured and a volume of
100/OD μL was taken and centrifuged at 13,000 rpm for
4 min at room temperature. The supernatant was
removed from the samples, and the pellets resuspended
in 20 μL 4� Lämli Buffer (Bio-Rad) and 80 μL

ddH2O. The tubes were heated up for 10 min at 95�C and
stored at �20�C. The OD at 600 nm of the bacterial cul-
tures was measured with the OD600 DiluPhotometer
from IMPLEN GmbH.

4.20 | Western blot

1.5 μL of each cell extract were loaded in a well of a
Mini-PROTEAN® 10% TGX™ Precast Gel (10 wells,
50 μL pocket volume; Bio-Rad) and separated in the
Mini-PROTEAN Tetra Vertical Electrophoresis Cell (Bio-
Rad) at 100 V for around 1 h and 30 min. Protein transfer
onto a PVDF membrane was carried out with the Trans-
Blot Turbo Mini 0.2 μm PVDF Transfer Packs (Bio-Rad)
and Trans-Blot Turbo Transfer System (Bio-Rad). The
membrane was blocked for 2 h with 5% BSA-PBST solu-
tion at room temperature on a rocking machine at
25 rpm. The blocking buffer was removed and 10 mL 5%
BSA-PBST with 1 μL RABBIT anti-DYKDDDDK Tag
antibody (Bio-Rad, # AHP1074), 1 μL anti-MBP monoclo-
nal antibody (New England Biolabs, #E8032L) and 6 μL
anti-E. coli RNA Polymerase β-subunit antibody (BioLe-
gend, #663905) were added. The membrane was then
placed on a rocking machine at 25 rpm for another 2 h.
The BSA-PBST antibody mixture was then removed and
the membrane was washed three times with PBST with
gentle rocking for 5 min. 4 μL of the Cy5 goat anti-rabbit
antibody (Invitrogen, #A10523) and 4 μL of the Alexa
Fluor goat anti-mouse antibody (Invitrogen, #A11029)
were added to 10 mL BSA-PBST and poured over the
membrane in a closed box (used to protect it from light).
The box containing the membrane was placed on the
rocking machine at 25 rpm for another hour. Subse-
quently, the secondary antibody mixture was removed
followed by three washes with PBST, during which the
membrane was rocked for 5 min in the dark box. The
membranes were imaged with the Amersham Typhoon
5 (Global Life Sciences Solutions) with the Cy2 and Cy5
emission filters and excitation wavelengths.

4.21 | Calculation of splicing efficiencies

Image J2 (1.53 s) (Rueden, 2017) was used to calculate
the efficiency of splicing for each split site according to
the following formula:

Efficiency¼ Areaspliceproduct
AreaspliceproductþAreaprecursor

The efficiencies were calculated for both channels (one
channel detects the C-extein and one the N-extein). The
maximum value was used to train the model.
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4.22 | Definition of experimentally
validated active split site

Two independent WBs were performed for each split
site for each tested intein. A split site was considered
active only if the splice product was quantifiable in both
replicates.
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