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Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or
applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent
streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean,
maximum and minimum annual flow for each year in the period 1960–2015, provided as spatially
continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs)
regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring
stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean
monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface
slope, elevation) and year-specific climatic variables (precipitation, temperature, potential
evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data
indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and
water resources analyses at a global scale and yet high spatial resolution.
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Background & Summary
Quantifying streamflow is critical to a variety of socio-economic and ecological analyses and
applications1–3. Examples include the study of freshwater biodiversity patterns4–7, assessments of global
water resources8,9, for example irrigation supply, hydropower or water footprinting10–12, analyses of the
fate of pollutants13 and quantification of sediment fluxes14,15. Most of the stream reaches in the world are
poorly or not monitored at all16,17, due to the inaccessibility of most headwaters and a lack of financial
and human resources18, highlighted by a substantial decline in monitoring since the mid-1980s17–19.
Streamflow is commonly quantified with process-driven global hydrological models (GHMs) and land
surface models (LSMs)20–24. GHMs/LSMs are typically run at coarse spatial resolutions (~10 to 50 km),
due to computational constraints, and consequently are unable to provide reasonable streamflow
estimates for small rivers (defined here by Strahler stream order o 5), which comprise 94.6 % of the total
stream length and riparian interface on the planet25. Streamflow data at higher spatial resolution would
be highly beneficial for ecological applications and water resources assessment, for example
understanding/modelling freshwater species distributions or modelling the fate and effects of pollutants
in the aquatic environment13,26–29.

Compared to process-based models, data-driven models like regression equations and neural networks
are more suited for generating high-resolution streamflow data with large spatial extent, thanks to their
computational efficiency and relatively quick parameterization30. Data-driven models typically quantify
streamflow based on upstream catchment characteristics related to topography, climate, land cover, and
soils30–33. Data-driven approaches have been mostly employed at a local scale34. Recent studies
demonstrated, however, the feasibility of applying a data-driven approach at a global scale, resulting in
streamflow estimates that may have greater accuracy than the output of GHMs/LSMs31,32. Despite these
encouraging results, consistent high-resolution global streamflow maps are not yet available.

Here we present FLO1K: a consistent dataset of global annual streamflow maps at 1 km resolution for
each year in the period 1960-2015. Annual flow (AF) metrics include mean annual flow as well as
minimum and maximum monthly flow for a given year. We produced the maps with feed-forward
Artificial Neural Networks (ANNs) trained on yearly AF metric values from 6600 monitoring stations
worldwide, using catchment-averaged covariates representing topography and climate. We delineated the
upstream catchments based on the 1-km HydroSHEDS (www.hydrosheds.org) hydrography35, extended
with Hydro1k (https://lta.cr.usgs.gov/HYDRO1K) for latitudes above 60°N not covered by HydroSHEDS,
thereby achieving a global coverage (excluding Antarctica). For the training of the ANNs, we used 10
yearly values of mean, minimum and maximum AF per monitoring station and climate covariates for the
corresponding years. We then constructed the AF metric maps by first computing for each year and each
30 arc seconds grid cell the upstream catchment-averaged covariates (which varied from year to year for
climate), and then applying the trained ANNs. The streamflow is calculated for each terrain grid cell, i.e.,
it represents the potential in-channel discharge that would occur in the presence of a natural watercourse.
The flow maps have a resolution 10 to 50 times higher than those typically produced using state-of-the-
art GHMs/LSMs36,37 and global data-driven approaches32. For each of the three AF metrics, 56 yearly
layers (1960-2015) are available packed in the NetCDF-4 format CF-compliant. In addition, we provide
the FLO1K layers upscaled to 5 and 30 arc minutes resolutions for coarser-grain applications, including
comparisons with GHMs/LSMs outputs. The FLO1K database can be downloaded from http://geoservice.
pbl.nl/download/opendata/FLO1K and figshare (Data Citation 1).

Methods
General approach and streamflow network
The procedure to generate the maps consisted of (i) model fitting, including observed streamflow data
preparation, extraction of covariates, and training of the ANNs, and (ii) application of the ANNs to
generate the global AF maps. Figure 1 provides a general outline of the procedure. We used the 30 arc
seconds (~1 km) version of HydroSHEDS35 extended with Hydro1k for latitudes above 60°N to retrieve
the drainage direction network and delineate the upstream catchment of each grid cell38,39. The
HydroSHEDS hydrography is based on the National Aeronautics and Space Administration (NASA)
Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM)40, which covers the entire
terrestrial land surface from latitudes 56°S to 60°N. To achieve a global spatial coverage, we extended
HydroSHEDS with Hydro1k38,39, the latter being a United States Geological Survey (USGS) product
derived from the GTOPO30 Digital Elevation Model (DEM) (https://lta.cr.usgs.gov/GTOPO30). The
resulting drainage direction network is available at http://files.ntsg.umt.edu/data/DRT/.

Streamflow observations
We derived mean, maximum and minimum AF values from flow records in the Global Runoff Data
Centre (GRDC) database (www.bafg.de/GRDC)41. The GRDC comprises daily and monthly streamflow
records from 9252 monitoring stations worldwide. The GRDC monitoring stations are not directly
referenced on the hydrography employed in this study. This means that mismatched monitoring stations
might encompass the wrong upstream catchment basin, which in turn may lead to errors when training
the ANNs. As the GRDC dataset includes the estimated catchment area upstream of each monitoring
station, we geo-referenced each station in order to match the most similar upstream area on the 30 arc
seconds stream network, following the procedure previously used to allocate GRDC stations on the
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HydroSHEDS 15 arc seconds hydrography42. For each station, a new location is selected that minimizes
discrepancies in catchment area and distance from the original location, within a 5 grid cells (~ 5 km)
search radius. Out of the original 9252 monitoring stations, 285 were excluded as they did not report
coordinates. Of the remaining 8967, 746 ( ~ 8%) were excluded because there was no matching catchment
area within the search radius (based on a threshold of maximum 50% difference42). Out of the remaining
8221, 65% reported an area difference smaller than 5%, 15% had an area difference between 5% and 10%,
and 20% had an area difference between 10% and 50%.

We used the monthly records provided by the GRDC to calculate AF metrics for the period 1960-
2015. We computed the mean AF for each year by averaging the 12 monthly values, and retrieved
maximum and minimum AF by selecting the highest and lowest monthly values for each year,
respectively. We considered only those years with a complete 12 months record and selected monitoring
stations with at least 10 years of data from 1960 through 2015. The remaining set of stations totaled 6600
and were globally distributed as shown in Figure 2.

Catchment-specific covariates
As covariates of the flow metrics we used topography and climate, which we retrieved from publicly
available spatially explicit sources and then aggregated to the upstream catchment of each grid cell. The
choice of the covariates set and source data was based on previous studies30–34,43,44, expert knowledge and
data availability. A list of the covariates and related source databases is provided in Table 1.

We calculated the area of the upstream catchment of each cell by summing the areas of the upstream
grid cells. We derived the upstream catchment-averaged elevation from the SRTM DEM40 resampled at
30 arc seconds as provided by HydroSHEDS35, supplemented with the GTOPO30 DEM for areas lacking
SRTM coverage, i.e., latitudes above 60°N. We transformed the elevation values by adding a constant
value of 500 m to avoid negative values, the lowest being represented by the shores of the Dead Sea at 430
m below sea level. We employed the USGS slope map developed for the Prompt Assessment of Global
Earthquakes for Response (PAGER) system45 to calculate upstream catchment-averaged surface slope
values. This map is based on the same SRTM+GTOPO30 DEM and has been corrected for the
discrepancy between ground units (arc degrees) and elevation units (meters)45.

We derived the upstream catchment-averaged values for annual mean, maximum and minimum air
temperature (Tair) and precipitation (P), as well as potential evapotranspiration (PET), aridity index (AI)
and seasonality index for P and PET, for every year over the period 1960-2015. For air temperature, we
employed the Climate Research Unit (CRU) Time Series (TS) dataset46 (version 3.24.01; monthly
temporal and 0.5° spatial resolution). For precipitation, we used the Multi-Source Weighted-Ensemble
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Figure 1. Schematic overview of the streamflow mapping procedure. The procedure consisted of four main

steps: 1) monitoring stations (gauges) are geo-referenced based on the global hydrography, 2) catchment-

specific covariates are compiled by aggregating climatic and physiographic variables over the upstream

catchment of each cell, 3) ANNs are trained on monitoring data of AF metrics and covariates of the

corresponding upstream catchment, 4) the trained ANNs are applied to the spatially-continuous covariates to

create the global streamflow maps.
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Precipitation (MSWEP) dataset47 (version 1.2; 3-hourly temporal and 0.25° spatial resolution; 1979-2015)
supplemented with the Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis48 (version
7; monthly temporal and 0.5° spatial resolution) prior to 1979. MSWEP merges a wide range of gauge,
satellite, and reanalysis datasets to achieve precipitation estimates with greater accuracy than any other
global dataset47. To combine the GPCC and MSWEP datasets, we rescaled the GPCC estimates such that
the 1979-2013 mean of GPCC matched that of MSWEP. For each year and grid cell, we retrieved the
mean annual value of Tair and P as the mean over the 12 monthly layers, and the minimum and
maximum as the lowest and highest monthly values, respectively. We computed mean annual potential
evapotranspiration from monthly Tair values following the temperature-based approach of Hargreaves et
al.49 and employing the same CRU TS v. 3.24.01 source data for temperature. Similarly, we calculated
seasonality index layers for P and PET as Xsi ¼ X - 1

yr

P
Xm -Xyr=12
�
�

�
�, where si, yr and m stand for

seasonality index, yearly and monthly values, respectively50. We downscaled the raster layers for the
climate-related covariates to match the 30 arc seconds resolution of the hydrography using nearest-
neighbour resampling. In addition, we calculated the aridity index for each year as PET/P, using mean
annual P and PET.

Figure 2. Distribution of the 6,600 GRDC stations monitored for at least 10 years in the period 1960-2015.

Stations are coloured according to the Köppen-Geiger climate classification67.

Category Variable description Source Annual metric Unit No. layers Spatial resolution Temporal coverage

Topography Upstream catchment area This study - km2 1 ~ 1 km -

Elevation SRTM40 + GTOPO30 - m 1 ~ 1 km -

Surface slope USGS45 - ° 1 ~ 1 km -

Climate Precipitation MSWEP47 + GPCC48 Mean mm �month�1 56 × 4 ~ 25 km 1960–2015

Minimum mm �month�1

Maximum mm �month�1

Seasonality index -

Air temperature CRU TS 3.24.0146 Mean K 56× 3 ~ 50 km 1960–2015

Minimum K

Maximum K

Potential evapotranspiration This study Mean mm �month�1 56 × 2 ~ 50 km 1960–2015

Seasonality index -

Aridity index This study - - 56 ~ 25 km 1960–2015

Table 1. Comparison of R2 values for streamflow metrics based on calendar vs US water year. The
comparison is based on 2,484 stations north of 40N latitude, monitored for at least 30 years in the period 1960-
2015. The R2 was calculated from log-transformed values. LT: long term; YR: yearly.
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To calculate the upstream catchment-average values of the covariates, we employed the TauDEM
software (Terrain Analysis Using Digital Elevation Models, http://hydrology.usu.edu/taudem). TauDEM
is an open-source C++ software explicitly designed to implement the flow algebra for large datasets,
employing a Message Passing Interface (MPI, http://mpi-forum.org) to implement highly parallelized
processing algorithms51–53. We extracted the covariates for the upstream catchment of each cell of the
global hydrological network via the so-called flow accumulation technique (‘AreaD8’ in TauDEM). This
technique considers each grid cell as a pour point and subsequently calculates the number of upstream
grid cells or the sum of the attribute values of these upstream grid cells, using the flow direction map to
delineate the watershed boundaries of the upstream catchment. To derive continuous upstream
catchment-averaged values for the predictor variables, we divided the sum of the upstream covariate
values by the total number of upstream grid cells at each pour point. To speed-up the calculations, we
split the global flow direction layer into six continents (North America, South and Central America,
Europe, Africa, Asia, Oceania). Adjacent continents (e.g., Europe and Asia) were separated along
watershed boundaries.

Training of Artificial Neural Networks
We quantified the relationships between the flow metrics and the covariates using artificial neural
networks (ANNs), which have been widely used for hydrological modelling from local54 to global32,33

scales. We employed the feed-forward ANN algorithm based on the multi-layer perceptron structure with
one hidden layer55,56 (Figure 1). We trained the ANNs based on year-specific values of mean, minimum
and maximum AF, using the upstream-catchment topography and year-specific climate as covariates
(Table 1). We applied a Box-Cox transformation to normalize the distributions of each variable (response
and covariates)57. In addition, we standardized each distribution to zero mean and unit standard
deviation, as required for the ANNs56. To avoid possible bias due to differences in monitoring intensity
among the stations, we randomly picked 10 yearly values from those stations monitored at least 10 years
across the 1960–2015 period. We then iterated the ANNs training 20 times, sampling different years from
those stations having a record longer than 10 years. Prior to the training, we tuned the number of
neurons of the hidden layer of the ANNs and the weights decay value to regularize the ANNs cost
function, and therefore control for overfitting. To this end, we used 10-fold cross-validation (CV) whose
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folds were based on excluded monitoring stations, and identified the number of neurons and weights
decay value that maximized the median coefficient of determination (R2) and minimized the median
Root Mean Square Error (RMSE) of the testing set. As a result, we employed 20 neurons for the ANNs
hidden layer and a weights decay value of 0.01.

Generating mean, maximum and minimum AF global maps
We applied the ANNs model to produce 30 arc seconds maps with mean, maximum and minimum
annual flow from 1960 through 2015 (Data Citation 1). For each grid cell, we computed the AF metrics as
the median across the outputs of 20 trained ANNs and back-transformed the values to m3∙s-1.

We upscaled the 30 arc seconds layers to 5 and 30 arc minutes resolutions, in order to serve potential
coarser-grain applications. We based the upscaled output on the 5 and 30 arc minutes flow direction grids
produced by applying the dominant river tracing (DRT) algorithm to the same 30 arc seconds flow
direction layer used in this study38,39. The 5 and 30 arc minutes flow direction grids are freely available for
download at http://files.ntsg.umt.edu/data/DRT/. We upscaled the 30 arc seconds streamflow values by
choosing the value of the cell that minimized the differences in upstream-drainage area between the
native 30 arc seconds and the coarser resolution grid cell. For the 5 arc minutes grids it was necessary to
employ a one-cell search radius to avoid losing connectivity.

Code availability
The code used to generate the covariate data, geo-reference the monitoring stations, train the ANNs and
generate the flow maps (Data Citation 1) was written and run in R version 3.3.2. TauDEM tools52 were
used to produce the catchment-specific covariate layers and GDAL library58 functions were employed to
handle the analyses on large raster data. The scripts are available on request.

The ensemble of trained ANNs are available as R objects (.rds) and as Portable Model Markup
Language (PMML) objects for cross-platform compatibility (.pmml, http://dmg.org). The parameters
used for the Box-Cox transformation and standardization of the variables employed by the ANNs are also
available in CSV format.

Data Records
The FLO1K dataset is a set of gridded layers packed as NetCDF-4 files freely available for download (Data
Citation 1). For each of the three AF metrics, 56 yearly layers are available from 1960 through 2015,
yielding a total of 168 layers. Each non-null cell represents the potential streamflow in m3∙s-1, stored as
32-bit floating point. Layers are in the WGS84 coordinate system with a cell size of 30 arc seconds ( ~ 1
km) and a global extent, including all continents except for Antarctica (90°N to 90°S latitude and 180°W
to 180°E longitude). In addition, upscaled data are available at 5 and 30 arc minutes.

Technical Validation
To evaluate the quality of the FLO1K maps, we run a 10-fold cross-validation for each of the 20 ANN
runs, such that each observation was included in the test set once and by splitting the folds by stations.
We assessed the overall map quality with R2 and RMSE calculated based on log-transformed values to
evaluate the performance across the full spectrum of streamflow values (10-3-105 m3∙s-1). Cross-
validation results showed high agreement between training (90%) and independent testing (10%) data,
with negligible variation among the replicates (Table 2).

We assessed the uncertainty per grid cell resulting from the sub-sampling of the monitoring stations,
by computing the coefficient of variation (CoV) over the 20 replicates. Uncertainty was very low (CoV o
0.5) for the main river stems globally and smaller reaches in wet regions (Fig. 4). We found higher
uncertainty (higher CoV values) for low streamflow values in dry areas, e.g., the upper basin of the Nile
(central inset of Fig. 4). These higher CoV values likely reflect the lower number of streamflow
observations available for calibrating the ANNs in these areas. The highest CoV values (> 3.5) were found
in grid cells with a low number of upstream grid cells (typically o5) in dry areas. In these grid cells, most
of the ANN replicates yielded zero-flow values whereas one or few replicates yielded close-to-zero values,
resulting in a low mean yet large CoV across the 20 replicates.

We checked for potential bias in streamflow estimates in the northern hemisphere due to snowmelt
delays, e.g., the contributing effect of snowfall in November-December of the previous year on the
streamflow in May-June. To this end, we generated streamflow maps based on the US water year
(November-October) for stations north of 40N and compared their performance to the original (calendar
year-based) FLO1K maps. We tuned the ANNs ensemble and computed the streamflow fields adopting
the US water year for both the streamflow data and the climate input variables. Differences in R2 between
models based on calendar versus US water year were smaller than 0.01 and therefore considered
negligible (Table 3).

Usage notes
The FLO1K dataset reports the potential streamflow in m3 � s-1 in each grid cell, i.e., the discharge that
would occur if there were a natural watercourse. To avoid confusion, we emphasize that the estimates
represent volumetric streamflow rather than specific runoff. As such, the estimates cannot directly be
compared with outputs from climate or land surface models without a streamflow routing component.
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We refrained from filtering the output to the actual stream network because there are multiple
methods for stream network delineation59–66, which users of FLO1k may want to select or refine
according to their needs. For global-scale analyses one might adopt an arbitrary upstream catchment area
threshold in order to delineate the network (e.g., 25 upstream grid cells as in Hydrosheds35), as to our
knowledge more refined methods have not yet been developed/tested.
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AF metric R2 RMSE

Training Testing Training Testing

Mean 0.92 (0.001) 0.91 (0.002) 0.32 (0.002) 0.34 (0.004)

Maximum 0.91 (0.001) 0.90 (0.002) 0.33 (0.002) 0.34 (0.005)

Minimum 0.85 (0.001) 0.83 (0.003) 0.48 (0.002) 0.51 (0.005)

Table 2. Model performance statistics. The R2 and RMSE values represent medians (with standard
deviations in brackets) of the 10-fold cross-validation of 200 replicates. Both R2 and RMSE were
calculated from log-transformed values, therefore the RMSE is unitless.

AF metric

Mean (LT) Mean (YR) Max (LT) Max (YR) Min (LT) Min (YR)

Calendar year 0.975 0.953 0.969 0.936 0.933 0.885

US water year 0.975 0.955 0.969 0.942 0.928 0.879

Table 3. Description of the predictor variables used as input for the modelling of AF. The spatial
resolution refers to the source data; for the analysis all variables were resampled to ~1 km.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180052 | DOI: 10.1038/sdata.2018.52 7



The estimated maximum and minimum flow values for a given year reflect the highest and the lowest
monthly values of that year. This does not give an indication about which months of the year belong to
the maximum or minimum flow. The corresponding months might change from year to year based on
the yearly distribution of the precipitation.

Users of the upscaled streamflow grids should keep in mind that these are contingent on the respective
DRT flow direction layers38,39. Further, the accuracy of the upscaled grids has not been evaluated.
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