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ABSTRACT
....................................................................................................................................................

Background The transition of whole-exome and whole-genome sequencing (WES/WGS) from the research setting to routine clinical practice re-
mains challenging.
Objectives With almost no previous research specifically assessing interface designs and functionalities of WES and WGS software tools, the au-
thors set out to ascertain perspectives from healthcare professionals in distinct domains on optimal clinical genomics user interfaces.
Methods A series of semi-scripted focus groups, structured around professional challenges encountered in clinical WES and WGS, were conducted
with bioinformaticians (n¼ 8), clinical geneticists (n¼ 9), genetic counselors (n¼ 5), and general physicians (n¼ 4).
Results Contrary to popular existing system designs, bioinformaticians preferred command line over graphical user interfaces for better software
compatibility and customization flexibility. Clinical geneticists and genetic counselors desired an overarching interactive graphical layout to priori-
tize candidate variants—a “tiered” system where only functionalities relevant to the user domain are made accessible. They favored a system ca-
pable of retrieving consistent representations of external genetic information from third-party sources. To streamline collaboration and patient ex-
changes, the authors identified user requirements toward an automated reporting system capable of summarizing key evidence-based clinical
findings among the vast array of technical details.
Conclusions Successful adoption of a clinical WES/WGS system is heavily dependent on its ability to address the diverse necessities and predilec-
tions among specialists in distinct healthcare domains. Tailored software interfaces suitable for each group is likely more appropriate than the cur-
rent popular “one size fits all” generic framework. This study provides interfaces for future intervention studies and software engineering
opportunities.
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INTRODUCTION
As the cost of DNA sequencing continues to decrease, whole-exome
sequencing (WES) and whole-genome sequencing (WGS) have
become important clinical tools for identifying deleterious alleles in
Mendelian and complex diseases.1,2 Since its introduction in 2009,3

more than 1980 papers highlighting WES clinical uses have been pub-
lished (see Supplementary S1 for a brief comparative overview con-
trasting WES/WGS with other clinical genetic tests). However, the
effective realization of moving WES and WGS from research to routine
clinical practice remains challenging, in part due to the need for non-
computational clinicians to analyze and interpret the large-scale data
in a time efficient manner.4–6 At this early stage, clinical access to
WES/WGS analysis occurs principally on a research basis in academic
health research centers where informatics teams are available to as-
sist with data analysis.7 As the utility of WES/WGS analysis increases
and costs decline, the transition from bench to bedside will require
new generations of genome analysis software to empower genetics
professionals to perform clinical interpretation.8,9

The prospect of full genome sequencing, compounded by the con-
tinual growth in genetic knowledge base, is overwhelming for the
healthcare professional; computerization for interpreting and acting on

this information is essential for clinician support and ultimately patient
care.10 The capacity of software to assist a specialist in reaching a diag-
nosis (defined as “a contextual, continuous, and evolving process,
where data are gathered, interpreted, and evaluated in order to select
an evidence-based choice of action”11) is dependent on appropriate de-
sign and attaining a high level of usability. Careful evaluations of health
information technologies are necessary to ensure sufficient system effi-
ciency, effectiveness, and satisfaction for target users, minimizing
workflow interruptions, unnecessary cost, and healthcare errors.12–15

For research-focused WES/WGS analysis, distinct software architectures
with different engineering emphasis have been introduced, all ultimately
sharing the same goal to assist in the identification of key gene(s)/vari-
ant(s). The nature of the analysis process includes 5 steps: (1) read
mapping of short DNA sequences onto a reference genome, (2) identifi-
cation of differences between the sample and reference, (3) quality con-
trol of candidate variants (including data visualization methods), (4)
annotation of the properties of observed variations, (5) prioritization or
filtering variations as candidates for the observed phenotype/disorder
(reviewed in7,16). Existing software programs address differing portions
of the analysis process, with emphasis tending to fall either on catego-
ries 1-2, 3-4 or 5 (example software discussed in Supplementary S1).
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Many of the early WES/WGS software packages placed greater
emphasis on the computationally oriented users, as clinical use was
rare.17,18 In a previous study of a cohort of clinical geneticists, we
evaluated the usability of exome analysis software based on think-
aloud protocols in a study where participants were presented with
simulated clinical cases to analyze.19 While our results highlighted de-
ficiencies of the software for clinical geneticists, such users rarely
work in isolation. An interdisciplinary team comprising of informati-
cians, clinical/biochemical geneticists, subspecialist pediatricians, lab-
oratory scientists, and genetic counselors are often involved. This is
exemplified by 2 programs at the National Institutes of Health (Clinical
Sequencing Exploratory Research and Clinical Center Genomics
Opportunity), seeking to bring together clinicians, genomic re-
searchers, bioinformaticians, and ethicists to tackle challenges in
WES/WGS analysis.20,21 Despite the expectation of the groups working
together, presumably through a shared computational framework, the
diversity of perspectives, and preferences regarding software design
remains undetermined. As the community moves to adoption of WES/
WGS as a standard clinical test, it is unclear if the design of analysis
software needs to be tailored to domain-specific users.

As far as we are aware, this work represents the first research
looking at cognitive insights between distinct domains of medical pro-
fessionals that most closely interact with genomic data. We surveyed
three major groups of specialists that most closely interact with geno-
mic data at the patient-oriented level: data-intensive informatics spe-
cialists (a newly emerging clinical role), clinical geneticists, and
genetic counselors. In this report, we specifically addressed 3 key re-
search questions:

1. Are there major cognitive differences and patterns among different
user groups?;

2. What do the optimal designs envisioned by informaticians, clinical
biochemists, and genetic counselors look like?3) How do the de-
signs desired by the different user groups compare with existing
designs?

Bearing in mind of the broad range of clinical applications of geno-
mic data, we focus our research questions primarily in the context of
difficult to diagnose germline rare diseases, or diseases with sus-
pected genetic etiology. Through narrative discussions and digital pro-
totypes, we revealed major patterns that distinguish between classes
of specialists. We identified properties perceived by users to play a
critical role in determining efficacy and efficiency of an analysis soft-
ware. The results of the study will inform clinical interface design as
WES/WGS move into the mainstream.

METHODS
Setting

All focus groups were conducted in the Child and Family Research
Institute at BC Children’s Hospital in Vancouver, Canada. Sessions
were conducted within a conference room with a round table, chairs,
a white board with markers, a video recorder (a mounted Sony
HandyCam High definition camcorder (HDR)-SR1þ ECM-HW1R
Wireless Microphone), and a digital projector connected to a Macbook
Pro laptop.

Recruitment
Participants were recruited from across various institutions located
within the greater Vancouver region. Twenty-six individuals from 4

different healthcare professions were recruited; each individual was
categorized into 1 of the 4 user classes: bioinformatician, clinical ge-
neticist, genetic counselor, and nonspecialist physician (see
Supplementary S2). The first 3 user groups represent the current
healthcare professionals that most closely interact with patient geno-
mic data for clinical decision-making in precision medicine (we define
precision medicine as “the ability to tailor diagnostic and treatment
decisions for individual patients,” see8). The last group (general physi-
cians) represents the baseline within clinicians that do not have expe-
rience working with genomic data.

Focus groups assignment
Each homogenous focus group consisted of participants from the
same professional category, and group sizes ranged from 4 to 5.
There was no overlap between the group assignments such that each
individual participated only once in a focus group. The participants for
each group were randomly assigned. The focus groups were con-
ducted in 2 rounds: 6 first-round sessions took place between
February and June of 2014, and 6 second-round sessions took place
between September and October of 2014.

Focus group structure
Participants filled out a demographic survey and consented by signing
a project participation form at the beginning of each focus group ses-
sion. Each focus group lasted between 90 and 120 min. The sessions
were audio-recorded in their entirety and drawings made by partici-
pants on a whiteboard were digitally captured. Key matters that were
repeatedly referred to in the focus groups were typed on a laptop by
the moderator (Casper Shyr (CS)) and projected on a big screen via a
projector. Throughout the session, participants had access to drinks
and snacks.

The structure of the focus groups was built around the various
processing stages of patient exome data (e.g., generation of align-
ment and variant calls, data annotation and visualization, variant/
gene prioritizations). To guide the flow, many of the questions were
structured around a hypothetical scenario involving a patient
suffering from an undiagnosed rare metabolic disorder (see
Supplementary S12 for discussion of study limitations), but partici-
pants were encouraged to think and discuss beyond the scenario.
Some parts of the focus groups were scripted to raise issues includ-
ing examining data quality and screening for technical and/or biolog-
ical abnormalities, filtering exome variant calls at the genetic level,
prioritizing mutations at the gene level, and smoothing out the tech-
nical challenges when collaborating across multiple researchers, and
sharing the clinical findings with patients (see Supplementary S3 for
more details).

Analysis

Focus group transcripts were generated from recordings and notes
and coded in Microsoft Word. Content analysis was conducted to de-
scribe participants’ views and perspectives on WES/WGS data.22,23 A
set of initial codes was formulated based on the research questions
and prior studies.19,24–26 Additional emergent themes and codes were
identified from the data using an inductive approach.27–29 The white-
board drawings were analyzed from the video footages, and were digi-
tally translated using GUI Design Studio Version 4.6. Themes and sub-
themes identified from the coded transcripts were used to highlight
key features on the digital prototypes. Findings were summarized
through tables, figures, and narrative discussion.
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Approvals
This study was approved by the University of British Columbia
Behavioural Research Ethics Board (H13-02034).

RESULTS
1. User groups demonstrate dissimilar focus in the analysis
pipeline
The diverse WES/WGS analysis software tends to emphasize specific
points in the analysis pipeline, in a package specific manner. We sought
to understand whether the focal point of the software packages tends to
reflect distinct user community desires. To ascertain preferential starting
points in WES/WGS analysis, participants were asked to choose be-
tween working with raw unaligned sequenced reads, or to work with
variants called with an external informatics pipeline. These 2 choices
represent typical options offered by sequencing centers and commercial
companies.30,31 The preferences from each participant were immedi-
ately reflective of the domain they represented, and it was apparent that
the same genomic data were treated differently by each of the 3 user
classes (Figure 1).

Bioinformaticians desired to start with raw sequence data, but also
indicated that having access to both raw data and externally provided
variant lists would be ideal:

“I prefer to work with raw sequence data because it gives me
greater flexibility. If I don’t see any interesting candidate from
my output, I can re-analyze the data using different thresholds,
or try a different genome aligner, or a different variant caller.
Having the variant calls is a bonus—I can go to the variants
right away while the pipeline is still processing raw reads. This
is especially important when I have multiple whole genomes
where the processing time is expected to be long.”
[Bioinformatician 02]
“Ideally I would like to have both [raw data and variant data].
But having the raw sequence data means I can go back and
re-do the analysis as future algorithms improve, or as genome
annotations get updated . . . or if I need to investigate other
types of genetic variations like large structural inversions or de-
letions or duplications.” [Bioinformatician 05]

Figure 1: Beginning with raw sequenced reads, the exome analysis pipeline can be conceptualized into 4 distinct compartments: genera-
tion of alignments and variant calls, assessment of data quality, filtering of variants based on genetic models, and prioritization of genes
based upon biological functions. The details of the components are annotated largely in the context of genetic diagnosis for rare/complex
disorders (refer to Supplementary S12 for discussion on other clinical uses of genomic data). The bars above represent the intensity of
user engagement at each step. Bioinformaticians preferred to be involved in every step, with equal attention devoted to all compartments.
Clinical geneticist, despite placing heavier emphasis on the final 2 stages, indicated they would ideally like to be involved in every step
too, but they faced difficulties in carrying out the first and second steps (e.g., pipeline execution and quality assessment), which may be
attributed to software usability. Genetic counselors (and general physicians, not shown) indicated they would focus on the final output of
candidate variants, to which they could apply their domain knowledge to select clinically relevant genes. The text in the lower portion of
the figure highlights how the same step in the informatics pipeline (e.g., variant data) can be viewed differently across domain experts.
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Similarly, clinical geneticists preferred both raw sequence data
and variant calls, but with a stronger partiality for working with variant
calls over raw reads because they believed working with the already
aligned and annotated data gave them a better chance to identify clear
causal variants quickly.

“If we are dealing with a recessive disorder, then mosaicism
and de novo dominant models are less of a concern. I do not
have to worry about twiddling different variant quality scores
that is often so important when searching for bona fide hetero-
zygous mutations.” [Clinical geneticist 05]
“Starting with only the variant data generally means that the
data I am given has already been filtered by some kind of thresh-
old so I am restricted to play within the limit of that threshold. I
have yet to find a user-friendly interface that would allow a non-
computer savvy clinician such as myself to process an exome
data from beginning to end. For now, I am limited to getting only
the final sorted list from the bioinformaticians.” [Clinical geneti-
cist 03]

Genetic counselors and general physicians expressed no desire for
raw sequences, indicating that they did not consider it as part of their
professional role (Supplementary S4). There were also differences on
the preferred file formats between bioinformaticians vs the geneticists
and counselors (Supplementary S5).

2. Separate interfaces required for data quality assessment
A. Desired statistics
Participants were asked to discuss issues regarding quality examina-
tion of WES/WGS dataset(s).

Genetic counselors and general physicians stated this entire topic
was of no relevance to their line of work.

“I don’t think it is up to me to inspect data quality. I don’t even
know where to begin! That is not what I am trained to do.
When I receive the data, I expect it to have already been qual-
ity-checked.” [Genetic counselor 02]

There was a strong overlap between the bioinformaticians and clinical
geneticists when commenting on the quality measures desired, and
some mentioned quality measurements are not commonly available in
current toolkits (Supplementary S6). Both user groups wanted to see a
list of genes (or sub-segments of genes) whose exomes were not suffi-
ciently covered, to compare against a list of genes relevant to their study.

“It is important for me to know what genes are included in a
capture kit so if there is an insufficient coverage for a set of
genes, I can decide if simply re-sequencing the data with the
same platform would guarantee more reads at those locations,
or if I need to explore alternatives like whole genome sequenc-
ing.” [Bioinformatician 02]

Figure 2: A graphical representation of key features desired by clinical geneticists for inspection of data quality. (A) Measurements asso-
ciated with data quality should be grouped together into a common theme (e.g., a drop-down panel). Quality scores deviating from the
norm should be automatically highlighted (e.g., exclamation mark). (B) Computational jargon (e.g., coverage) need to be appropriately ex-
plained to a noncomputational user. (C) Details on different quality measurements should be displayed separately, but still contained
within the same user interface. The example here uses tabs to access different perspective views. (D) Data are best represented both vi-
sually (e.g., as a graph) and numerically (e.g., summarized in tabulated form). Simply presenting the quality metrics is not sufficient; soft-
ware must further describe the nature of the problem, and provide recommendations. (E) The user needs flexibility to explore the
distribution of quality scores, and visualize how different thresholds impact the data results. Here, a bar representing the mapping
threshold is introduced for the user to dynamically adjust, and the expectation is the interface will update the coverage accordingly.
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“I want to know what genes are not sufficiently covered in my
exome because currently, all that is given to me is a list of vari-
ants. From that list, if I don’t see any mutations in those genes, I
would be mistaken to think those genes are normal when they
could be not.” [Clinical geneticist 04]

B. Visual presentation
While the desired metrics and functionalities overlapped highly be-
tween the bioinformaticians and clinical geneticists, the preferred
methods of presentation differed between them. Figures 2 and 3
outline the key differences.

3. Filtrations and prioritizations
A. Variant-level filtration
For genetic counselors and general physicians, there were few com-
ments about filtering at the variant level. When the data reached their
hands, they expected it to have been filtered based on specified ge-
netic model(s) and allelic frequencies, allowing them to focus on prior-
itizing candidate genes.

We found a set of filters selected by both bioinformaticians and
clinical geneticists, the majority commonly cited in the exome litera-
ture (e.g., sort alleles by allelic frequencies, mutation type, and impact
prediction.32,33). The variants were preferred to be displayed within a
table or spreadsheet—a design that is already implemented in many
exome analysis systems.

In accordance with how they inspected data quality, bioinformati-
cians preferred to prioritize variants within the terminal interface
(Figure 4). Bioinformaticians also displayed the largest diversity in
terms of what is desired about each variant (examples discussed in
Supplementary S7). The diversity in which bioinformaticians interact
with WES/WGS data likely explains why they preferred to work with a
command-line rather than to be limited to a graphical tool where the
functionalities are by nature more constrained and less flexible to be
tailored to context-specific needs.

In contrast, clinical geneticists preferred a graphical user interface
that is highly dynamic and user-interactive (Figure 5). Microsoft Excel
spreadsheets were the prevalent choice of clinical geneticists and ge-
netic counselors for viewing variant lists, despite acknowledging it as
not being optimized for the purpose.

“The problem with Excel is it starts crashing when I try to feed
in more than 65,000 rows of mutation, and that’s just with an
exome.” [Clinical geneticist 01]

B. Gene-level prioritization:
This section discusses the desired prioritization strategies and
executions for clinical exomes at the genic level (rather than variant
level).

All user groups emphasized a desire for informatics algorithms
that conduct automated literature mining or pathway analysis (the
overview of such algorithms are introduced in Supplementary S8).

Figure 3: A graphical representation of key features desired by bioinformaticians. (A) Terminal interface is the most utilized environment,
as it connects with many other command-line software and scripts. Tabulated data quality summaries are displayed directly on the ter-
minal. (B) Graphical summaries are also desired, but no intensive graphical user interface app is needed, as bioinformatics users tend to
prefer features already available via the terminal display.
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The core difference between the user groups is that bioinfor-
maticians wanted such analysis to be integrated with the rest of
their command-line based pipeline, while noncomputational users
wished this functionality to be accessed graphically (Figure 6).

Clinicians emphasized that while there are tools that offer online
software applications to obtain candidate genes based upon keyword
queries (e.g., MeSHOP,34 Genie,35 Ingenuity [http://www.ingenuity.
com]), these capabilities are not consistently accessible to integrated
WES/WGS analysis software and the output cannot be combined with
exome data without additional manipulation. Expanding beyond key-
words as input, clinicians further requested graphical search function-
alities. One such request is the ability to filter by organ system visually
where the user can click on the organ/system of interest in an anat-
omy diagram (Figure 6). Finally, the clinicians expressed frustration
that many gene-ranking software failed to provide the primary litera-
ture when returning the results (or it was difficult to retrieve that
literature).

“When the program predicts this gene to be related to this par-
ticular disease, I want to know how accurate it is. And not just
from some kind of confidence score, but I want to see the pri-
mary literature. For instance, if the strength of association is
based on GWAS literature, then I’m probably not going to treat
it seriously.” [Clinical geneticist 08]

4. Data sharing with collaborators and patients
A key bottleneck to routine clinical exome analysis was identified to be
the preparation of clinical reports for inclusion in medical records and
delivery to other physicians. Reports should be concise and automated
as much as possible including only clinical information that can be di-
rectly extracted from exome data or external databases. Figure 7 illus-
trates an example report separating the clinical genetic findings from
technical summaries. Additionally, to streamline exchanges with pa-
tients, clinicians wanted the ability to flag genes that have been dis-
closed by the patients as a set they do not need to be notified about.

DISCUSSION
Next-generation WES/WGS sequencing is revolutionizing the study of
genetic disorders, with considerable potential for successful applica-
tion in clinical practice. With large-scale sequencing projects like
ClinSeq36 and Exome Aggregation Consortium (http://exac.broadinsti-
tute.org), and collaborative efforts of sequencing consortiums (e.g.,
Global Alliance for Genomics and Health, http://genomicsandhealth.
org) under way, the global community is in the midst of a multi-year
process that will ultimately transition WES/WGS from research labs to
clinical labs.37–39 Despite the continuous flow of new software to as-
sist in the translation process, WES/WGS analysis software for clinical
genetic diagnosis is not yet in widespread use.5,40 As bioinformati-
cians have been key processors of WES/WGS sequences in the re-
search setting, they are starting to migrate into emerging clinical
laboratory roles. The nature of an interdisciplinary healthcare team ne-
cessitates that the software systems and interfaces accommodate the
greater diversity of participants to ensure the usability of health infor-
mation and to provide the requisite utility to diverse clinical users.41,42

This report initiates the comparative study of cognitive patterns be-
tween healthcare professionals that closely interact with genomic data
from multiple domains. Excluding the general physicians included in
this study as a control group, the specialist groups represent the three
classes of healthcare professionals that currently most closely interact
with patient genomic data at the clinical level. While previous focus
groups have studied preferences within a general population for re-
sults delivery from WES/WGS,43,44 in this study, we interviewed bioin-
formaticians, clinical geneticists, genetic counselors, and general
physicians to study how domain knowledge influences the cognitive
patterns for the analysis of WES/WGS data, and the consequent mean-
ing for software design.

Through a series of scenario-driven focus groups, we found that
despite a common goal, the discovery of a causal candidate variant/
gene, the user groups exhibit clear differences, and divergent patterns
among user behaviors. Table 1 summarizes and distinguishes the
software requirements from each user group.

Figure 4: A graphical representation of the key features desired by bioinformaticians when visualizing/filtering variant sets. (A) Analyzing
variants within a terminal environment by informaticians allows manipulation of the variant files via custom scripts and/or external com-
mand-line programs. (B) Variants are preferred to be visualized within a genome browser (e.g., University of California, Santa Cruz
(UCSC) Genome Browser73) where genomic neighborhood landmarks and any additional relevant biological information (e.g., SNPs, con-
servation) can be displayed alongside.
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It is our interpretation that no single interface will adequately ad-
dress the needs of all users, necessitating the capacity of future WES/
WGS systems to provide interface options to best meet the needs and
expectations of the diverse users. The existing academic and commer-
cial software (Supplementary S1) places emphasis upon graphical
user interface that are viewed by bioinformaticians as too rigid and not
customizable for distributed network analysis. While some tools may
be designed to create user-friendly workflows, the lack of design-fo-
cus on clinical target users (i.e., geneticists and genetic counselors)
impedes their adoption in clinical settings (Supplementary S1). The
importance of user-centric themes is consistent with emerging models

of care and medical decision-making support systems, such as ob-
served for breast cancer diagnosis and management,45,46 early recog-
nition of sepsis,47 antibiotics prescriptions,48,49 and interpretation of
medical images50,51 where extensive evaluations on physicians’ and
nurses’ interactions in work practices reveal similar concepts sur-
rounding issues of sharing information across collaborative settings,
and tensions between integration and standardization.

Given the complexities involved, software which attempts to ad-
dress all possible tasks that arise in clinical genomics is less likely to
be incorporated into practice than software specific to exome/whole-
genome analytical tasks. To be successful, a medical decision support

Figure 5: A graphical representation of the key features desired by clinical geneticists when performing variant visualization/analysis.
Brown dotted arrows point to additional information from specific columns that is available when clicked upon. For instance, clicking the
“mutation impact” column would reveal different impact predictions by mainstream prediction software and shows the level of congru-
ency across multiple algorithms. (A) Classical Mendelian models should be built into the system with tabulated summaries automatically
available. Outputs from each Mendelian model should be available under separate layouts (e.g., navigated by tabs). (B) Software should
provide a quick explanation about the information contained within each column and how to interpret it. (C) The variant table needs to be
ranked by evidence (e.g., clinically interesting variants appear at the top of the list). Variants with obvious pathogenic associations need
to be automatically highlighted (e.g., flashing red notice). Aside from automated cues, clinical users wanted capabilities to highlight vari-
ants that were perceived to be of high interest, to store personal comments for specific variants (e.g., update if a variant is confirmed by
Sanger sequencing), or to upload a scientific article related to a particular gene. (D) An integrated pedigree to visualize how the variants
are segregated across a given set of related exomes, and automatically update the genotypes as users browse across different variants.
(E) Hyperlinks that link to external databases should be discouraged. Geneticists complained that the current state of the software relies
too much on external references where cross-referencing between different resources on separate interfaces is very distracting. Instead,
key clinically relevant information (e.g., the phenotype of a gene knock-out experiment from animal model column) should be computa-
tionally compiled and presented within one interface, and only the technical details (e.g., how the experiment was performed) are di-
rected to external sites.
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system should be compatible to an existing clinical workflow,52,53 and
actionable outputs intelligently filtered and presented at appropriate
times.54,55 In WES/WGS, we found this workflow scope includes a sys-
tem’s capacity to incorporate clinical keywords and genetic hypothe-
ses pertinent to each unique patient (also cited in Luo and Liang
201456 and Masino et al. 201457), and results delivered at specific
workflow stages with respect to the disparate foci of counselors, phy-
sicians, geneticists, and bioinformaticians (e.g., Figure 1). Clinical ge-
neticists expressed desire for an encompassing graphical design that
gives them more control over the technical aspects of the pipeline, in-
tegrating genomic information with patient history but at the same
time removes them from the realm of scripting and the command-line.
Meanwhile, genetic counselors (and general physicians) wished to
solely focus on gene prioritization and efficient delivery of final results
without distraction by functionalities irrelevant to their work processes.
The results highlight a need for systems to facilitate the generation of
clinical reports, including the appropriate distribution of technical vs
clinical details, sharing of notes between clinical staff about specific
variants, overview of genes not covered by WES, and the family

structure. The format of the prioritized report (Figure 7) mirrors the
precedent of prioritized information in other modes of clinical reports,
e.g., a radiologist’s X-ray report separating clinical impressions from
descriptive details of radiographic appearance of specific organs.58

Strong community observations should be noted by system devel-
opers. Our study confirms that an ultimate clinical WES/WGS systems
will need to be well connected to online resources, such as animal
model phenotypes,59,60 biological system annotations,61,62 and dis-
ease-focused databases.63–65 This is concordant with earlier work
that demonstrated the importance of rich access to external resources
and databases.19,66,67 The integration of metadata and diverse biologi-
cal annotations to patient electronic health records will require strict
compliance to standards (examples discussed in Supplementary S11).
Our study further highlighted the need to integrate access within a sin-
gle system, sparing users from mastering diverse interfaces.

Our results suggest future software should provide separate inter-
faces for each target user group. One can envision “purpose-driven”
interface options, allowing users to focus on the aspect of the analysis
and interpretation relevant to their duties. While the tailored software

Figure 6: A graphical representation of the key features desired by clinical geneticists for genetic and genic prioritizations. (A) When the
user fails to identify any variants of clinical interest, software should provide recommendations on alternative strategies based on what
the user has already explored. (B) The software should provide easy tracking of the filters currently applied and allow quick adjustments
(in this case, via checkboxes to turn a filter on/off). (C) Software should allow incorporation of external files containing either genomic co-
ordinates or list of genes to filter against variant set. (D) Software with an embedded dynamic pedigree would allow clinicians to graphi-
cally upload multiple exomes (e.g., trio) and assign family memberships via the pedigree. Custom inheritance models could also be setup
via the pedigree by specifying expected genotype in a given model. (E) Ability to import free-text clinical descriptors, or access terms
from a defined ontology (e.g., Human Phenotype Ontology) against which to filter for genes/variants that relate to the specified descrip-
tions. Alternatively, a novel feature emerging from focus groups was the ability to prioritize based on organ systems.
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is fitted to individual domains, it must at the same time facilitate col-
laboration, as increasingly diverse expertise is key requirement for
WES/WGS interpretation. The informatics specialists may be charged
with reporting on data linking candidate genes to specific biological
processes, clinical geneticists will evaluate specific mutations for a
causal role in disease/phenotype, and genetic counselors will indicate
the variations that need to be conveyed. These activities are interactive
and may require cycles of expert attention. Insights to overcome
socio-technical challenges can be drawn from research in Computer-
Supported Cooperative Work,68 including themes surrounding informa-
tion credibility,69 coping with narrative and numeric data,70 scalable
methods for managing increasingly large datasets,71 and caution sur-
rounding interpretation of automated systems72 (discussed further in
Supplementary S10). As WES/WGS analysis software matures, it will
empower clinicians with more automated procedures, which we antic-
ipate will decrease dependency on bioinformaticians for data process-
ing. These experts will continue to be closely involved, developing and
applying new approaches for the discovery and interpretation of addi-
tional genetic alterations. Advances over the coming years will result

in new requirements for collaborative interactions, for instance, as the
current focus on alterations in protein coding sequences expands to
include regulatory sequence alterations. Expansion of the cooperative
capacity of the software will assist the diverse users as the field
matures.

CONCLUSIONS
As high-throughput WES/WGS technologies continue to mature,
healthcare providers need efficient software to facilitate interpretation
for clinical decision-making. By conducting multiple focus groups of
diverse healthcare classes active in clinical genetics, our present study
reveals there are distinct types of WES/WGS analysis needs for differ-
ent classes of domain specialists. The results presented illustrate the
cognitive processes and tentative designs envisioned by the range of
clinical professionals key to the process. A natural follow-up for future
work is to implement the features into a prototype software package
and conduct intervention trials to evaluate effectiveness and perfor-
mance within clinic sites.

Figure 7: An example of automated clinical reporting summarizing the clinical findings from WES/WGS. (A) The system should allow clini-
cians to save, edit text, and insert custom images to the report. The report is designed to be a skeleton for clinicians to build on. (B) Key
genetic findings related to the clinical phenotype should be stated right on the front page. These include known clinical relevance about
the mutated gene (e.g., what is the biological role of the gene, what phenotype does a person exhibit when the gene is mutated) (C), the
type and nature of the mutation (e.g., what is the genomic and transcript coordinate of the mutation, what type of mutation is it, has the
mutation been previously reported in clinical literature, what is the allelic frequency, and how is it transmitted across the given family) (D
and E) All other information not directly related to the key finding (e.g., the thresholds used by the bioinformatics pipeline that generated
the dataset) should be discussed in subsequent pages.
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