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Abstract 

Background:  Pompe disease (PD) is an autosomal recessive metabolic disorder caused by pathogenic variants in the 
acid α-glucosidase gene (GAA​) that produces defects in the lysosomal acid α-1,4-glucosidase. We aimed to identify 
genetic variations and clinical features in Spanish subjects to establish genotype–phenotype correlation.

Methods:  A total of 2637 samples of patients who showed symptoms or susceptible signs of PD were enrolled in this 
observational study. Enzymatic activity was detected by fluorometric techniques and the genetic study was carried 
out using Next-Generation Sequencing.

Results:  Fourteen different variants from 17 diagnosed patients were identified, seven males and nine females with 
LOPD (mean age 36.07, SD 20.57, range 7–64) and a 2-day-old boy with IOPD, four genetic variants had not been 
described in the literature previously, including a homozygous variant. In all of them α-glucosidase activity was 
decreased. Muscle weakness, respiratory distress, exercise intolerance, hypotonia, dysphagia and myalgia were com‑
monly observed in patients.

Conclusions:  This study report four new genetic variants that contribute to the pathogenic variants spectrum of the 
GAA​ gene. We confirm that patients in Spain have a characteristic profile of a European population, with c.-32-13T>G 
being the most prevalent variant. Furthermore, it was confirmed that the c.236_246delCCA​CAC​AGTGC pathogenic 
variant in homozygosity is associated with early disease and a worse prognosis.
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Background
Pompe disease (PD) is an autosomal recessive meta-
bolic disorder caused by pathogenic variants in the acid 
alpha-glucosidase gene (GAA​) that produces biochemi-
cal defects in the lysosomal acid alpha 1,4-glucosidase. 
The deficient activity of the enzyme leads to lysosomal 
accumulation of glycogen in all tissues, especially in 

skeletal muscle. PD is a disorder that manifests a clinical 
spectrum that varies regarding the age of onset, the rate 
of disease progression, and the degree of organ involve-
ment; and in general, there is an inverse correlation 
between the severity of the disease and the level of resid-
ual enzyme activity [1, 2]. Because of the variation in the 
phenotypes, PD is classified into infantile-onset Pompe 
disease (IOPD) and late-onset Pompe disease (LOPD). 
The main difference between IOPD and LOPD is cardiac 
findings in the first year of life. IOPD is characterized by 
onset during the first year of life with hypertrophic cardi-
omyopathy, generalized muscle weakness, hepatomegaly 
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and respiratory dysfunction. LOPD is characterized by 
onset in childhood or adulthood and the presence of slow 
progressive muscle weakness predominantly below the 
waist, cardiomyopathy and respiratory distress. However, 
LOPD could be detected in childhood if we could use 
better clinical diagnostic methods such as genetic tests 
as newborn screening tests. The incidence of the disease 
varies in different ethnic groups and for different clinical 
forms. It was reported that the incidence of PD in Cauca-
sian is 1:100,000 and 1:60,000 in IOPD and LOPD respec-
tively [3]. It is not clear how many cases exist in Spanish 
population, the frequency of genetic variants or whether 
there are characteristic variants of a certain region [4].

The GAA​ gene (OMIN 606800) is situated on chromo-
some 17 and contains 20 exons and 19 introns extended 
over a distance of 20 Kb. The first exon is noncoding and 
the beginning of the start codon is at position 33 of exon 
2. To date, over 560 variants have been described in the 
GAA​ gene. Most of the variants described are marked as 
pathogenic and some of them were classified as uncertain 
significance. Some pathogenic variants are widely found 
in certain populations. For instance, the intronic variant 
c.-32-13T>G is the most common in Caucasian popu-
lation [5] In Asian population the most common vari-
ants were c.1935C>A and c.2238G>C in Taiwanese and 
Chinese individuals [6], c.1316T>A and c.1857C>G in 
Korean individuals and c.2560C>T is the most frequent 
in Afro-American individuals [7]

We report here an observational study as a result of 
a biochemical and genetic analysis of subjects sugges-
tive of PD. We analyzed clinical manifestations, acid 
α-glucosidase activity and GAA​ Pompe variants of Span-
ish patients with Pompe disease to establish genotype–
phenotype correlation.

Materials and methods
Design of the study and patients
In this observational study, clinical and biochemical 
aspects and GAA​ gene sequence in a large cohort of 
patients from different Spanish hospitals were analyzed.

Patients included either had a family member with PD 
or presented more than one sign or symptom associ-
ated to PD: generalized muscle weakness, CK elevations, 
exercise intolerance or pain, hipotonia, hypertrophic car-
diomyopathy, respiratory distress, dysphagia, dyspnea. 
Enzyme activity in Dried blood spots (DBS) was meas-
ured for each patient. Patients with decreased enzyme 
activity in DBS underwent lymphocyte determination 
to confirm the enzyme diagnosis. The sequencing of the 
GAA​ gene was performed in the patients who showed 
low enzyme activity in DBS and lymphocytes or who had 
a family member with PD.

Informed consent was signed by all patients and the 
study was approved by the Ethics and Research Commit-
tee of the Virgen Macarena and Virgen del Rocío Univer-
sity Hospital (Code: 0826-N-15).

Biochemical analysis
The determination was carried out according to the 
technique described by Chamoles et  al. [5]. Acid 
α-glucosidase activity was measured in DBS samples or 
isolated lymphocytes using 4-Methylumbelliferyl-a-D-
glucopyranoside as sustrate and acarbose as inhibitor of 
competing enzymes at pH 4 [8, 9].

A standard curve of 4-methylumbelliferon was cre-
ated to establish a relationship between the intensity of 
the fluorescence and the enzymatic activity as umol/L/h 
in DBS [cut off < 0.75 µmol/L/h] and nmol/min/mg pro-
tein in lymphocytes (cut off < 0.15 nmol/min/mg protein). 
The cutoffs were established taking into account previous 
studies in our laboratory. Enzyme activity was measured 
in healthy and diseased subjects and statistical analysis of 
the data was performed. In healthy subjects, the results 
were normal mean 1.35 μmol/L/h and standard deviation 
0.69 in DBS and normal mean 1.35  nmol/min/mg pro-
tein and standard deviation 0.62 in lymphocytes. In sub-
jects with Pompe disease, the results were normal mean 
0.42  μmol/L/h and standard deviation 0.2 in DBS and 
normal mean 0.033  nmol/min/mg protein and standard 
deviation 0.029 in lymphocytes.

Molecular and bioinformatics analysis
Genomic DNA was isolated from whole blood by stand-
ard procedures using MagNA Pure Compact Nucleic 
Acid Isolation Kit I. (Roche Diagnostics, Basle, Switzer-
land). Genetic study was carried out by Next-generation 
sequencing (NGS). All coding regions and classical splic-
ing sites of GAA​ gene were amplified using a custom 
design kit for Ion AmpliSeq in a S5 Ion Torrent Platform. 
The reads were aligned to Genome Reference Consor-
tium Human Build 37 GRCh37. The limitations of the 
technique include non-detection in the intronic regions 
of the gene, nor highly repeated regions or other struc-
tural variants as inversions, translocations, large inser-
tions or deletions.

Obtained sequences were compared with the GAA​ 
reference sequence NM_000152.3 to identify genetic 
variants. All of them had a minimum read depth of 20 ×. 
Single nucleotide changes, insertions or deletions were 
compared to the online genome databases ClinVar and 
Human Gene Mutation Database (HGMD) open access 
and to the Erasmus MC University Medical Center 
Rotterdam.

After analyzing the numerous variants obtained, 
those with a frequency greater than 1% in the general 
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population were discarded according to the polymor-
phism database [http://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​
SNP/]. Variants that were described as benign, probably 
benign or polymorphisms in databases were not further 
researched. Novel missense variants effects were ana-
lyzed using in silico tools by Mutation Taster [http://​
www.​mutat​ionta​ster.​org] and Polyphen2 software pro-
grams [http://​genet​ics.​bwh.​harva​rd.​edu/​pph2]. New 
variants were also analyzed using the VarSome genomic 
interpreter (https://​varso​me.​com/). Novel nonsense vari-
ants that generates a premature stop codon upstream 
of another known disease causing nonsense variants or 
that affects the active protein center were evaluated as 
pathogenic.

Results
From August 2016 to December 2019 were tested 2637 
samples of 1343 males and 1294 females (mean age 
45.16 years, SD 20.77, range 0–98). Patients with positive 
screening in DBS (activity < 0.75 μmol/L/h) are asked for 
a sample of lymphocytes to measure the enzyme activ-
ity and confirm the diagnosis (activity < 0.15  nmol/min/
mg protein). The GAA​ sequence was performed in all 

patients whose enzyme activity measured in DBS and 
lymphocytes was decreased (Fig. 1).

Enzymatic acid α‑glucosidase activity
Of the 2637 patients studied, 2520 (95.56%) showed nor-
mal acid α-glucosidase activity in DBS. The determina-
tion of the enzyme activity in lymphocytes was carried 
out in the 117 (4.44%) patients who showed low activity 
in DBS to confirm the low enzyme activity. The analy-
sis of the enzyme activity in lymphocytes was normal 
in 93 (3.53% of total studied and 79.5% of 117 positives 
in screening) patients and a total of 24 (0.91% of total 
studied and 20.5 of 117 positives in screening) patients 
resulted with confirmed reduced activity and they were 
all sequenced.

GAA genetic variants
In relation to 24 sequenced, 17 patients (#1 to #17), pre-
sented with two variants compatible with disease: seven 
males and nine females with LOPD (mean age 36.07, 
SD 20.57, range 7–64) and a 2-day-old boy with IOPD. 
Patients #18 and #19, a woman and a man respectively, 
showed a single variant in heterozygosity (#18 and #19) 

Fig. 1  A description of PD screening protocol

http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.mutationtaster.org
http://www.mutationtaster.org
http://genetics.bwh.harvard.edu/pph2
https://varsome.com/
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and in 5 subjects with border-line enzymatic activity no 
genetic justification was found in this study, their only 
symptom was generalized muscle weakness and they 
were not considered Pompe patients, it was recom-
mended to look for other causes of myopathy. All the 
variants found in the molecular study were consulted in 
the bibliography and public databases all the variants and 
the unregistered ones were analyzed when possible using 
in silico tools.

Of all the patients who showed two variants compat-
ible with PD, 4 subjects were homozygous and the rest 
had two variants in heterozygosity; it was not possible 
to verify whether they were in compound heterozygosity 
because the family study was not provided. The clinical 
manifestations, biochemical analysis data and genotype 
of the 17 patients from 16 families are summarized in 
Table 1. Sixteen different variants were detected and the 
frequency in our population is shown in Table 2. The var-
iants found were 10 missense variants (11/36; 30.5%), one 
nonsense variant (1/36; 2.8%), 2 frameshifts by deletions 
(4/36; 11.1%), one frameshift by insertion (2/36; 5.5%) 
and 2 splicing variants (18/36; 50%).

Clinical manifestations
Among the 17 patients with PD included in the study, 
one patient had IOPD phenotype and 16 had LOPD 
phenotype. The most frequent symptoms and sings in 
LOPD were muscle weakness, predominantly below 
the waist (62.5%), followed by high CPK serum values 
(37,5%) and respiratory distress (25%). Cardiomyo-
pathy, exercise intolerance, hypotonia, dysphagia and 
myalgia were ascertained in 12.5% of patients. Patient 
#2, #3 and #6 were asymptomatic at the time of assess-
ment. They were incorporated in the study because 
they had a member of the family with PD.

The only patient with IOPD, a male of two days of 
age (patient #1) presented at birth a hypertrophic car-
diomyopathy and he died shortly after receiving the 
sample.

The mean of acid α-glucosidase activity in LOPD 
patients was 0.30 µmol/L/h in DBS and 0.05 nmol/min/
mg protein in the isolated lymphocytes. Enzyme activ-
ity in DBS of the only infantile-onset Pompe disease 
patient was 0.5  µmol/L/h and lymphocyte measure-
ment could not be performed due to the death of the 
patient.

Table 1  Clinical and biochemical analysis information of 17 patients of PD and 2 individuals with a single variant

F, female; M, male; B, biopsy; FM, family member; A, asymptomatic; 1, cardiomyopathy; 2, hyperkalemia; 3, muscle weakness; 4, exercise intolerance; 5, hypotonia; 6, 
myalgia; 7, dysphagia; 8, respiratory distress; 9, dyspnoea

Subject Age Sex Symptoms or signs α-Glucosidase activity

DBS Lymphocytes Variant 1 Variant 2

NR:>0.75 µmol/Lh NR:>0.15 nmol/
m.n/mgprot

#1 0 M 1, FM 0.5 N/A c.236_246delCCA​
CAC​AGTGC​

c.236_246delCCA​CAC​AGTGC​

#2 7 F A, FM 0.12 0.01 c.-32-13T>C c.1396_1397insG

#3 9 F A, FM 0.15 0.07 c.-32-13T>C c.1396_1397insG

#4 11 F 1, 2, 3 0.16 0.03 c.-32-13T>C c.1831G>A

#5 17 F 2, 3, 4, B 0.37 0.02 c.1328A>T c.1328A>T

#6 19 M A, F 0.37 0.05 c.-32-13T>C c.281_282delCT

#7 31 M 2,3 0.27 0.05 c.-32-13T>C c.1655T>C

#8 32 F 2,3 0.3 0.09 c.-32-13T>C c.925G>A

#9 44 F 1,8 0.34 N/A c.-32-13T>C c.2819C>A

#10 46 M 3, 4, 5 0.36 0.00 c.-32-13T>C c.236_246delCCA​CAC​AGTGC​

#11 51 M 2, 3, 6, 7 0.21 0.04 c.-32-13T>C c.2104C>T

#12 52 M 3,8 0.48 0.01 c.-32-13T>C c.1889-1G>A

#13 57 F 3, 4, 9 0.37 0.01 c.-32-13T>C c.2237G>C

#14 58 F 3,5 0.33 0.10 c.-32-13T>C c.-32-13T>C

#15 58 M 2,3,4 0.31 0.11 c.-32-13T>C c.655G>A

#16 59 M 2, 3, 8 0.17 0.01 c.-32-13T>C c.-32-13T>C

#17 64 M 2, 3, 6, 7 0.54 0.10 c.-32-13T>C c.875A>G

#18 79 F A, FM 0.65 0.11 c.854C>G –

#19 63 M 2, 3 0.47 0.06 c.2065G>A –
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Genotype–phenotype correlations
Two pathogenic variants were the most frequent, con-
tributing to 58% of the total alleles. The most common 
variant was c.-32-13T>G. It was detected in 15 patients 
(88.2%); 2 were homozygous and 13 were heterozy-
gous. The next most frequent pathogenic variant was 
c.236_246delCCA​CAC​AGTGC​ which was observed in 
two unrelated patients (5.8%). One patient was homozy-
gous who presented with IOPD and one heterozygous 
who presented with LOPD. The variants c.1328A>T and 
c.1396_1397insG were identified in one homozygous 
and two heterozygous patients respectively. The rest of 
the variants (c.281_282delCT; c.655G>A; c.875A>G; 
c.925G>A; c.1655 T>C; c.2104C>T; c.2237G>C) were 
detected once in each patient who presented with them. 
The total number of genetic variants detected were 
analyzed by bibliography and in silico predictive tools 
(Table 3).

Four of the 14 different variants identified had not 
been reported previously and we considered them as 
likely pathogenic (c.1328A>T, c.1831G>A, c.2819C>A, 
c.1889-1G>A).

The missense variant c.1328A>T was found in 
homozygosity in patient #5. It results in a protein change 
(p.Asp443Val). All of in silico tools consulted predicted 
a damaging effect of the variant on the protein function. 
Evolutionary conservation of amino acid and the posi-
tion of the residue involved in the structure of the pro-
tein is showed in Fig.  2. This variant was observed in 
homozygosity in a 17 years old woman of Pakistani ori-
gin who showed exercise intolerance, muscle weakness 
and high CPK in serum and also high values of glutamyl 

oxaloacetic transaminase and glutamyl pyruvic transami-
nase. She also had a muscle biopsy compatible with PD. 
Enzymatic activity measured in DBS was 0.37 µmol/L/h 
(V.N:>0.75 µmol/L/h) and 0.02 nmol/min/mg protein in 
lymphocytes.

The missense variant c.1831G>A was found in het-
erozygosity in patient #4 (-32-13T>G + c.1831G>A). It 
produces a change in the protein [p.Gly611Ser]. The 
analysis with in silico predictive tools showed a probably 
damaging effect on the protein function. Evolutionary 
conservation of amino acid and the position of the resi-
due involved in the structure of the protein is showed in 
Fig. 2. Patient #4 is an 11 years old female who presents 
proximal muscle weakness, high CPK serum values and 
an electromyography study that showed myopathic pat-
tern. Enzymatic activity measured in DBS was 0.16 µmol/
L/h [V.N:>0.75 µmol/L/h] and 0.03 nmol/min/mg protein 
in lymphocytes.

The novel nonsense variant c.2819C>A was detected in 
heterozygosity in patient #9 (c.-32-13T>G + c.2819C>A). 
It leads to a premature stop codon in protein synthesis [p.
Ser940Ter]. Pathogenicity of the novel variant was also 
predicted by in silico analysis. Patient #9 is a 44 years old 
female who presents mild left ventricular hypertrophy, 
muscle weakness, respiratory distress and mild hyper-
transaminasemia values. Enzymatic activity measured in 
DBS was 0.34 umol/L/h (V.N:>0.75 µmol/L/h).

The splicing variant c.1889-1G>A was observed in 
heterozigosity in patient #12 (-32-13T>G + c.1889-
1G>A). Bioinformatics analysis were performed using 
Human Splicing Finder which reported that the variant 
disturbs the wild type acceptor site probably affecting the 

Table 2  Type and frequency of GAA​ variants of the patients

Type of variants Nucleotide change Effect on protein Location Frequency

Missense c.655G>A p.Gly219Arg Exon 3 1/36

c.854C>G p.Pro285Arg Exon 4 1/36

c.875A>G p.Tyr292Cys Exon 5 1/36

c.925G>A p.Gly309Arg Exon 5 1/36

c.1328A>T p.Asp443Val Exon 9 2/36

c.1655T>C p.Leu552Pro Exon 12 1/36

c.1831G>A p.Gly611Ser Exon 13 1/36

c.2104C>T p.Arg702Cys Exon 13 1/36

c.2065G>A p.Glu689Lys Exon 15 1/36

c.2237G>C p.Trp746Ser Exon 16 1/36

Nonsense c.2819C>A p.Ser940Ter Exon 20 1/36

Deletion or insertion c.236_246del p.Pro79fsArgfs*13 Exon 2 3/36

c.281_282delCT Pro94Argfs*51 Exon 2 1/36

c.1396_1397insG p.Val466fs*39 Exon 9 2/36

Splicing variant c.-32-13T>C – Intron 1 17/36

c.1889-1G>A – Intron 13 1/36
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splicing. The other variant found was the c.-32-13T>G, 
widely described as a pathogenic variant. Patient #12 is 
a 52 years old man who presents severe clinical manifes-
tations: exercise intolerance, generalized muscle weak-
ness and a damage to the phrenic nerve with bilateral 
diaphragmatic paralysis resulting in respiratory compro-
mise. Enzymatic activity was also measured on DBS and 
lymphocytes (0.48 µmol/L/h and 0.01 nmol/min/mg pro-
tein respectively).

Variants detected in patients who showed a single vari-
ant in heterozygosity were c.854C>G and c.2065G>A. 
Both are missense variant and were not found in other 
patients. Variant c.854C>G is located in exon 4 and it is 
detected in an asymptomatic female. Variant c.2065G>A 
is located in exon 15 in a male who presents muscle weak-
ness and high level of CPK in serum. Both have been pre-
viously reported as pathogenic and benign respectively.

Discussion
The proportion of patients with PD from the ones 
on suspicion of PD in other similar studies in Cauca-
sians population was 0.29% [10] and 2.2% [11]. In our 

population, we tested 2637 samples with suspicion and 
a total of 17 new patients of PD were found (0.64%).

Except in the case of IOPD manifested from birth 
with hypertrophic cardiomyopathy; the median age at 
diagnosis in LOPD set of patients was 38 years, this is 
in line with other authors who maintain that clinical 
manifestations in LOPD may present from the first dec-
ade to the seventh decade of life and the median age at 
diagnosis is 38 years [12, 13]. In our population, three 
patients were asymptomatic [patients #2, #3 and #6]. 
All of them were included in the study because they 
had a family member with PD and they probably show 
no clinical symptoms because they are still too young. 
Patient #2 and patient #3 are sisters and they are 7 and 
9 years old respectively and patient #6 is a 19 years old 
female. The delay in the manifestation of the first symp-
toms has delayed the diagnosis of LOPD in asympto-
matic subjects as described in previous studies which 
show the importance of family studies for preventive 
follow-up [14, 15]. Currently early diagnosis is being 
done in with newborn screening in Taiwan, United 
States and Japan since a few years [16].

Table 3  Analysis of variants by bibliography and in silico predictive tools

Nucleotide 
change

Effect on protein ClinVar Mutation taster PolyPhen-2 VarSome HGMD Pompe database

Described mutations

c.-32-13T>G – Pathogenic – – Pathogenic 33 Potentially mild

c.236_246del p.Pro79fsArgfs*13 Pathogenic Disease causing – Pathogenic 34 Very severe

c.281_282delCT Pro94ArgfsTer51 Likely pathogenic Disease causing – Pathogenic – –

c.655G>A p.Gly219Arg Pathogenic Disease causing Probably damag‑
ing

Pathogenic 35 Potentially less 
severe

c.854C>G p.Pro285Arg Pathogenic Disease causing Probably damag‑
ing

Likey pathogenic 36 Potentially mild

c.875A>G p.Tyr292Cys Pathogenic Disease causing Probably damag‑
ing

Pathogenic 37 Potentially mild

c.925G>A p.Gly309Arg Pathogenic Disease causing Probably damag‑
ing

Pathogenic 38 Potentially less 
severe

c.1396_1397insG p.Val466fs*39 Not described Disease causing – Pathogenic – –

c.1655T>C p.Leu552Pro Pathogenic Disease causing Probably damag‑
ing

Pathogenic 39 Potentially less 
severe

c.2065G>A p.Glu689Lys Conflicts of inter‑
pretation

Polymorphism Likely bening Benign 40 –

c.2104C>T p.Arg702Cys Pathogenic Disease causing Probably damag‑
ing

Pathogenic 41, 42 Potentially less 
severe

c.2237G>C p.Trp746Ser Not described Disease causing Probably damag‑
ing

Pathogenic 43 Potentially less 
severe

Novel mutations

c.1328A>T p.Asp443Val Not described Disease causing Probably damag‑
ing

Likely pathogenic – –

c.1831G>A p.Gly611Ser Not described Disease causing Probably damag‑
ing

Pathogenic – –

c.1889-1G>A – Not described Disease causing – Pathogenic – –

c.2819C>A p.Ser940Ter Not described Disease causing – Likely Pathogenic – –
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The clinical symptoms in our cohort were similar to the 
classical findings in Pompe disease studies [17, 18]. We 
confirm that the most common symptom in LOPD is 
muscle weakness, predominantly below the waist and it 
was present in all patients except the asymptomatic ones 
because they were diagnosed presymptomatically due to 
prior family history of LOPD. Elevated CPK levels and 
respiratory distress were the next most frequent symp-
toms. Myalgia, dysphagia or hypotonia were less frequent 
symptoms in our population (12.5%). Patient #1 [2 days 
of age], showed an hypertrophic cardiomyopathy at birth, 
the most frequent manifestation in IOPD as reported the 
literature [19]. PD presents a great clinical heterogeneity, 
even in patients with the same genetic variant. Therefore, 
the type and degree of manifestations of each individual 
could depend on the residual enzymatic activity and its 
interaction with other genetic or epigenetic factors, such 
as the study of intronic areas or promoter methylation 
patterns. We suggest carry out additional studies to iden-
tify the possibility that could be concomitant factors that 
hinder the breakdown of glycogen, such as the possibility 
of being carriers of some other glycogenosis.

In accordance with others studies, our results con-
firm that the pathogenic variants are distributed 
throughout the entire gene [20–22]. As published in the 

bibliography, the gene has three critical regions: exon 2, 
which includes start codon, exon 10 and 11 where the 
evolutionarily conserved catalytic site domain is con-
tained, and exon 14 which includes a highly conserved 
region. Two variants of our study were detected in exon 
2, none in exons 10, 11 or 14. The rest of the variants 
are distributed by almost all exons as shown in the 
Table 2. Due to the NGS boom, it is expected that more 
variants of uncertain significance will be explained in 
the future.

Sequence analysis of the complete coding region of 
the GAA​ gene revealed 14 different variants from 17 
patients including nine missense variants (26.4%), one 
nonsense variant (2.9%), three deletion or insertion 
variants (17.6%), eighteen splicing variants (52.9%).

Similar to others studies, the splice-site variant c.-
32-13T>G was the most frequent pathogenic variant 
found in our cohort. As is published in the literature, 
the intronic variant is the most common in Caucasian 
populations and it is present in 40–70% of the alleles 
in patients affected with PD [5]. In this study, it was 
seen in all patients except patient #1 and patient #5 
(17 alleles, 50%). Patient #13 and patient #16 presented 
with the variant in homozygosity. This variant is located 
in the 3´splice region and it causes aberrant splicing of 

Fig. 2  Evolutionary conservation of amino acids by missense variants across different species and position of the residues involved in the structure 
of human GAA​. A: variant c.1328A>T; B: variant c.1831G>A
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the GAA​ gene. For this reason, the splicing variant c.-
32-13T>G is considered pathogenic [23–25].

The next most frequent pathogenic variant present in 
our population was c.236_246delCCA​CAC​AGTGC​. It 
was described by Palmer [26] in a patient who presented 
with a severe infantile-onset Pompe disease. In concord-
ance with the previous study, we encountered the dele-
tion in homozygosity in patient #1. Patient #1 had a sister 
with diagnosed PD who died at 9 months of age and for 
whom we do not have the results of the genetic study, 
the clinical information refers to parents as carriers of 
the disease, but the genetic study of his parents was not 
sent to us. It was found too in heterozygosity in patient 
#10, a 46 years old man. The presence of the homozygous 
variant could be established as providing a more serious 
effect or being indicative of a worse prognosis.

The pathogenic variant c.1396_1397insG was identi-
fied in two heterozygous patients: two asymptomatic sis-
ters (patient #2 and #3) who showed the same genotype 
(c.-32-13T>G + c.1396_1397insG) very young to present 
the PD clinical symptoms (7 and 9  years old respec-
tively). The variant is described as cause of PD creating 
a frame shift starting at codon Val466 and a stop codon 
in 39 position downstream [27]. The rest of the variants 
(c.281_282delCT; c.655G>A; c.875A>G; c.925G>A; 
c.1655 T>C; c.2104C>T; c.2237G>C) had already been 
described in the literature as pathogenic were shown only 
once and, therefore, were less frequent in our population.

This study contributed to the identification of four 
new probably pathogenic variants which had not been 
described previously in the literature (c.1328A>T; 
c.1831G>A; c.2819C>A; c.1889-1G>A).

The substitution c.1328A>T (p.Asp443Val) was 
detected in exon 9 of patient #5. The missense variant 
produces a change in the protein and replaces aspartate 
with valine at codon 443. There are physicochemical dif-
ferences between these amino acids. Acid aspartic is neu-
tral and polar and valine is neutral and non-polar. This 
could modify the conformation of the protein and affect 
its function. Other missense variants have been reported 
as pathogenic in nearby codons [28, 29]. This finding sug-
gests that this variant contributes to disease.

The missense variant c.1831G>A is located in exon 
13 and it was shown in heterozygosity in patient #4. This 
substitution (p.Gly611Ser) replaces glycine with serine 
at codon 611. Glycine is non-polar and serine is polar. 
These physicochemical differences can alter the structure 
of the protein and could affect its function. On the other 
hand, it is the second variant discovered in this codon. 
The mutation c.1832G>A (p.Gly611Asp), which also 
change glycine for a polar amino acids, was described in 
previous study and was reported as pathogenic variant 
[30].

We detected the nonsense variant c.2819C>A in 
patient #9. This variant generates a slightly truncated 
protein (p.Ser940Ter). It was assumed to be deleterious 
since the stop codons of other proteins were detected 
upstream of this and were known to result in a complete 
loss of enzyme activity. The variant c.2741delinsCAG 
[p.Gln944*fs30] produces a premature stop codon in 
aminoacid 944, was previously described by van Gelder 
[31]. In patients that did not present any activity of 
α-glucosidase. This leads us to think that a previous stop 
codon will also generate damage to the protein.

The splicing variant c.1889-1G>A in the intron 13 
was detected in patient #11. As Anna [32] published, in 
general, mutations in the canonical acceptor and donor 
sites affect strongly conserved sequences that define 
exon–intron boundaries. Therefore, any variants in these 
canonical sequences might alter interaction between 
premRNA and proteins involved in the intron removal.

Conclusions
In this study fourteen genetic variants in GAA​ gene were 
identified, as cause of Pompe disease, including four new 
variants. This study confirms that patients in Spain have 
a characteristic profile of a European population, with 
c.-32-13T>G being the most prevalent variant. Further-
more, it was confirmed that the c.236_246delCCA​CAC​
AGTGC pathogenic variant in homozygosity is asso-
ciated with early disease and a worse prognosis. We 
propose to extend the genetic study in the 7 individu-
als without genetic justification using techniques that 
require the study of the intronic zones of the gene or alfa-
glucosidase messenger RNA.

Our findings underscore the importance of early diag-
nosis and propose to accurate molecular analysis to 
improve genetic counseling in addition to enabling a bet-
ter quality of life for patients.
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