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Chloroquine and its derivatives have been used since ages to treat malaria and have also
been approved by the FDA to treat autoimmune diseases. The drug employs pH-
dependent inhibition of functioning and signalling of the endosome, lysosome and
trans-Golgi network, immunomodulatory actions, inhibition of autophagy and
interference with receptor binding to treat cancer and many viral diseases. The
ongoing pandemic of COVID-19 has brought the whole world on the knees, seeking
an urgent hunt for an anti-SARS-CoV-2 drug. Chloroquine has shown to inhibit receptor
binding of the viral particles, interferes with their replication and inhibits “cytokine storm”.
Though multiple modes of actions have been employed by chloroquine against multiple
diseases, viral diseases can provide an added advantage to establish the anti–SARS-CoV-
2mechanism, the in vitro and in vivo trials against SARS-CoV-2 have yieldedmixed results.
The toxicological effects and dosage optimization of chloroquine have been studied for
many diseases, though it needs a proper evaluation again as chloroquine is also
associated with several toxicities. Moreover, the drug is inexpensive and is readily
available in many countries. Though much of the hope has been created by
chloroquine and its derivatives against multiple diseases, repurposing it against SARS-
CoV-2 requires large scale, collaborative, randomized and unbiased clinical trials to avoid
false promises. This review summarizes the use and themechanism of chloroquine against
multiple diseases, its side-effects, mechanisms and the different clinical trials ongoing
against “COVID-19”.
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INTRODUCTION

Chloroquine, commonly known for the anti-malarial applications has evolved gradually as a magic
medicine, effective against many diseases including rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE), multiple types of cancer and viruses. It has also been a molecule of choice
among research community for studying the mechanism of autophagy, nanoparticles internalization,
endocytosis and interlinked role of multiple signalling pathways in various diseases including cancer
and autophagy (Pelt et al., 2018; Varisli et al., 2019).

Recent onset of the Coronavirus Disease-2019, a pandemic which has put the world on its knees, has
again brought this “age-old drug” chloroquine and its derivatives into bright limelight. The disease has
already spread worldwide and has killed more than 9,534,437 of the world population (Coronavirus
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Death Toll and Trends-Worldmeter, n.d.) and is still affecting
millions. Multiple drugs are being tested, and the research
community leaves no stone unturned to come up with an
effective vaccine or drug to treat this wide-spread disease.
Chloroquine and its derivatives have also emerged as a
potential drug for effective treatment of this novel coronavirus
(Smith et al., 2020; Touret and Lamballerie, 2020). Other potential
drugs being tested for COVID-19 are remdesivir (GS-5734),
lopinavir;ritonavir, Interferon alfacon-1 in conjunction with
corticosteroids and Ribavirin in conjunction with corticosteroids
(Smith et al., 2020; Wang M. et al., 2020). However, none of the
drugs being researched has been approved by the World Health
Organization (WHO) for the treatment of COVID-19 till now,
keeping the room open for further research on chloroquine and the
derivatives.

4-N-(7-chloroquinolin-4-yl)-1-N, 1-N-diethylpentane-1,
4-diamine, commonly known as chloroquine is a
4-aminoquinoline approved by FDA for treatment of malaria
and inflammation–related diseases. It is a colorless and
odourless crystal with a molecular mass of 319.9g/mol and
available as a generic medicine (PubChem ID: 2719).
Chloroquine is an inexpensive, water-soluble, weakly basic
tertiary amine, which at physiological pH (7.2–7.4) is highly
membrane permeable. However, inside the acidic organelles, it
gets protonated and accumulates, raising the pH of the respective
organelle. It can interfere with all the pH-dependent signalling and
functioning of the endosome, lysosome, Golgi network,
phagosome, and autophagosomes (Weyerhäuser et al., 2018).
However, due to some side-effects of chloroquine, several
derivatives, including hydroxychloroquine have been
synthesized with similar efficacy but reduced toxicity.

Chloroquine and its derivatives (Figure 1), emerging as one of
the most probable drugs alone or in combination against the
battle of COVID-19, needs a detailed compilation and review so
that the mechanisms elucidated by them against multiple diseases
can be understood and co-related or used for the further vaccine

and drug development for COVID-19. This review summarises
chloroquine’s journey, from being an anti-malarial drug to a
magic bullet against multiple diseases, its good and evil, results of
clinical trials obtained so far and the future aspects, it holds along
with its drawbacks as prophylaxis or drug to fight COVID-19.

CHLOROQUINE AS AN ANTI-MALARIA
DRUG

Mechanism of Haemoglobin Degradation
Inside the Human Body by the Malaria
Parasite
To understand, how chloroquine inhibits malarial parasite, it is
important to know the mechanism employed by Plasmodium sp. to
hijack erythrocytes and use haemoglobin for their energy
requirements. The Plasmodium sp. has a specialized acidic
organelle known as digestive vacuole (DV) for degrading
haemoglobin for its energy requirements following a cascade of
protease activities (Pandey and Chauhan, 1998). The by-product of
haemoglobin digestion is heme. Heme, when bound in haemoglobin
is in the non-toxic ferrous form (Fe2+), but when free, it converts into
very toxic ferric form (Fe3+) (Francis et al., 1994). To avoid toxicity,
the parasite must evolve machinery to get rid of toxic heme, which is
achieved by crystallization of heme called “hemozoin” or “malarial
pigment” (Coronado et al., 2014). The formation of hemozoin takes
place at considerably low pH where two heme units are linked
together by iron carboxylate bonds. This unusual linkage is
important for the synthesis and growth of an ordered insoluble
crystal (Bohle et al., 1997; Coronado et al., 2014). Histidine rich
protein (HRP) plays a vital role in the biocrystallization of hemozoin
(Coronado et al., 2014). The hemozoin formed does not only
detoxify the heme pigment for parasite but also adversely affects
the human immune system, especially macrophages (Schwarzer
et al., 2003).

FIGURE 1 | Chemical structure of (A) chloroquine and (B) hydroxychloroquine (National Center for Biotechnology Information, 2004).
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How Chloroquine Works Against the
Malaria Parasite
There were several theories proposed regarding the mode of
action of chloroquine to kill malaria pathogen as DNA binding
agent (Parker and Irvin, 1952) protein synthesis inhibitor (Surolia
and Padmanaban, 1991) polyamine metabolism inhibitor (Slater,
1993) and inhibitor of hemozoin crystallization (Orjih, 1997;
Gorka et al., 2013). Most of the studies have shown chloroquine
as a potent inhibitor of hemozoin crystallization. Sullivan. et al.
(1996) postulated that chloroquine inhibits hemozoin formation
by inhibiting HRP II. Again, Sullivan. et al. (1998) in their
study concluded that chloroquine blocked the polymerization
of free heme released during haemoglobin proteolysis in
intraerythrocytic P. falciparum. Later in a review, Sullivan
(2017) summarized that quinolones block every step of toxic
heme crystal growth. DVs are acidic organelles with pH 5.0,
where chloroquine can diffuse inside easily. However, the
acidic pH yields diprotonation of the drug, inhibiting its
movement out of the DV. The trapped diprotonic chloroquine
inhibits the crystal growth of hemozoin, toxifying the malaria
pathogen (Goldberg, 1993). Pandey and Tekwani et al. (1997) in
their study established that chloroquine initiates a reverse
reaction of conversion of hemozoin to monomeric heme
(ferriprotoporphyrin IX) after interaction with malarial
hemozoin, also termed as termed “hemozoin depolymerization”.

Developing Resistance by Plasmodium sp.
Against Chloroquine and Alternative
Strategies
Developing resistance by Plasmodium sp. against chloroquine
attributes to a point mutation in the genes coding for the
chloroquine resistance transporter (PfCRT) present in DV
(Martin et al., 2009; Chinappi et al., 2010). This protein
avoids the accumulation of chloroquine by facilitating the
efflux of the diprotonic chloroquine. However, the action of
protein as a channel or a carrier is still debatable. Chinappi et al.
(2010) in their study proposed that the protein acts as a carrier
to exclude out both mono and diprotonic chloroquine. Reiling
et al. (2018) proposed that pharmacological responses of
sensitive and resistant malaria parasite towards chloroquine
are also different.

Different strategies including alternative drugs, derivatives of
chloroquine and combinational drug therapies have been used to
combat the chloroquine-resistant malarial parasite. Clindamycin
in combination with quinine was successfully used for the
treatment of uncomplicated multidrug-resistant P. falciparum
malaria in Thai patients (Pukrittayakamee et al., 2000).
Artesunate-atovaquone-proguanil combination has proven
successful for the treatment of the similar case of malaria (van
Vugt et al., 2002). Primaquine, mefloquine, artesunate and
artemisinins are some of the drugs used in the treatment of
resistant malaria in India (Kalra et al., 2002). Treatment of
chloroquine-resistant malaria using a combination of
pyrimethamine, berberine, tetracycline or cotrimoxazole has
been used successfully to treat chloroquine-resistant malaria in
Africa (Sheng et al., 1997).

CHLOROQUINE ASANANTI-RHEUMATOID
ARTHRITIS AND LUPUS
ERYTHEMATOSUS DRUG
RA and LE are autoimmune diseases, where healthy tissues are
attacked by the hyper-immune system causing inflammatory
responses. RA is mainly characterized by pain, inflammation
and stiffness around the joints, whereas LE is characterized in the
early phase with arthritis, skin lesions, inflammation around the
lungs and kidneys. Rhupus, is a syndrome which presents
symptoms associated with both RA and LE (Macfarlane and
Manzel, 1998; Thome et al., 2013).

Both chloroquine (CQ) and 4-hydroxychloroquine (HCQ)
are extensively used as immune-modulators to treat RA and
LE. There are evidence of both, pH-dependent and pH-
independent role of chloroquine and its derivatives to
inhibit the generation of autoantibodies and reducing the
secretion of inflammatory cytokines (Macfarlane and Manzel,
1998; Thome et al., 2013).

CQ and HCQ both can enter acidic endosome and lysosome,
remain there as CQ+ and CQ++, elevate their pH from 4.5 to 6.0,
and interfere with their functions (Mindell, 2012). By interfering
with endosome functions, it inhibits TLR7 and nine signalling
and thus inhibits dendritic cell maturation. By changing the
acidity of lysosome of antigen-presenting cells, CQ and HCQ,
inhibits the presentation of the major histocompatibility (MHC)
complex peptides to T cells, thus inhibiting the production of T
helper cells and cytokines (Thome et al., 2013; Ponticelli and
Moroni, 2017). It also inhibits calcium-dependent signalling, toll-
like receptor signalling pathways, and iron metabolism in
macrophages, thus suppressing production of IL-6, IL-1 and
tumor necrosis factor-alpha (TNF-α) (Ponticelli and Moroni,
2017; Schrezenmeier and Dörner, 2020). Rand et al. (2008) in
their experiment using atomic force microscopy (AFM) observed
that hydroxychloroquine interferes with binding of
antiphospholipid antibody–β2-glycoprotein I complexes to
phospholipid bilayers, thus lowering down inflammation. Oh
et al. (2016) concluded in their study that chloroquine reduces
inflammation through p21-mediated suppression of T cell
proliferation and Th1 cell differentiation.

Though the development of resistance against disease-
modifying anti-rheumatic drugs (DMARDs) including
chloroquine, has not been studied much, the role of ATP
binding cassette (ABC) proteins responsible for drug efflux
cannot be neglected (Jansen et al., 2003). A better
understanding is needed in this field to establish alternative
strategies and drug combination therapy for RA and LE.

CHLOROQUINE AS AN ANTI-CANCER
DRUG

How Chloroquine Works Against Cancer
Inhibition of cancer cell growth by chloroquine is a complex
process. Table 1 summarizes the multi-ranged effects of
chloroquine on multiple types of cancer cells. The primary
mechanism employed by chloroquine and its derivative is
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inhibition of autophagy during cancer cell death. The pH-
dependent accumulation of chloroquine inside lysosome leads
to impairment of autophagosome degradation and thus
inhibition of autophagy (Mauthe et al., 2018). It is also known
to generate endoplasmic stress, lysosome and mitochondrial
membrane depolarization in a reactive oxygen species (ROS)
dependent manner, thus increasing apoptosis (Ganguli et al.,
2014; Alam et al., 2016). Though chloroquine alone is not
sufficient to depolarise membrane potential; it is generally used
to sensitize chemo or radiotherapy, in an autophagy-dependent or
independent manner (Maycotte et al., 2012; Makowska et al., 2016;
Zhu et al., 2019). However, there are some severe kidney and organ
injuries have also been reported after the use of chloroquine as the
sensitizer to chemo and radiotherapy (Kimura et al., 2013).

Recent studies have revealed that chloroquine is also able to
interfere with different metabolic pathways, including cholesterol,
glucose, amino acids, andmitochondriametabolism (Weyerhäuser
et al., 2018).

Chloroquine is also used to treat multidrug-resistant cancer by
blocking drug extrusion by interfering with the ATP-binding
cassette (ABC) transporter family and other transmembrane
protein related to drug resistance (Szakács et al., 2006). A
summary of mechanisms employed by chloroquine has been
illustrated in Figure 2.

CHLOROQUINE AGAINST BACTERIAL AND
FUNGAL DISEASES

Generally, in response to intracellular bacterial or fungal
pathogens, the first-line antimicrobial defence is initiated by

the phagocytes. After being internalised by the phagocyte, a
phagosome forms which further fuses with lysosomes.
Through oxygen dependent and independent mechanisms,
the bacteria are killed. This acidifies the phagolysosome to
pH 4.5 and activates lysosomal enzymes. Several intracellular
pathogenic bacteria and fungi evade this line of defence
through different mechanisms such as, they lack the
lysosomal pathway (ex. Bartonella sp.), escape before the
fusion of phagosome and lysosome and survive in the
cytosolic region (ex. Shigella sp, Rickettsia sp.), block
lysosomal fusion and multiply in the phagosome (ex.
Chlamydia sp, Salmonella sp, Mycobacterium sp, Yersinia
sp), resistance to survival in phagolysosome (Coxiella
burnetii, Tropheryma whipplei). Chloroquine treatment
inhibits the growth of these intracellular pathogens by pH
dependent iron deprivation and neutralising the
phagolysosomal pH (Rolain et al., 2017). Lagier et al. (2014)
reported the bactericidal combination treatment of
doxycycline and hydroxychloroquine against the classic
Tropheryma whipplei caused Whipple’s disease. The authors
confirmed the effectivity of the combination treatment
through in vitro studies and clinical trials (Lagier et al.,
2014). Q fever, caused by Coxiella burnetii infection
manifests into a severe complication of endocarditis. A
combination of doxycycline and chloroquine derivates has
been reported to reduce the mortality rate and is a
prominent therapeutic intervention for Q fever. The
mechanism of action is under investigation; however, it can
be presumed that chloroquine increases the lysosomal pH and
enhances the antibacterial activity of doxycycline (Alegre et al.,
2012; Lagier et al., 2014).

TABLE 1 | Examples of chloroquine used in treatment of cancer.

S. No Name of drug Type of
Cancer Cell

Concentration of
chloroquine

Mechanism Reference

1 Chloroquine with C2
ceramide

Lung Cancer H460 and
H1299 Cells

10 µM Inhibition of autophagosome maturation and
degradation during autophagy progression

Chou et al. (2019)

2 Chloroquine with Luteolin Squamous Cell
Carcinoma Cells

50 µM Blocked autophagy Verschooten et al.
(2012)

3 Chloroquine as an adjuvant Glioma cells 5–20 µM Blocked autophagy and modulated several
metabolic pathways, deficient DNA repair

Weyerhäuser et al.
(2018)

4 Chloroquine Bladder cancer cells 20 µM Inhibition of cholesterol metabolism King et al. (2016)
5 Chloroquine and GX15-070 Pancreatic cancer cells 20 µM Blocked autophagy Wang et al. (2014)
6 Chloroquine Rat sarcoma 1–100 µM Sensetized cells by inhibition of DNA repair and loss

of mitochondrial potential
Eng et al. (2016)

7 Chloroquine with
temozolomide

Glioma cells 5–20 µM Sensetizing glioma cells by autophagy inhibition Yan et al. (2016)

8 Hydroxycholoroquine with
phytosterol

Lung cancer cell 20–120 µM Autophagy inhibition Elshazly et al.
(2020)

9 Chloroquine with Tenovin-6 Gastric cancer 25–50 µM Autophagy inhibition Ke et al. (2020)
10 Hydroxychloroquine HeLa cells 60 μg/ml Loss of lysosome and mitochondrial membrane

potential
Boya et al. (2003)

11 Chloroquine and NVP-
BEZ235

Neuroblastoma cells 0–120 µM Lysosome -mitochondria cross talk Seitz et al. (2013)

12 Chloroquine Pancreatic cancer 0.5–100 μg/ml Inhibition of neutrophil extracellular traps Boone et al. (2018)
13 Chloroquine Prostate cancer 10–20 µM Induces Par-4 response Rangnekar (2019)
14 Chloroquine Bladder cancer 10 µM Enhances the radiosensitivity by inhibiting

autophagy
Wang et al. (2018)

15 Chloroquine and oxaliplatin Pancreatic cancer — modulating activity of cytosolic HMGB1 Lee et al. (2018)
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CHLOROQUINE AGAINST VIRAL DISEASES
WITH SPECIAL ATTENTION TO
SARS-COV-2

Viral Pathogenesis in Human With Special
Attention to SARS-CoV-2
The catastrophic impact of viral diseases on human has been observed
since ages. From Spanish flu to COVID-19, humankind has always
struggled tomake a way out of socio-economic burden slapped by viral
pathogens. TheCOVID-19pandemic crisis hasworsened the economic
and health condition worldwide to such a level that had not been
observed in the last 70years (https://www.un.org/development/desa/
dspd/2020/04/social-impact-of-covid-19/). The COVID-19 outbreak is
detrimental to old age, immuno-suppressive people, and a significant
economic burden on indigenous and poor people.

Each virus has a different virulence factor, and the pathological
consequences also differ from virus to virus. The knowledge of viral
pathogenesis is neither accurate nor complete for most viral
infections, especially for SARS-CoV-2. Novel SARS-CoV-2 is an
enveloped single-stranded RNA virus belonging to the family
Coronaviridae (Zheng, 2020) responsible for ongoing pandemic
COVID-19. The main symptoms of this disease include fever,
cough and fatigue, and it can lead to severe complications, having a

mortality rate of 5.7% (Lechien et al., 2020) 50% of the COVID-19
positive patients are asymptomatic. The main symptoms in the
early stages are headache (70%) loss of smell, and nasal
obstruction. Cough, fever and dyspnoea are a sign of late
infection (8–10days) (Lechien et al., 2020; Sajna and Kamat, 2020).

Discussing complete progress details about the viral
pathogenesis will be beyond this review, however, in general,
pathogenic virus and in particular, SARS-CoV-2 follows the
following events to cause an infection.

a. Entry inside the cells in an endocytosis-dependent or
independent manner.

Most of the human viruses follow an endocytosis-dependent
entry inside the cells. The envelope spike glycoprotein of SARS-CoV
and SARS-CoV-2 binds to the angiotensin-converting enzyme 2
(ACE2) receptor on target cells to facilitate entry (Li et al., 2020;
Zhang et al., 2020). The spike “S” protein is responsible for theACE2
receptor binding, whereas the cellular serine protease TMPRSS2 is
required to prime the “S” protein (Hoffmann et al., 2020).

Xu et al. (2020) in their study found that the 3D structure of
the receptor-binding domain in both the viruses is identical.
SARS-CoV followed direct membrane fusion between the virus

FIGURE 2 | Probable mechanism employed by chloroquine to kill cancer cells.
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and plasma membrane as well as clathrin-dependent and
-independent endocytosis mediated entry inside target cells
(Wang et al., 2008; Kuba et al., 2010).

b. Viral replication inside target cells.

The replication mechanism of SARS-CoV and SARS-CoV2 is
also found to be similar (Caly et al., 2020). After entry inside the
target cells, the virus’s RNA genome is released in the cytoplasm,
translated, and posttranslational modifications occur in
endoplasmic-reticulum or Golgi apparatus. After the assembly
of RNA and nucleocapsid proteins, the replicated virus particles
are released by membrane fusion (Li et al., 2020).

c. Escaping immune surveillance

Most of the viral diseases survive inside human by escaping
immune surveillance. Viruses of the family Coronaviridae are no

exception. During the initial infection, the SARS-CoV-2 delays
type 1 IFN production and avoids the recognition by pattern
recognition receptors (PRRs), allowing uncontrolled viral
replication, activating pro-inflammatory cytokines triggering
“cytokine storm” (Huang et al., 2005; Li et al., 2020; Rothan
and Byrareddy, 2020). Further, activation of specific Th1/Th17
enhances the inflammatory responses.

SARS-CoV-2 escapes activation of adaptive immunity by
interfering differentiation and function of dendritic cells and
defensins and a severe decrease in CD4+ and CD8+ T cells (Li X.
et al., 2020; Li G. et al., 2020).

How Chloroquine Works Against Viral
Diseases
Chloroquine acts as a potent anti-viral agent by implying several
mechanisms which have been listed in Table 2. The anti-viral

FIGURE 3 | Probable mechanism employed by chloroquine to inhibit SARS-CoV-2.
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TABLE 2 | Examples of chloroquine used against viral diseases.

S. no Drug Viral Disease Concentration Mechanism Reference

1 Chloroquine Human Coronavirus
OC43

15mg of chloroquine per kg of body
weight

Not established Keyaerts et al.
(2009)

2 Chloroquine SARS-CoV 10–50 µM Elevations of endosomal pH, terminal
glycosylation of the cellular receptor,
angiotensinconverting enzyme 2

Vincent et al.
(2005)

3 Hydroxyferroquine
Derivatives

SARS-CoV IC50- 0.3–1 μg/ml Not established Biot et al. (2006)

4 Chloroquine, 7-8-
dihydroneopterin

SARS-CoV, MERS-CoV EC50 3–8mol/L, 4 mg/kg per day Endosomal acidification Al-Bari (2017)

5 Chloroquine MERS-CoV EC50 of 3 µM Inhibited replication Liang et al. (2018)
6 Chloroquine Zika virus 20 mg/kg of body weight Protection against ZIKV-induced inflammatory

changes
Li et al. (2017)

7 Chloroquine Ebola virus 10 µM Lysosome acidification. Was able to inhibit
in vitro but failed in vivo

Dowall et al.
(2015)

8 Chloroquine Zika virus 5–40 µM obstructs fusion of the flaviviral envelope protein
with the endosomal membrane

Shiryaev et al.
(2017)

9 Chloroquine Herpes simplex virus 15 µM Interacts with endocytic viral entry Dai et al. (2018)
10 Chloroquine Influenza A virus 60 µM Blocking autophagy Calderon et al.

(2019)
11 Chloroquine Zika virus 0–300 μm/l Blocking autophagy Zhang et al.

(2019)
14 Hydroxy-chloroquine Dengue virus 0–100 µM Activating ROS and a MAVS mediated host IFN

anti-viral pathway
Wang et al.
(2015)

15 Hydroxy-chloroquine Influenza A virus 3–30 µM Blocking autophagy Yan et al. (2013)
16 Chloroquine Influenza A virus 500 mg/day for 1week Disrupts pH-dependent structural changes in

viral-synthesized proteins
Paton et al.
(2011)

17 Chloroquine HIV 100 µM Interferes with innate immunity-induced
immune hyperactivation

Martinson et al.
(2010)

18 Hydroxy-chloroquine HIV 20 µM Apoptosis in the memory T-cell compartment
by inhibiting autophagy

van Loosdregt
et al. (2013)

19 Hydroxy-chloroquine HIV — Induction of a defect in thematuration of the viral
envelope glycoprotein gp120

Tsai et al. (1990)

20 Chloroquine Chikungunya 250 mg/day Not established Chopra et al.
(2014)

21 Chloroquine Prion (scrapie-infected
neuroblastoma (ScN2a))

100 µM Acidification of lysosome Supattapone
et al. (1999)

22 SGI-1027 (Derivative of
Chloroquine)

Creutzfeldt-Jakob
disease

0–1μm/L reduce PrPSc formation via direct coupling with
PrPC in prion-infected cells

Kim et al. (2019)

23 Chloroquine Influenza B virus 0–10 µM lysosomotropic alkalinizing agents (LAAs) and
calcium modulators (CMs)

Marois et al.
(2014)

24 Chloroquine Human Papilloma
Virus (HPV)

10 µM Autophagy inhibition, inhibited the up-regulation
of PD-L2

Baruah et al.
(2019)

25 Chloroquine Grass carp reovirus
(GCRV)

50–400 µM Inhibition of Lysosomal acidification Wang et al.
(2016)

26 Chloroquine and
hydroxyl-chloroquine

Human Papilloma Virus
(HPV) (Cutaneous warts)

400 mg/day Inhibition of Lysosomal acidification Bhushan et al.
(2014)

27 Hydroxy-chloroquine SARS-CoV-2 EC50 � 1.13μM Interfering with the glycosylation of cellular
receptors and endosome alkylatiation

Wang et al.
(2020)

28 Hydroxy-chloroquine SARS-CoV-2 400 mg given twice daily for 1day,
followed by 200mg twice daily for 4

more

Not established Yao et al. (2020)

29 Hydroxy-chloroquine SARS-CoV-2 CC50 249.50 μM Inhibition of endocytosis Liu et al. (2020)
30 Hydroxy-chloroquine

and azithromycin
SARS-CoV-2 600 mg of hydroxyl-chloroquine

daily
Not established Gautret et al.

(2020)
31 Chloroquine and

hydroxyl-chloroquine
SARS-CoV-2 In silico study Inhibition of viral S protein to bind with

gangliosides
Fantini et al.
(2020)

32 Hydroxy-chloroquine SARS-CoV-2 400 mg given twice daily for 1 day,
followed by 200 mg twice daily for 4

more days

Not established Clementi et al.
(2020)

33 Chloroquine and
hydroxyl-chloroquine

SARS-CoV-2 IC50 46 and 11μM Not established Weston et al.
(2020)

34 Hydroxy-chloroquine
and azithromycin

SARS-CoV-2 1, 2 and 5 μM for 78 hydroxy-
chloroquine and 2, 5 and 10 μM for

azithromycin

Not established Andreani et al.
(2020)

35 Chloroquine SARS-CoV-2 EC50 of 1.13 μM Not established Gao et al. (2020)
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mechanisms of chloroquine can further be exploited to develop it
as a therapeutic agent against SARS-CoV-2.

Probable Mechanisms of Chloroquine
Against SARS-CoV-2
Though studies are still ongoing on chloroquine as an inhibitor
of SARS-CoV-2, the plausible mechanisms known from its
use against various diseases can provide a substantial ground
for further research and development of chloroquine as a
potential drug against COVID-19. Multiple modes of actions
of chloroquine against SARS-CoV-2 are as follows:

1. Inhibition of viral entry inside the target cells

Chloroquine can inhibit the binding of viral spike glycoprotein
with ACE2 receptor on target cells to inhibit their entry.
Chloroquine has shown potent inhibition of sugar modifying
enzymes or glycosyltransferases and quinone reductase which
have been involved in sialic acid biosynthesis of ACE2 receptor
(Kwiek et al., 2004; Devaux et al., 2020). Wu et al. (2020) in their
docking studies showed that chloroquine can potentially target
Nsp3b or E-channel with the docking mfScores of–130.355
and–107.889, respectively, though experimental results are yet
to be verified.

SARS-CoV-2 particles significantly resemble the nanoparticles
with a size of 60–140nm and are spherical. Nanoparticles are
known to exhibit their desired results by cell internalization
(Kumari et al., 2017) which can effectively be inhibited by
chloroquine. Chloroquine inhibits nanoparticles internalization
by suppression of phosphatidylinositol binding clathrin assembly
protein (PICALM), thus inhibiting clathrin-dependent
endocytosis (Hu et al., 2020). The same principle can be
applied for stopping the internalization of SARS-CoV-2
particles inside the target cells. Chloroquine can also play a
vital role in interfering with the endocytosis of viral particles
by increasing the pH of endosomes which has been explained
earlier (Touret and Lamballerie, 2020). Interaction of TMPRSS2
with the ACE2 receptor is essential for facilitating SARS-CoV-2
entry (Matsuyama et al., 2020). Application of chloroquine with a
known serine protease inhibitor can weaken the viral entry inside
the cells (Markus et al., 2020). Serine protease inhibitor camostat
mesylate has been observed to blocks TMPRSS2 activity in SARS-
CoV-2 (Hoffmann et al., 2020).

2. Inhibition of viral replication and posttranslational
modifications (PTM)

Chloroquine inhibits acidification of endosome and lysosome,
stalling the virus inside endosomes and inhibiting the release of
the viral RNA genome in the cytosol. Inhibition of lysosome
acidification further hampers the fusion of endosome with the
lysosome and upstream trafficking essential for viral replication
(Devaux et al., 2020; Hu et al., 2020; Wang et al., 2020).

Inhibition of acidification further continues to work in favour of
chloroquine against SARS-CoV-2 as it inhibits posttranslational
modification in trans Golgi network (TGN). Lack of low pH in

TGN interferes with functional proteases and glycosyl-transferases
resulting in impaired PTM or non-infectious viral particles
(Devaux et al., 2020; Touret and Lamballerie, 2020).

3. Inhibition of autophagy

Many of the human viruses employ autophagy for their
replication inside the target cells (Table 2) (Yan et al., 2013;
Calderon et al., 2019; Zhang et al., 2019). Though the role of
autophagy in the proper functioning of SARS-CoV-2 is still
under investigation, several results claim that autophagy is crucial
for SARS-CoVs replication (Brest et al., 2020; Yang and Shen, 2020).
Prentice et al. (2004) demonstrated the critical role of endogenous
LC-3, a protein marker for autophagosomes in the replication of
SARS-CoV. Chloroquine, being a well-established autophagy
inhibitor can be a potential candidate for suppression of COVID-19.

4. Immuno-modulator and inhibition of “cytokine storm”

Chloroquine is widely used for the treatment of RA and SE based
upon its immune-modulatory properties. As discussed in earlier
sections, chloroquine inhibits pH-dependent toll-like signalling
pathway in the endosome and inhibits the inflammatory
response “cytokine storm”. The inhibition of toll-like signalling
pathway prevents the recognition of viral antigen by dendritic cells
(Devaux et al., 2020). It also enhances cytotoxic CD8+ T cell
responses against viral antigens and exports soluble antibodies
into the cytosol of the dendritic cell to fight the viral antigen.

Chloroquine interferes with viral antigen presentation via
the lysosomal pathway and thus inhibits MHC II recognition
of antigen, modulating the elevation of inflammatory responses
(Kearney, 2020). Inhibition of TNFα, TNF α receptors and TNF
α signalling by chloroquine plays a vital role in the suppression
of “cytokine storm” (Touret and Lamballerie, 2020).

5. Interference with the metabolic pathways

As it is already known from the use of chloroquine against
glioblastoma, this can regulate metabolic pathways especially
lipid metabolisms in cells. Lipid metabolic pathways play an
important role in viral entry and replication inside the target cells.
SARS-CoV-2 infection interfered with the regulation of lipid
metabolism with the higher concentration of free fatty acids,
lysophosphatidylcholine, lysophosphatidylethanolamine, and
phosphatidylglyceroland significant lower concentration of
total cholesterol (TC), HDL-cholesterol and LDL-cholesterol
levels in serum (Hu et al., 2020; Zheng et al., 2020). As
observed during treatment of glioblastoma and SLE,
chloroquine can also regulate metabolic pathways during
SARS-CoV-2 infection as its therapeutic mode of action.

CHLOROQUINE AGAINST OTHER
DISEASES

Apart from being an FDA approved anti-malaria, anti-RA, and anti-
LE drug, chloroquine has been investigated against several other
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prevalent medical conditions. Table 3 summarises the use of
chloroquine in the treatment of other diseases and itsmode of action.

CHLOROQUINE TOXICITY

Chloroquine and the derivatives while using as an anti-malaria
drugs in Mâncio Lima, Acre, Brazil, caused itching, stinging
sensation, epigastric pain, and diarrhoea (Braga et al., 2015). It
was explained by enhanced production of IgE, degranulation of
mast cells and basophils creating allergy like reaction. However,
severe side-effects including mental confusion, seizures, coma,
and cardiovascular symptom, was not reported. Adedapo et al.
(2009) observed that higher dosage of chlorpheniramine plus
chloroquine (10 mg/kg daily for 3 days) in children below 5 years

caused drowsiness and lower respiratory rates, though no
additional benefits were obtained. Chloroquine is known to
induce concentration-dependent cytotoxicity, which should
always be optimized before finalizing the dosage.

Though optimized dosage and short-term treatment of RA
with CQ and HCQ was considered safe, long-term use of CQ in
a 64-year-old woman resulted in both restrictive and
hypertrophic myocardiopathy auricular-ventricular blocks
due to long term pH alteration in the lysosome (Cervera
et al., 2001). Kelly et al. (1990) also focussed on the narrow
margin between therapeutic uses of chloroquine against RA
and the chloroquine poisoning. They reported the death of a
12-month-old infant after receiving 300 mg of chloroquine.
They also highlighted the different dose optimization of
chloroquine for adults and infants. Scherbel et al., (1965) in

TABLE 3 | Examples of chloroquine used in treatment of multiple diseases.

S. no Name of Disease Name of the drug Mode of Action Reference

1 Graft-versus-host disease (GVHD) Chloroquine Alterations in T-cell cytokine production Schultz et al. (2002)
2 Graft-versus-host disease (GVHD) Hydroxychloroquine Immunomodulator Gilman et al. (2012)
3 Porphyria cutanea tarda (PCT) Chloroquine Release of bound hepatic porphyrin and its rapid

elimination
Scholnick et al. (1973)

4 Porphyria cutanea tarda (PCT) Hydroxychloroquine Interaction with large amounts of porphyrins Singal et al. (2012)
5 Porphyria cutanea tarda (PCT) Hydroxychloroquine Interaction with large amounts of porphyrins Singal et al. (2019)
6 Sarcoidosis Chloroquine and

hydroxychloroquine
Suppression of the granulomtous inflammation Beegle et al. (2013)

7 Sarcoidosis Chloroquine and
hydroxychloroquine

Not established Sharma (1998)

8 Granuloma annulare Chloroquine and
hydroxychloroquine

Not established Masmoudi et al. (2006)

9 Granuloma annulare Chloroquine and
hydroxychloroquine

Anti-inflammatory responses Rodriguez-Caruncho and
Marsol (2014)

10 Lichen planus Chloroquine Not established De Argila, et al. (1997)
11 Lichen planus Hydroxychloroquine Lowering the expression of regulatory T cells Zhu et al. (2014)
12 Urticaria vasculitis Chloroquine Not established Loricera et al. (2014)
13 Osteoporosis Chloroquine Decreases the intracellular pH in mature osteoclasts and

stimulates cholesterol uptake
Both et al. (2018)

14 Osteoporosis Chloroquine Not established Stapley (2001)
15 Avascular Necrosis Chloroquine Immunomodulator Roberts et al. (2018)
16 Diabetes Type II Chloroquine Alterations in insulin metabolism and signaling through

cellular receptors
Hage et al. (2014)

17 Diabetes Type II Chloroquine ATM activation McGill et al. (2019)
18 Diabetes Type II Chloroquine Reduction in lysosomal degradation of the internal insulin-

insulin receptor
Wondafrash et al. (2020)

19 Cardiovascular Diseases Chloroquine and
hydroxychloroquine

Decreased levels of total cholesterol, triglycerides, and low-
density lipoprotein-cholesterol (LDL-c)

Liu et al. (2018)

20 Thrombosis Chloroquine Inhibition of neutrophil extracellular traps Boya et al. (2003)
21 Thrombosis Chloroquine Disaggregation of ADP-stimulated platelets and inhibition

of thrombin-and A23187-induced aggregation
Jancinová et al. (1994)

22 Glanders and melioidosis Chloroquine pH Alkalinization of type 6 Secretion System 1 and
Multinucleated Giant Cells

Chua et al. (2016)

23 Q fever Chloroquine Restore intracellular pH allowing antibiotic efficacy for
Coxiella burnetii

Calza et al. (2002)

24 Whipple’s disease Chloroquine The downregulation of tumour necrosis factor-a
expression

Lagier et al. (2014)

25 Whipple’s disease Hydroxychloroquine Not established Alegre et al. (2012)
26 Giardiasis Hydroxychloroquine Not established Escobedo et al. (2014)
27 Antiphospholipid syndrome Hydroxychloroquine Reduces antiphospholipid antibodies levels Nuri et al. (2017)
28 Antiphospholipid syndrome Hydroxychloroquine Reduces antiphospholipid antibodies levels Wang and Lim (2016)
29 Antifungal activity against H.

capsulatum and C. neoforman
Chloroquine and
hydroxychloroquine

Inhibition of phagolysosomal fusion and by expression of a
unique endogenous H+-ATPase

Rolain et al. (2017)

30 Antifungal activity against Aspergillus
niger

Hydroxychloroquine pH-dependent iron deprivation Keshavarzi et al. (2016)
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their clinical trials found that out of 741 patients treated with
chloroquine derivative for SLE, 31-68% developed retinopathy
and marked destruction of rod and con cells. However, no clear
relationship between chloroquine dosage and retinal toxicity
could be established. Lane et al., (2020) performed a
multinational retrospective study to evaluate the risk of
HCQ alone and in combination with azithromycin in
956,374 RA patients (18 years and above). It was observed
that a 30-days dose of HCQ demonstrated no risk of adverse
events. However, long term use of HCQ alone increased
cardiovascular mortality. A combination of HCQ and
azithromycin elevated the risk of heart failure even in the
short term. Therefore, the authors suggest a careful
consideration of benefit:risk ratio when starting HCQ
treatment (Lane et al., 2020).

It is difficult to estimate the frequency of adverse events
because many cases have been reported in more than one
publication and lack a criterion for diagnosis (Scherbel et al.,
1965). Hence, it is recommended to evaluate cardiac health with
ECG and ophthalmological examinations for 6 months before
prescribing a long-term treatment with chloroquine (Scherbel
et al., 1965; Kelly et al., 1990; Cervera et al., 2001).

Chloroquine, as a chemotherapeutic agent against cancer, can act
as a double-edged sword. It not only sensitizes the cancer cells but
also the normal cells by blocking autophagy and impairing lysosome
and endosomes’ function (Kimura et al., 2013; Choi et al., 2018).
Kidney is the most critically affected organ during chemotherapy
with chloroquine with significant nephrotoxicity (Klionsky et al.,
2016;Wang B. et al., 2020). Evangelisti et al. (2015) also reviewed the
substantial side effects of chloroquine while treating acute leukaemia.
Repurposing chloroquine against cancer was generally considered
safe for short term treatment with optimized dosage. However,
patients suffering from glucose-6-dehydrogenase deficiency,
impaired hepatic and kidney diseases should always be cautious
while practising chloroquine and derivatives as a chemotherapeutic
agent (Verbaanderd et al., 2017). A clinical trial (ClinicalTrials.gov
ID NCT04201457) by “Pediatric Brain Tumor Consortium” is
ongoing to assess the safety and benefit of adding
hydroxychloroquine to dabrafenib and/or trametinib in children
with recurrent or progressive low grade or high-grade brain tumor
with specific genetic mutations whose results are waited in February
2025 (https://clinicaltrials.gov/ct2/show/results/NCT04201457).

The standard and optimized dose of chloroquine as prophylaxis
and during treatment of diseases do not bear significant toxicity,
however, long term use of higher concentration of chloroquine can
result in severe toxicity (Table 4). Use of less toxic derivatives such as
hydroxychloroquine, optimized dosage, nanoencapsulation of the
drug and combinational therapies have been used for reducing
chloroquine toxicity and increasing efficacy (Amolegbe et al., 2018;
Lima et al., 2018).

Hypokalemia toxicity is commonly observed in chloroquine and
hydroxychloroquine overdose due to the intracellular shift of
potassium. Clemessy et al. (1995), performed a retrospective study
of 191 cases of chloroquine toxicity in which the initial clinical features
included, gastro-intestinal disturbances, neurological impairment, and
respiratory symptoms and eventual blockage of potassium channels
contributed to hypokalaemia (Clemessy et al., 1995).

Neuropsychiatric manifestations including depression, psychosis,
insomnia, agitation have also been reported due to acute or chronic
use of chloroquine and hydroxychloroquine (Juurlink, 2020).

Hematologic toxicities are attributed to its long half-life in
plasma which leads to accumulation in the blood cells.
Lymphopenia, eosinophilia is typically observed immunologically
mediated idiosyncratic drug reactions (Juurlink, 2020).

Prolongation of the QT interval due to both chloroquine and
hydroxychloroquine has also been observed since the drugs
interfere with vascular repolarization. It was observed that
after a dose of 600 mg QTc increases 6.1 and 28 ms after a
dose of 1,200 mg. However, this effect varied in younger age
groups. In response to this treatment in COVID-19 patients,
ventricular tachycardia and ventricular fibrillation and mortality were
observed potentially due to the overdosage. Hence, in a COVID-19
setting FDA cautions the use of HCQ or CQ, but not in cases of
malaria, lupus andRA (https://www.fda.gov/drugs/drug-safety-and-
availability/fda-cautions-against-use-hydroxychloroquine-or-
chloroquine-covid-19-outside-hospital-setting-or). In severe
COVID-19 cases where azithromycin was co-prescribed in
combination with either chloroquine and hydroxychloroquine,
Molina et al. (2020) reported no evidence of rapid anti-viral
clearance or any associated clinical benefit in only 11 patients,
possibly because they had significant comorbidities such as
obesity, cancer, HIV infection (Molina et al., 2020). However,
in a retrospective study 3,737 COVID-19 patients treated with
hydroxychloroquine/azithromycin and other regimens in Lagier
et al. (2020) observed otherwise. Along with 3 days early
treatment of HCQ-azithromycin resulting in faster viral load
reduction, no cases of torsade de pointe or sudden death were
observed. This could be because the patients belonged to mean
age of 45 years, the treatment was initiated very early with a
dosage of 200 mg of oral HCQ, three times daily for ten days and
500 mg of oral azithromycin on day 1 followed by 250 mg daily
for the next four days, respectively.

Sacher et al., (2020) propose a pragmatic approach to mitigate
the cardiac risk in the COVID-19 setting. The authors propose a
cardiac algorithm for critically reviewing patient’s clinal history
(use of other drugs that may extend QT interval, levels of serum
K+, creatinine, and a recent 30 s ECG). In cases of QT intervals
>500 ms, the authors recommend that a QT-prolonging drug
should not be prescribed (Sacher et al., 2020).

Some rare immunologically mediated adverse reactions
including Stevens-Johnson syndrome, toxic epidermal necrolysis,
DRESS (drug reaction with eosinophilia and systemic symptoms),
have been implicated in chloroquine and hydroxychloroquine
treatment against viral diseases. Although rare, these conditions
turn into serious entities when accompanied by liver or kidney
injury (Juurlink, 2020).

RESULTS OF CLINICAL TRIALS DONE SO
FAR WITH CHLOROQUINE AGAINST
COVID-19
Currently, there are multiple clinical trials underway to investigate
the potential use of hydroxychloroquine and chloroquine alone or
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in combination against SARS-CoV-2 (Table 5). Some of the
in vitro and in vivo results obtained with chloroquine and
hydroxychloroquine supported their anti-viral role against
SARS-CoV-2, (Andreani et al., 2020; Clementi et al., 2020;
Fantini et al., 2020; Gao et al., 2020; Gautret et al., 2020; Liu
et al., 2020;Weston et al., 2020; Yao et al., 2020), however, results of
Gautret et al. (2020) faced severe criticism because of small sample
size, overruling type I errors, inconsistency between study
protocols and lack of blinding and a control arm even though
the treatment resulted in viral load reduction. It is also very
important to reproduce the in vitro results obtained with
chloroquine in the in vivo studies and clinical trials to establish
it as a safe and effective anti-SARS-CoV-2 drug.

The studies by Patel and coworkers (https://www.sciencemag.
org/news/2020/06/mysterious-company-s-coronavirus-papers-
top-medical-journals-may-be-unraveling; Mehra et al., 2020a;
Mehra et al., 2020b), claimed to have performed a multinational
registry analysis using a cloud-based health-care data analytics
platform, Surgisphere Corporation, Chicago, IL, United States, on
the usage of hydroxychloroquine or chloroquine with or without
a macrolide for the treatment of COVID-19. They reported an
increased risk of in-hospital mortality and de-novo ventricular
arrhythmia in response to the treatment which led to the
inference that hydroxychloroquine or chloroquine, when used
alone or with a macrolide does not offer any benefit to the
COVID-19 patients, which contributed to the halt in
worldwide clinical trials by the WHO on May 25, 2020. The
second study (Mehra et al., 2020b) claimed to negate the
association of ACE inhibitors and angiotensin-receptor
blockers (ARBs) with in-hospital COVID-19 deaths. Their
analyses brought forth better survival rates due to the use of
either ACE inhibitors or statins. However, the authors mentioned
that since the study was not based on randomized trials, there

could be a possibility of confounding and hence, concluded that
an underlying cardiovascular disease is independently associated
with an increased risk of in-hospital COVID-19 death.

Substantive red flags were raised by the rattled global scientific
community because the doses in the reported cases were higher than
those set by the United States FDA and discrepancies in the official
COVID-19 mortality statistics, and sample size (https://www.
sciencemag.org/news/2020/06/mysterious-company-s-coronavirus-
papers-top-medical-journals-may-be-unraveling). Eventually, both
the studies were retracted from the journals, The Lancet and The
New England Journal of Medicine. Currently, clinal trials in various
parts of the world have resumed to investigate the potential use
of hydroxychloroquine in COVID-19 patients in response to
WHO’s green signal (https://www.sciencemag.org/news/2020/06/
mysterious-company-s-coronavirus-papers-top-medical-
journals-may-be-unraveling). In another report by Geleris et al.
(2020) reported no positive or negative observational effect of
hydroxychloroquine on death or incubation risk on COVID-19
patients, however, this study did support the further randomized
clinical trials of hydroxychloroquine testing its efficacy.

The United Kingdom’s mega RECOVERY trial (RECOVERY
Collaborative Group, 2020) reported the ineffectiveness of
hydroxychloroquine. The patients who received the treatment
demonstrated a longer hospitalization duration, higher risk of
mechanical ventilation or mortality than those who received
the usual care. However, the study received sceptical reviews
due to the high dosage issues: 800 mg at 0 and 6 h, followed by a
400 mg dose at 12 h and every 12 h thereafter for 9 days; which
may have contributed to cardiovascular, neurological, and other
toxicities. The authors chose this dosage based on extensive
pharmacokinetic studies.

On December 2nd, 2020, the WHO Solidarity Trial
Consortium published the findings of their trials on

TABLE 4 | Toxic effects of chloroquine.

S. no Drug Toxicitya Concentration/Duration/Dosage Reference

1 Chloroquine Ocular toxicity 250 mg of chloroquine per day for 6 monthe-14 years Puavilai et al. (1999)
2 Hydroxy-chloroquine Retinopathy Inadequately Weight Adjusted Dosage Arendt and Gerding (2017)
3 Hydroxy-chloroquine Retinopathy ≥5 mg per kilogram per day Zaidi et al. (2019)
4 Chloroquine NeuromytoToxicity 200–500 mg per day for 7m-16 years Estes et al. (1987)
5 Chloroquine Neurotoxicity Variable concentration in culture media Bruinink et al. (1991)
6 Chloroquine Renal toxicity 50 mg−1kg for 4weeks Wang et al. (2020)
7 Chloroquine Renal toxicity — Wiwanitkit (2015)
8 Chloroquine and hyrdoxy-

chloroquine
Cutaneous toxicity 200–500 mg/day for 7 years Martin-Garcia et al. (2003)

9 Hyrdoxy-chloroquine Stevens-Johnson
syndrome

40 mg/day for 2 weeks Leckie and Rees (2002)

10 Amodiaquine Hematological toxicity — Parhizgar and Tahghighi
(2017)

11 Chloroquine Leukemia For several months Nagaratnam et al. (1978)
12 Chloroquine Hepatotoxicity Combination of proguanil 200 mg and chloroquine 100 mg Wielgo-Polanin et al.

(2005)
13 Hydroxy-chloroquine Ototoxicity Hydroxychloroquine 5 mg/kg/day (400 mg/day) Fernandes et al. (2018)
14 Chloroquine Cardiotoxicity 250 mg/day for 9 years Teixeira et al. (2002)
15 chloroquine Alveolitis For two weeks Mitja et al. (2000)
16 Chloroquine and hydroxyl-

chloroquine
Myopathy 3.5 mg/kg/day for chloroquine and 6.5 mg/kg/day for

hydroxychloroquine for 40.4 months
Casado et al. (2006)

17 Chloroquine Pruritus — Aghahowa et al. (2010)

aThe frequency of chloroquine induced toxicity and adverse effects is difficult to estimate due to lack of common methods of diagnosis and metrics of evaluation.
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repurposed anti-viral drugs for COVID-19 (NCT04315948). The
drugs included hydroxychloroquine, remdesivir, lopinavir, and
interferon beta-1a in hospitalized COVID-19 patients. The
randomized trials were evaluated for death rate according to
age and requirement of mechanical ventilation. Like the
RECOVERY trials, this one too reported negligible effect on
mortality, ventilation, and hospitalization duration of COVID-19
patients (WHO Solidarity Trial Consortium, 2020).

POINTS TO BE CONSIDERED IN THE
CURRENT PANDEMIC TIME WITH
CHLOROQUINE AS A THERAPEUTIC
Several ongoing clinical trials against COVID-19 with
chloroquine/hydroxychloroquine alone or in a combination of
drugs are the outcome of promising in vitro results and the hype
created worldwide over the drug (Cortegiani et al., 2020). Giving

TABLE 5 | Ongoing clinical trials to evaluate the potential of chloroquine and hydroxychloroquine against SARS-CoV-2.

S. no Clinical trial no Location Details Dosage Current
status

Results Reference

1 NCT04328493 (April
7, 2020)

Vietnam Randomized
trial, 250
participants

250 mg chloroquine
tablet

Phase 2 Expected by April 1, 2022 https://clinicaltrials.gov/
ct2/show/NCT04328493

Adult ≥53 kg: 4 tabs
Adult 45–52 kg: 3.5 tabs
Adult <38 kg: 2.5 tabs

2 NCT04358068 (May
1, 2020)

United States Randomized,
2,000
participants

efficacy of
hydroxychloroquine (HQ)
and azithromycin (Azi)

Phase 2 Expected by March 5,
2021

https://clinicaltrials.gov/
ct2/show/NCT04358068

Day 0: HQ 400 mg (200
+ 200) + Azi 500 mg (250
+ 250) orally
Day 1–6: HQ 200 mg
(twice/day) + Azi 250 mg
(4 days)

3 NCT04333654 April
12, 2020

United States,
Belgium, France,
Netherlands

Randomized,
210
participants

HQ loading dose on day
1, maintenance dose till
day 9

Phase 1 Expected by August 2020 https://clinicaltrials.gov/
ct2/show/NCT04333654

4 NCT04358081May
1, 2020

United States Randomized,
444
participants

HQ monotherapy (600
mg) and in combination
With Azi (200 mg)

Phase 3 Expected by July 24, 2020 https://clinicaltrials.gov/
ct2/show/NCT04358081

HQ (600 mg) with or
without Azi (500 mg)

5 NCT04381936
(March 19, 2020)

United Kingdom Randomized,
12,000
participants

Oral dose Stopped No clinical benefit. Out of
1,542 patients
administered with
hydroxychloroquine, no
significant difference in
primary endpoint of 28-
days mortality. (25.7% HQ
as compared with 23.5%
usual care alone)

https://clinicaltrials.gov/
ct2/show/record/
NCT04381936; https://
www.recoverytrial.net/
files/hcq-recovery-
statement-050620-final-
002.pdf

Initial: 800 mg, 6h: 800
mg, 12h:400 mg, 24h:
400 mg, every 12h
thereafter for 9 days:
400 mg

6 NCT04308668
(March 17, 2020)

United States,
Canada

Randomized,
3,000
participants

Oral dose 200 mg tab Phase 3 After high or moderate risk
exposure to COVID-19,
HQ did not prevent illness
when used as
postexposure prophylaxis
within 4 days after
exposure

https://clinicaltrials.gov/
ct2/show/NCT04308668Initial: 800mg orally once

4 days: 600 mg (every
6–8 h)

7 NCT04304053
(March 18, 2020)

Spain Randomized,
2,250
participants

Testing, treatment and
prophylaxis of SARS-
CoV-2

Phase 3 No significant results https://clinicaltrials.gov/
ct2/show/NCT04304053;
https://www.sciencemag.
org/news/2020/06/three-
big-studies-dim-hopes-
hydroxychloroquine-can-
treat-or-prevent-covid-19

Oral dose 200 mg tabs
Day 1: 800 mg
Day 2–7: 400 mg
Contacts
Day 1: 800 mg
Day 2–4: 400 mg

8 NCT04303507 (April
29, 2020)

Thailand,
United Kingdom

Randomized,
40,000
participants

Prophylaxis Study
Loading dose: 4 tabs of
155 mg/60 kg body
weight 90 days: 155 mg
daily

Not
mentioned

Expected by April 2021 https://clinicaltrials.gov/
ct2/show/NCT04303507
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too much of attention by the scientific community generates false
promises and hampers the path of other potential drugs against
COVID-19 in this pandemic era. Simultaneously, no negative
feedback against chloroquine should be postulated without
confirming the clinical trial results. Chloroquine being an age-
old drug, has already been used against multiple diseases. If found
effective, its inexpensive nature and already documented toxicity
profile and dosage optimization can save time and a million lives.
Though mixed results of chloroquine against COVID-19 have been
obtained so far, there is an urgent need to test their effects and
toxicity as a prophylactic drug, in mildly ill patients and severely ill
patients of COVID-19. Moreover, one should never forget the thin
line between chloroquine as a therapeutic agent and chloroquine
poisoning (Kelly et al., 1990). An in-depth toxicity analysis of
chloroquine and derivatives is required before confirming any
comment for/against its use in time of COVID-19. The poor
methods of clinal trials and its reporting has thus far been
inadequate in proving the effective nature of hydroxychloroquine.
Ferner and Aronson (2020) claim that the overuse of
hydroxychloroquine will result in rare buy harmful cutaneous
adverse reactions, hepatic problems and ventricular arrhythmias
when prescribed in combination with azithromycin. In a recent
study, Haque et al. (2021) reported the changes in purchasing
patterns and pricing of hydroxychloroquine since March 2020 in
India states. While no price and utilization changes were observed,
hydroxychloroquine shortages were encountered due to the
misinformation and management of COVID-19.

Among the rapidly changing guidelines in this pandemic
era of COVID-19, WHO has revoked the ban on clinical trials
with chloroquine against COVID-19 (https://www.sciencemag.
org/news/2020/06/mysterious-company-s-coronavirus-papers-
top-medical-journals-may-be-unraveling), however, FDA has
cautioned its use outside of the hospital setting or a clinical
trial due to risk of heart rhythm problems (https://www.fda.gov/
drugs/drug-safety-and-availability/fda-cautions-against-use-hydro
xychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or).
Though the preventive or prophylactic potential of chloroquine
and the derivatives are yet to be confirmed against COVID-19,
extensive, collaborative, unbiased and random clinical trials are
required instead of small and individual trials to conclude. Results

of unprejudiced, statistically significant and ethical outcomes of
clinical trials are eagerly awaited before sealing the fate of this age-
old drug against COVID-19.

CONCLUSION AND FUTURE ASPECTS

The “age-old” drug used to treat multiple diseases has generated
mixed therapeutic responses against “COVID-19.” Chloroquine
has been recognized as a miracle medicine to treat malaria,
autoimmune diseases, cancer, viral, dermatological, and fungal
infections. Different in vitro and in vivo studies have suggested the
positive, neutral, and negative role of chloroquine and derivatives
against SARS-CoV-2. Though some studies are still ongoing,
different probable mechanisms have been reported in literature
employed by chloroquine to inhibit SARS-CoV-2 infection or
cause more harm than good. In this difficult situation where an
effective anti-viral drug is urgently needed, a biased decision
against or in favour of chloroquine can either generate a false
sense of security or can add more anxiety in an already worse
situation. However, the previous research done on chloroquine
against multiple diseases can help establish its anti-SARS-CoV-2
mechanism, precautions to be taken to avoid chloroquine’s
toxicity, and dosage–optimization to reach any conclusion.
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