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EDITORIAL

Arrhythmogenesis and Prolonged 
Repolarization From Synthetic Opioids: 
Finally Sorted?
Lee L. Eckhardt , MD, MS

The synthetic opioid methadone has long been 
recognized to cause not only QT prolongation 
on ECG but also a predilection for torsade de 

pointes.1,2 Despite the limited distribution of the drug in 
comparison to other opioids, methadone use has been 
inordinately implicated in sudden death from ventricu-
lar arrhythmia.3 However, the full mechanistic scope of 
why this drug is arrhythmogenic has been unresolved.

It is well known that the majority of drug-induced 
long QT and related proarrhythmia is due to inhibition 
of HERG, which has a promiscuously vulnerable mo-
lecular structure, allowing for drugs to directly block 
the channel or interfere with normal membrane traf-
ficking.4–6 At first glance, methadone appears to fall in 
line with respect to HERG inhibition. Katchman et al. 
demonstrate HERG blockade with methadone that 
was significantly more potent than other synthetic opi-
oids (eg, fentanyl or morphine).7 However, on further 
inspection, the half maximal inhibitory concentration 
(IC50) was reported at 10-fold higher dose than ther-
apeutic free serum concentrations.8 Other puzzlingly 
features have been documented including a lack of 
consistent correlation between dose and QT interval.9 
Moreover, torsade de pointes in methadone users has 

been shown to correlate low serum K+ levels and U 
waves.10 Interestingly, U waves are an ECG feature 
that correlate with a higher risk of torsade de pointes, 
particularly when present postextrasystole.11 These 
key features are noted to be implicated with loss of IK1, 
either genetic (Andersen-Tawil Syndrome) or pharma-
cologic,12–14 rather than solely with HERG inhibition.

Predicated on these observations, Klein et al., in this 
issue of the Journal of the American Heart Association 
(JAHA),15 have studied the effect of methadone, as 
well as the over-the-counter synthetic opioid, lopera-
mide, on IK1. First, using heterologous expression of 
monomers of the dominant molecular components of 
IK1 for human ventricle, Kir2.1 and Kir2.2, the authors 
show that methadone exerts a dose response block of 
both isoforms with an IC50 of 2.9 µmol/L for Kir2.1 and 
1.2 µmol/L for Kir2.2. Loperamide had a similar effect 
on Kir2.2 with an IC50 of 1.2 µmol/L. Next, using iso-
lated swine ventricular myocytes, the outward (phys-
iologic) component of IK1 was effectively blocked by 
methadone with an IC50 of 1.5 µmol/L. The intriguing 
finding here is the IC50 for IK1 is lower than previously 
measured for IKr

7 and more closely matches reported 
therapeutic serum levels.

The authors also show action potential (AP) record-
ings from swine cardiomyocytes exposed to various 
concentrations of methadone.15 AP duration at 90% 
repolarization increased with an associated increase 
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in terminal repolarization of the AP, as would be ex-
pected with IKr and IK1 blockade. Curiously, at the high-
est dose (10 µmol/L) where there is potent IKr and IK1 
blockade there was AP shortening and slower dV/dT. 
Unfortunately, further AP characterization (ie, different 
paced cycle lengths, effect of pause or rapid pacing, 
etc) and morphologic analysis are not demonstrated. It 
is loosely hypothesized that AP shortening is due to INa 
and ICa block (as shown by Kuryshev et al.16), which fits 
with their loss of AP plateau. In addition to the AP pro-
longation, they also indicate the presence of delayed 
after depolarizations (DADs) at the highest methadone 
doses (recordings are provided in the Supplemental 
data) but fail to mention early after depolarizations 
(EADs) at any methadone concentration as would be 
expected in drug-induced long QT.

Or would it? How would loss of IK1 manifest arrhyth-
mia? And what type (if any) of triggered activity would be 
expected with loss of IK1? This question is one that my 
laboratory and others have undertaken; see Reilly and 
Eckhardt for review.17 Because of the lack of a specific IK1 
blocker, to isolate the effect of IK1 loss, we have generated 
several KCNJ2 (encodes Kir2.1) KI murine models. These 
mice are modeled from specific patients with Andersen-
Tawil Syndrome who all have typical ECG features with 
U waves, polymorphic ventricular tachycardia (PMVT), 
and bidirectional VT (some with arrhythmia only under 
adrenergic stress).13,18 In a KCNJ2 KI mouse designed 
from a patient with adrenergic arrhythmic trigger, we have 
demonstrated adrenergic dependent loss of IK1.

19 We an-
ticipated finding DADs, the mechanism thought to trigger 
bidirectional VT,20 yet these membrane oscillations were 
relatively slow, infrequent, and rarely reached threshold 
to trigger a subsequent AP. Moreover, AP analysis and 
pacing maneuvers with and without adrenergic stimula-
tion also did not induce phase 2 EADs. Instead, we found 
that the loss of terminal (phase 3) repolarization of the AP 
resulted in spontaneous phase 3 EADs, present in only 
the mice heterozygous for the KCNJ2 mutation, not the 
wild type littermate controls.19 The phase 3 EADs have 
a shorter coupling interval to the preceding AP stimulus 
and more negative takeoff potential (−40 to −55 mV) than 
phase 2 EADs. In line with this cellular finding, we also 
found easily inducible PMVT and ventricular fibrillation 
using ex vivo optical mapping with a single premature 
ventricular contraction initiation, not a short-long-short 
pattern anticipated for torsade de pointes in long-QT 
syndrome.21,22

Using computational modeling, we have also shown 
that loss of IK1 can vary by cell type. Modeling loss 
of IK1 combined with gain of late INa in a purkinje cell 
model resulted in DADs and sustained arrhythmia.23 In 
contrast, the same conditions in a ventricular myocyte 
model resulted in EAD induction without sustained ar-
rhythmia. Thus, tissue heterogeneity may be part of 
the missing link to arrhythmia generation with IK1 loss.

In correlation with methadone effects on multiple ion 
channels, important work in using a rabbit model has 
demonstrated that block of IKr (with E4031) and IK1 (low 
K+) together increase AP duration and stimulated both 
phase 2 and phase 3 EADs.24 In that work, Maruyama 
et al. elegantly describe the interaction of phase 3 EADs 
with phase 2 EADs to perpetuate PMVT and ventricu-
lar fibrillation, and without phase 3 EADs, triggered ac-
tivity occurred but arrhythmia did not sustain. Notably, 
for phase 3 EADs, changes in membrane voltage pre-
ceded changes in [Ca2+]i, implicating sodium not calcium 
as the initial depolarizing current, consistent with other 
models.25 Maruyama et al., using the Rudy-Luo com-
putational model, found that loss of IK1 was a necessary 
component to perpetuate PMVT and torsade de pointes.

Putting all of this together, there are several unresolved 
issues with Klein et al.’s work. Currently lacking are (1) 
a mechanism(s) of arrhythmogenesis and (2) triggered 
activity that would reach threshold for a subsequent AP. 
Their supplemental data show higher concentrations of 
methadone associate with small membrane oscillations 
between slow pacing events (0.3  Hz), which may be 
technically DADs; however, none trigger a subsequent 
AP nor sustained firing. DADs require SR Ca2+ loading 
to initiate26 and show typical frequency dependence27 
such that the experimental conditions here are unlikely 
to produce DADs of sufficient amplitude to initiation ar-
rhythmia. Given the scope of what has already been 
characterized with loss of IKr and IK1, one would have 
expected an investigation for the conditions for EAD 
induction, both phase 2 and phase 3. Further charac-
terization of the AP, with different pacing frequencies 
and changing [K+] in external solutions would better 
elucidate the full effects of methadone and recapitulate 
conditions associated with its clinical features of ar-
rhythmogenicity. The reasons for the AP shortening also 
need some flushing out, particularly because the loss of 
dV/dT may be related to progressive block of IK1, resting 
membrane potential depolarization and unavailability 
of sodium channels, as we and others have shown in 
human ventricular myocytes.28,29 Such findings could 
explain the conduction defects in addition to prolonged 
QT interval noted in loperamide overdoses.30

Regardless of the missing pieces, this article high-
lights the need to look beyond HERG when considering 
the cardiac safety of new drugs. It long been the purview 
that HERG inhibition is the barrier to drug safety and, 
although demonstrating normal HERG current and traf-
ficking is essential, other ionic currents should be consid-
ered.29 Human induced pluripotent stem cells represent 
a model to resolve this issue, but particular attention 
needs to be focused on induced pluripotent stem cell 
cardiomyocytes with normal IK1 density.29,31

The story with methadone and cardiac toxicity reaches 
a new (if unresolved) chapter with this insightful work. As 
the vulnerabilities of loss of IK1 are better understood, 
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mitigation measures for methadone and other arrhyth-
mogenic drugs influence may be finally clarified.
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