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Prereplicative complexes assembled in vitro support
origin-dependent and independent DNA replication
Kin Fan On1, Fabienne Beuron2, David Frith3, Ambrosius P Snijders3, Edward P Morris2 &

John F X Diffley1,*

Abstract

Eukaryotic DNA replication initiates from multiple replication
origins. To ensure each origin fires just once per cell cycle, initiation is
divided into two biochemically discrete steps: the Mcm2-7 helicase
is first loaded into prereplicative complexes (pre-RCs) as an inactive
double hexamer by the origin recognition complex (ORC), Cdt1 and
Cdc6; the helicase is then activated by a set of firing factors. Here,
we show that plasmids containing pre-RCs assembled with purified
proteins support complete and semi-conservative replication in
extracts from budding yeast cells overexpressing firing factors.
Replication requires cyclin-dependent kinase (CDK) and Dbf4-
dependent kinase (DDK). DDK phosphorylation of Mcm2-7 does not
by itself promote separation of the double hexamer, but is required
for the recruitment of firing factors and replisome components in
the extract. Plasmid replication does not require a functional repli-
cation origin; however, in the presence of competitor DNA and
limiting ORC concentrations, replication becomes origin-dependent
in this system. These experiments indicate that Mcm2-7 double
hexamers can be precursors of replication and provide insight into
the nature of eukaryotic DNA replication origins.
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Introduction

During each eukaryotic cell cycle, the entire complement of genomic

DNA must be faithfully copied before chromosome segregation

occurs. DNA replication involves the selection of potential initiation

sites (replication origins), assembly of replication machinery at

these sites and activation of this machinery. In budding yeast,

origins are well-defined, specific DNA sequences, whilst in early

metazoan embryos virtually any DNA sequence can support DNA

replication. In mammalian cells, there is evidence that initiation is

non-random, though the nature of replication origins is still the

subject of intense investigation (discussed in Mechali, 2010). One of

the key steps in determining sites of replication origins is the

binding of the origin recognition complex (ORC). ORC, with two

additional factors, Cdc6 and Cdt1, loads the Mcm2-7 replicative

helicase at replication origins as a double hexamer bound around

double-stranded DNA. This process, known as origin licensing or

prereplicative complex (pre-RC) assembly, can only occur during

late mitosis through G1 phase, when CDK activity is low (Bell &

Dutta, 2002; Blow & Dutta, 2005; Masai et al, 2010; Mechali, 2010;

Tanaka & Araki, 2010; Boos et al, 2012).

Upon entry into S phase, increase in the activities of CDK and

DDK promotes the activation of licensed origins. These kinases,

together with other firing factors, convert each inactive Mcm2-7

double hexamer into two Cdc45•Mcm2-7•GINS (CMG) complexes

each containing a hexamer of Mcm2-7 which encircles ssDNA on

the leading strand template (Moyer et al, 2006; Pacek et al, 2006;

Ilves et al, 2010; Fu et al, 2011). Some firing factors, including

Dpb11 and the key CDK substrates Sld2 and Sld3, are required

for initiation but not elongation, whilst others, like Cdc45, GINS

and the leading strand DNA polymerase e, are required for initia-

tion and then form part of the elongation machinery (Tanaka &

Araki, 2010).

From the onset of S phase, through G2 and M phases, CDK plays

a second crucial role in inhibiting pre-RC assembly until the next G1

phase (Diffley, 2004). This dual role for CDK is not only crucial for

ensuring origins fire just once per cell cycle, but also has an impor-

tant implication for the biochemical reconstitution of initiation:

because origin licensing requires the absence of CDK activity but

origin firing requires high CDK activity, these two reactions cannot

be performed in a single, one-step reaction.

The mechanism of helicase activation and the steps involved in

replisome assembly are still poorly understood in eukaryotes. The

ability to reconstitute replication with purified proteins would

provide a powerful approach to study this process. Pre-RC assembly

has been reconstituted in vitro with purified components (Gillespie

et al, 2001; Kawasaki et al, 2006; Evrin et al, 2009; Remus et al,
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2009); however, helicase activation has not. Xenopus laevis egg

extracts can replicate exogenous DNA (Blow & Laskey, 1986; Walter

et al, 1998), and this system has been important for understanding

replication mechanism and control. However, reconstitution of

replication with purified proteins has thus far not been accomplished.

Heller et al described a system in which pre-RCs assembled in an

extract from G1-arrested Saccharomyces cerevisiae cells could be

transferred to an S-phase extract and activated (Heller et al, 2011).

This was an important development and has already provided

insights into helicase activation. However, the relationship between

the pre-RCs assembled in the G1 extract and those assembled from

purified proteins is unclear. Moreover, input plasmids are only par-

tially replicated in this system. This may be because factors required

for elongation are limiting in the extract or because attachment of

the input plasmid to beads somehow impedes replisome progression.

Attachment of the DNA to beads allows removal of pre-RCs from the

G1 extract, which contains inhibitors of origin firing including the

CDK inhibitor Sic1, before transferring to the S-phase extract. In this

paper, we show that pre-RCs assembled on plasmid DNA with puri-

fied proteins can effectively replace the G1 extract. Consequently,

attachment to beads is not required. We show that input plasmids

are replicated completely in this system, resulting in covalently

closed, circular products indicating that elongation is not limiting.

Whilst pre-RC assembly is strictly dependent on the presence of a

functional yeast origin in G1 extracts (Seki & Diffley, 2000; Bowers

et al, 2004), pre-RC assembly with purified proteins has been shown

to have significantly relaxed specificity (Remus et al, 2009). Here,

we show that this relaxed specificity is reflected in DNA replication:

plasmids with or without a functional yeast origin replicate with sim-

ilar efficiencies in this system. However, we show that origin speci-

ficity can be conferred by reducing ORC concentration and including

competitor DNA during pre-RC assembly. We discuss the implica-

tions of this on our understanding of eukaryotic replication origins.

Results

DDK phosphorylation of the Mcm2-7 double hexamer with
purified proteins

After reconstituting pre-RC assembly with purified proteins (Remus

et al, 2009), we next set out to reconstitute the phosphorylation of

this pre-RC by DDK. Recombinant DDK was expressed and purified

in two different protein expression systems: baculovirus-infected

Hi5 insect cells and Saccharomyces cerevisiae. DDKs from both

sources were similarly efficient and were used interchangeably.

Purified DDK was phosphorylated on both Dbf4 and Cdc7 subunits,

as evidenced by the increase in mobility of both polypeptides in

SDS–PAGE after treatment with k protein phosphatase (Fig 1A,

lanes 1 and 2). The purified, dephosphorylated DDK appears to be a

more active kinase since it was better at phosphorylating a fragment

of Mcm2 (Supplementary Fig S1) and resulted in more extensive

phosphorylation of full-length Mcm4 and Mcm6 in the context of

the pre-RC as evidenced by the more pronounced shift in SDS–PAGE

(Fig 1B, compare lanes 2 and 4). Fig 1C shows that Mcm4 and 6 in

the double hexamer could be extensively phosphorylated with this

kinase, and the maximum amount of kinase (100 nM) in this experi-

ment was used in all subsequent experiments.

The majority of DDK phosphorylation sites in the Mcm2-7

complex are in the N-termini of Mcm2, 4 and 6 (Randell et al, 2010).

Moreover, mcm mutants that bypass DDK requirement have been

identified in the N-termini of Mcm4 and 5 (Hardy et al, 1997; Sheu

& Stillman, 2006, 2010). Given that the two hexamers in the pre-RC

interact stably via their N-termini, we considered that DDK might

function by promoting separation of the Mcm2-7 double hexamer,

presumably a critical step in helicase activation (see Boos et al,

2012 for discussion). To examine this, pre-RCs were assembled on

1-kb linear DNA and either mock-treated or phosphorylated with

the highest amount of DDK described in Fig 1C. DNA-bound

Mcm2-7 complexes were released from the beads by EcoRI digestion

as previously described (Remus et al, 2009) and applied directly

onto carbon-coated copper grids for single particle EM analysis after

negative staining. Fig 1D shows that Mcm2-7 double hexamers were

readily observed in both the treated and untreated samples and,

more significantly, Mcm2-7 single hexamers were not found in

either sample. This indicates that DDK phosphorylation was not

sufficient to cause efficient dissociation of the Mcm2-7 double

hexamers despite the extensive phosphorylation of virtually all the

Mcm4 and 6. This is consistent with work from Gambus et al who

showed that chromatin-bound Mcm2-7 complexes, which appeared

by gel filtration to be double hexamers, were not converted to a

smaller form after DDK treatment in a Xenopus egg extract (Gambus

et al, 2011). To examine whether these DDK-treated Mcm2-7 double

hexamers had undergone conformational change, class averages

Figure 1. Reconstitution of DDK phosphorylation of Mcm2-7 complex phosphorylation with purified proteins.

A Recombinant DDK was phosphorylated on both subunits when expressed in baculovirus-infected Hi5 insect cells (lanes 1 and 2). DDK in lane 2 was treated with
lambda phosphatase. Protein samples were analysed by SDS–PAGE and Coomassie staining.

B Dephosphorylated DDK was more active than the phosphorylated form in phosphorylating Mcm2-7 complexes. Pre-RCs reconstituted with purified proteins were
subjected to phosphorylation by either the phosphorylated (lanes 4 and 5) or the dephosphorylated (lanes 2 and 3) DDK. Samples were analysed by SDS–PAGE and
immunoblotting of the indicated Mcm2-7 subunits.

C Mcm2-7 complexes were quantitatively phosphorylated by purified DDK in vitro. Increasing concentrations of dephosphorylated DDK (0, 25, 50, 100 nM) were used
to phosphorylate a constant amount of Mcm2-7 complexes assembled into pre-RCs. Samples were analysed by SDS–PAGE and Western blotting of the indicated
Mcm2-7 subunits.

D DDK phosphorylation did not result in Mcm2-7 double hexamer dissociation. Representative micrographs of Mcm2-7 double hexamers, either untreated or DDK-
treated, analysed by electron microscopy after negative staining.

E 2D-class averages and surface representations of the 3D reconstruction and cylindrically averaged 3D reconstructions of untreated and DDK-treated MCM double
hexamers. Contoured central sections of side views of the cylindrically averaged MCM double hexamers. Left: untreated; centre, DDK-treated; and right,
superimposition of untreated and DDK-treated sections. Brackets mark the N-terminal tiers and the C-terminal AAA+-containing outer tiers of the MCM complex.
The circle (dashed line) indicates the location of slight conformational changes around the pore of the C-terminal ring.

▸
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(Fig 1E, left), 3D reconstructions (Fig 1E, centre) and cylindrically

averaged 3D volumes (Fig 1E, right) derived from the untreated and

DDK-phosphorylated Mcm2-7 double hexamers were compared.

Although relatively small data sets were used, it is clear that, aside

from a potential small conformational change in the C-terminal

region of the double hexamer (Fig 1E, lower panel), DDK did not

induce major structural rearrangements. Thus, we have no evidence

that DDK phosphorylation induces dissociation of the Mcm2-7

double hexamer.

Recruitment of firing factors from an S-Phase extract

We generated extracts from S-phase cells using a strategy similar to

that described by Heller et al (2011) (see Fig 2A). Briefly, firing

factors (Dpb11, Sld2, Sld3, Sld7 and Cdc45) were overexpressed from

galactose-inducible promoters and cells were synchronised in G1

phase with alpha factor. After release from alpha factor at 37°C, the

cdc7 temperature-sensitive mutation in the strain induced arrest of

cells in an S-phase-like state (Fig 2A). Fig 2B shows that the overex-

pressed firing factors were indeed present at elevated levels in both

the G1- and S-phase whole-cell extracts [compare lanes 1 and 2 with

lanes 3 and 4—note that antibodies against Cdc45, Dpb11, Sld2 and

Sld3 were unable to detect the endogenous proteins from either a
factor-or nocodazole-arrested cells (Fig 2B, lanes 1 and 2) but read-

ily detected the overproduced proteins (lanes 3 and 4)]. Both Orc6

and Sld2, two important S-CDK substrates (Nguyen et al, 2001; Ma-

sumoto et al, 2002; Wilmes et al, 2004), migrated more slowly in

SDS–PAGE in the S-phase extract compared to the equivalent extract

made from cells held in G1 phase. Moreover, Sic1, which is targeted

for degradation by CDK phosphorylation at the end of G1 phase,

was present in the G1 extract, but absent from the S-phase extract.

These results suggest that cells used to make the S-phase extract

were not significantly contaminated with G1 cells, and this extract

contains sufficient CDK activity to maintain the phosphorylation of

key CDK substrates.

Next, we examined the recruitment of firing factors to pre-RCs in

the S-phase extract. Briefly, pre-RCs were assembled from purified

proteins on DNA attached to paramagnetic beads, either treated

with DDK or not, and then incubated in the S-phase extract

(Fig 2C). Bound proteins were identified by immunoblotting after

washing the beads. As shown in Fig 2D, overproduced firing factors

were recruited to the reconstituted pre-RCs in a DDK-dependent

manner. Moreover, Psf1, a subunit of GINS which was not overex-

pressed in the extract, was also recruited specifically to the DDK-

treated pre-RCs (Fig 2D, compare lanes 2 and 3). Detailed proteomic

analysis of proteins bound to pre-RCs is presented in a later section.

Characterisation of DNA replication products

To determine whether recruitment of firing factors was an indication

that these extracts could support DNA replication, pre-RCs were

assembled on two different ARS1-containing plasmids, pBS/

ARS1WTA (3.2 kb) (Marahrens & Stillman, 1992) and YRp14/

CEN4/ARS1 (8.4 kb) (Hieter et al, 1985) attached to paramagnetic

beads and incubated with the S-phase extract in the presence of

nucleoside triphosphates (NTPs) and deoxynucleoside triphosphates

(dNTPs) containing a32P-dCTP. Products were run on an alkaline

agarose gel, and the gel was dried and subjected to autoradiography

(Fig 3A). This experiment shows that DDK-dependent DNA synthesis

does indeed occur in this extract and the products resolve as a

smear of radioactivity (Fig 3A). As observed by Heller et al, the

length of replicated products from reactions using bead-coupled

DNA templates was relatively short (Heller et al, 2011) and substan-

tial amounts of full-length products were not observed with either

template plasmid. These results indicate that purified pre-RCs can

replace the G1 extract for DNA replication in the system described

by Heller et al.

We reasoned that attachment to beads should not be required in

our system since pre-RCs assembled with purified proteins should

not contain S-phase inhibitors. To test this, we assembled pre-RCs

in solution on these plasmids, added DDK and incubated for

30 min. The S-phase extract was then added along with nucleotides

as described above, and after further 45 min, reactions were

stopped and plasmid DNA was purified and subjected to neutral

agarose electrophoresis. Fig 3B shows that both plasmids incorpo-

rated labelled nucleotide, and in both cases, this incorporation was

DDK-dependent. Quantification of 32P incorporation indicates that

the amount of DNA synthesis in these reactions corresponds to only

a few per cent of the input plasmid under these conditions (Supple-

mentary Fig S2), indicating that replication is relatively inefficient.

However, most of the labelled plasmid ran as discrete bands roughly

at the position of the unlabelled relaxed/nicked plasmid (asterisks

in Fig 3B), suggesting that they are completely replicated. With both

plasmids, there was also some incorporation into products which

ran more slowly than relaxed/nicked plasmid (bars in Fig 3B),

which might be theta replication intermediates (RIs) like those seen

during SV40 replication, for example (Li & Kelly, 1984; Stillman

et al, 1985). In Fig 3C, we examined some of the requirements for

DNA synthesis. This experiment shows that generation of the puta-

tive complete products and RIs required ORC, Cdc6, Mcm2-7•Cdt1

and template DNA as well as DDK. This shows that pre-RCs assem-

bled prior to addition of the S-phase extract are required for replica-

tion and that ORC, Cdc6 or Mcm2-7•Cdt1 from the S-phase extract

cannot support replication. DNA synthesis was also completely

inhibited by aphidicolin, an inhibitor of the three B-family replica-

tive DNA polymerases (Fig 3D).

Replication initiation in vivo requires CDK, which phosphorylates

the firing factors Sld2 and Sld3 and triggers origin firing (Masumoto

et al, 2002; Tanaka et al, 2007; Zegerman & Diffley, 2007). Unlike

DDK, which we add exogenously, CDK activity is already present

and CDK targets are already phosphorylated in the S-phase extract

(Fig 2B). Preincubation of recombinant Sic1 protein (Supplementary

Fig S3) in the extract for 20 min at 4°C resulted in an increase in the

migration of both Sld2 and Orc6 in SDS–PAGE, relative to the

untreated S-phase extract (Fig 3E). This increased migration was

similar to that seen in the G1 extract and indicates that Orc6 and

Sld2 were dephosphorylated by some phosphatases in the extract.

Most importantly, the S-phase extract preincubated with purified

Sic1 did not support in vitro DNA synthesis compared to mock-

treated extract (Fig 3F), indicating that DNA synthesis also required

CDK activity.

A time-course experiment was conducted to examine the kinetics

of DNA synthesis in this system, and replicated products were anal-

ysed by electrophoresis in a native agarose gel (Fig 4A). Both the

complete product and the RIs first appeared 20 min after the

S-phase extract was added to the reaction (Fig 4A, lane 3). Both
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products, along with the topoisomers, continued to accumulate and

reached maximal amount at 45 min (Fig 4A, lanes 4 and 5). At later

time points, a slight decrease in product amount was observed

(Fig 4A, lanes 6–8) perhaps due to degradation of the replicated

products.

To obtain more information about replication in this system,

labelled DNA products were examined by electrophoresis in dena-

turing alkaline agarose gels. When the replicated plasmids from the

time-course experiment were linearised with EcoRI and subjected to

electrophoresis in an alkaline gel, the majority of products migrated

at the same position as the linearised, end-labelled plasmid template

(Fig 4B, compare lanes 3–8 with 11). Thus, the replicated products

were predominantly the same length as the full-length template.

Products that were not linearised migrated slightly faster than the

linearised products (Fig 4B, compare lanes 8 and 10), consistent

with the possibility that at least some full-length products were

covalently closed DNA molecules which, because they are circular,

run differently compared to the linear products.

Reaction products were next analysed by electrophoresis in

native agarose gels either with or without the DNA-intercalating

agent ethidium bromide (EtBr) to test for the presence of covalently

closed circular products. Ethidium ions intercalate into DNA (Waring,

1965), resulting in a decrease in the twist of the DNA molecule. If

this DNA is a covalently closed molecule, a decrease in twist must

be compensated by an increase in writhe (Shimada & Yamakawa,

1985). Hence, ethidium intercalation in closed circular DNA leads to

an increase in positive supercoiling (Crawford & Waring, 1967). The

right side of each panel shows the position of various control plas-

mids in stained agarose gels. Plasmid DNA relaxed by topoisomer-

ase I migrates as a set of topoisomers more slowly than supercoiled

plasmids in neutral agarose gels lacking EtBr (Fig 4C, lanes 3 and

4), but these two plasmid forms co-migrate in gels containing EtBr

(Fig 4C, lanes 7 and 8). Most of the plasmid DNA synthesised in the

extract (excluding RIs) migrated at the position of relaxed or nicked

plasmid with a few apparent topoisomers below in gels lacking EtBr

(Fig 4C, lane 1). In gels containing EtBr, approximately half of the

product continued to migrate at the position of nicked plasmid,

whilst the other half co-migrated with supercoiled DNA (Fig 4C,

lane 5). The appearance of this latter product is an indication that a

significant fraction of the replicated plasmids is covalently closed. It

is possible that some of the nicked product arose during purification

of the DNA. Alternatively, it is possible that the extract is inefficient

in some aspect of termination.

To determine whether the product plasmids have been fully rep-

licated in a semi-conservative manner, we took two approaches.

DpnI, Sau3AI and MboI all recognise and cleave the same DNA

sequence (GATC), which is represented 16 times across the pBS/

ARS1WTA plasmid. These enzymes are distinguished by the effects

DNA methylation of adenine (GAmTC) by dam methylase has on

their ability to cleave DNA: Sau3AI is insensitive to DNA methyla-

tion state, MboI is blocked by methylation on either strand, and

DpnI requires methylation on both strands for full activity.

Complete semi-conservative replication of our fully methylated

input plasmid (as isolated from dam+ E. coli) should generate a

fully hemimethylated product, which should be resistant along its

entire length to both DpnI and MboI, but should remain sensitive to

Sau3AI. As an internal control to show the activity of each of the

enzymes, 0.5 lg of starting plasmid purified from either dam+

(DpnI, Sau3AI) or dam� (MboI) E. coli was added to each digestion

reaction. The right panel of Fig 5A shows an EtBr-stained gel

demonstrating that all three enzymes digested the exogenous con-

trol plasmid (Fig 5A lanes 6–11). The left panel shows the autora-

diogram from the same gel. From this, it is clear that the labelled

products were efficiently digested by Sau3AI (Fig 5A lane 4), but

were not digested at all by DpnI or MboI (Fig 5A, lanes 3 and 5).

Resistance to DpnI shows that all GATC sequences have lost full

methylation; resistance to MboI shows that none of the GATC

sequences have become fully unmethylated. Therefore, all of the

GATC sequences in the labelled products appear to be hemimethy-

lated, consistent with full semi-conservative replication. The lack of

fully unmethylated GATC sequence also indicates that none of the

replicated plasmids are the products of re-replication events.

To more directly examine this, replication products were gener-

ated with a32P-dCTP and BrdUTP. BrdU base pairs with adenine,

but is heavier than thymine, and thus generates a denser product.

Replication products were subjected to equilibrium centrifugation in

CsCl, and fractions from the gradient were analysed by agarose gel

electrophoresis (Fig 5B; quantification of incorporation in Fig 5C).

This experiment shows that the replication products have a hybrid

density (1.74 g/ml) halfway between fully light DNA (LL: 1.69 g/ml)

and fully substituted heavy (HH: 1.79 g/ml) DNA. Consistent with

the restriction enzyme analysis above, HH DNA was not detected

indicating little or no re-replication. From these experiments, we

conclude that the replication products generated in this reaction are

full-length molecules in which one strand has been entirely synthes-

ised in the extract.

Figure 3. Pre-RC-, CDK-, DDK- and replicative DNA polymerase-dependent DNA synthesis in vitro.

A DDK-dependent in vitro DNA synthesis. Bead-coupled DNA templates (8.4 kb: YRp14/CEN4/ARS1; 3.2 kb: pBS/ARS1 WTA) were used for pre-RC assembly with
purified proteins. Reconstituted pre-RCs were then either mock-treated or treated with purified DDK and incubated with the S-phase extract and 32P-a-dCTP.
Samples were analysed by denaturing agarose gel electrophoresis and autoradiography.

B In vitro DNA synthesis reactions performed with soluble plasmid DNA of the indicated sizes (*, migration position of unlabelled, relaxed plasmid; bar, replication
intermediates).

C Mcm2-7 loading-, DDK- and plasmid DNA-dependent in vitro DNA synthesis. DNA synthesis reaction was performed with soluble plasmid DNA (pBS/ARS1 WTA)
instead of bead-coupled DNA. Reactions were performed in the presence or absence of the indicated factors. Samples were analysed by native agarose gel
electrophoresis and autoradiography.

D B-family replicative DNA polymerase-dependent in vitro DNA synthesis. DNA synthesis reactions were performed in the presence of an increasing concentration of
aphidicolin (0, 0.77, 2.33, 7 lg/ml).

E, F CDK-dependent in vitro DNA synthesis. S-phase extract was either mock-treated (lane 2) or incubated with purified, recombinant Sic1 protein (320 nM) (lane 3) at
4°C for 20 min (E). Samples were analysed by SDS–PAGE and Western blotting of the indicated proteins. Mock-treated and Sic1-treated S-phase extracts from (E)
were used in the DNA synthesis reactions (F). Samples were analysed by native agarose gel electrophoresis and autoradiography.
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Figure 4. Replicated products were full-length and covalently closed molecules.

A, B Replicated products were full-length molecules. A time-course experiment showing the accumulation of replicated products over time. Samples were either (A)
analysed by native agarose gel electrophoresis, or (B) EcoRI-treated and analysed by denaturing agarose gel electrophoresis (linear template: linearised,
radioactively labelled template DNA).

C Replicated products were covalently closed molecules. Replicated products were analysed by native agarose gel electrophoresis either in the absence (left panel) or
in the presence (right panel) of ethidium bromide. Relaxed plasmid DNA was analysed in the same gel to visualise the effect of ethidium bromide intercalation into
DNA.
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Figure 5. DNA synthesised in vitro were products of semi-conservative DNA replication.

A In vitro synthesised DNA products were resistant to DpnI digestion. Radioactive reaction products were mock-treated (lane 2) or treated with the indicated
restriction enzymes (lanes 3–5) (left panel). Unlabelled, supercoiled plasmid DNA present in the reactions served as internal control for the activity of the
restriction enzymes (right panel).

B, C Semi-conservative DNA synthesis in vitro. Radioactive reaction products were analysed by centrifugation in a CsCl gradient (B). Fractions were collected from the
top of the gradient and analysed by native agarose gel electrophoresis and autoradiography (arrows indicate fractions at which control DNA peak at. LL, Light-
Light; HH, Heavy-Heavy). Signal intensities of the radioactive products and control DNA were quantified and plotted in (C) to indicate the peaks of each DNA
population (arrows indicate the refractive indexes of the fractions).
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Protein composition of replicating molecules

To determine the components of replication complexes more

completely, we used mass spectrometry to identify proteins with

intensity-based absolute quantification (iBAQ) (Schwanhausser

et al, 2011) to measure the relative abundance of proteins recruited

to pre-RCs under a variety of conditions (Supplementary Table S1).

Fig 6A–C shows identical graphs comparing iBAQ values (log10-

transformed) of proteins bound to pre-RCs with (y-axis) and with-

out (x-axis) DDK treatment, each highlighting a different subset of

replication factors. Because the iBAQ values are log10-transformed,

each unit on the y-axis represents a tenfold difference in abun-

dance. Proteins present at similar levels in the two reactions lie

along the diagonal line. Mcm2-7 are amongst the most abundant

proteins along the diagonal, whilst the other licensing factors (ORC,

Cdc6 and Cdt1) are present at approximately 10–100 times lower

levels (Fig 6A). Loss of these other licensing factors is likely due to

extra washes after DDK phosphorylation and after incubation with

the extract. The slightly higher persistence of Cdc6 is likely due to

non-specific binding to beads (Remus et al, 2009). Most impor-

tantly, the presence of licensing components along the diagonal

provides an internal control, indicating that pre-RCs were loaded

equally in both samples. Other proteins found along the diagonal

include proteins that bind non-specifically to the DNA beads, but

may also include factors from the extract that bind pre-RCs inde-

pendent of DDK. Fig 6B highlights the firing factors. All of the over-

expressed firing factors (Dpb11, Sld2, Sld3, Sld7 and Cdc45) as well

as the two DDK subunits, which were added exogenously, are

enriched in the +DDK reaction (i.e. lie above the diagonal line) and

have iBAQ values just slightly below those of Mcm2-7, suggesting

that they have been efficiently recruited to the loaded pre-RCs. In

addition, the two largest subunits of DNA polymerase e (Pol2 and

Dpb2), which were not overexpressed, as well as the GINS subunit

Sld5, were enriched in the DDK-treated sample to a similar level,

suggesting that formation of a preinitiation complex (pre-IC) (Zou

et al, 1997; Zou & Stillman, 2000) is not limiting in these reactions.

Although some firing factors (Dpb2, Pol2, DDK, Cdc45 and Sld3)

also appear to be present without DDK, because the y-axis is log10-

transformed, each is enriched by at least 60-fold in the presence of

DDK. Mcm10 was detected but did not appear to be enriched in the

+DDK sample. Reasons for this are unclear: it may reflect DDK-

independent association of Mcm10 with Mcm2-7 as seen previously

(Wohlschlegel et al, 2002; Ricke & Bielinsky, 2004; van Deursen

et al, 2012), or may reflect Mcm10’s non-specific DNA binding

activity (Robertson et al, 2008; Warren et al, 2008; Eisenberg et al,

2009). Regardless, Mcm10 is present at levels 10-100 times lower

than other firing factors, suggesting that this step may be limiting in

our system.

Most of the other components of the replisome progression

complex (RPC) (Gambus et al, 2006, 2009) were enriched in the

+DDK sample (Fig 6C) including Mrc1, Tof1, Csm3, Ctf4 and the

FACT subunit Pob3 as were subunits of DNA polymerase a (Pol1,

Pol12, Pri1 and Pri2), DNA polymerase d (Pol3, Pol31, Pol32), RFC

(RFC1,2,3,5) and RPA (RFA1-3). The degree of enrichment of these

replisome components was significantly less than the firing factors,

suggesting that one or more of these components may be limiting in

the extract. All four core histones (HTA1,2, HTB1,2, HHF1 and

HHT1) were also partly enriched in the +DDK sample, suggesting

that some replication-associated chromatin assembly may be occur-

ring during replication.

Finally, to determine whether any replication or checkpoint

proteins were enriched specifically at stalled replication forks, we

compared the protein profile in two complete (+DDK, +NTPs and

dNTPs) reactions, one unperturbed and one treated with a high

concentration of aphidicolin, which blocks DNA synthesis (Fig 3D).

Fig 6D shows that, under these conditions, very few proteins are

enriched in the +aphidicolin sample (i.e. below the diagonal line).

Both DNA polymerases a and d are slightly enriched in the aphidicolin-

treated sample, suggesting that stalling the polymerases may

stabilise them at the fork. None of the RPA subunits are enriched

under these conditions. This may suggest that significant uncou-

pling of unwinding and polymerisation does not occur in these

extracts, in contrast to the situation in Xenopus egg extracts (Pacek

& Walter, 2004; Byun et al, 2005). However, there was quite a high

background of RPA binding even in the absence of DDK (Fig 6C),

suggesting that most RPA binding is non-specific in these extracts.

Thus, further work is required to determine whether or not unwind-

ing and DNA synthesis are tightly coupled in this system.

Origin-dependent and independent replication

Although budding yeast uses specific DNA sequences as origins

in vivo, and ORC possesses specific DNA binding activity (Bell &

Stillman, 1992), even budding yeast ORC has significant non-

specific DNA binding activity in vitro (Remus et al, 2009). This

non-specific DNA interaction might be functional: ORC can load

Mcm2-7 complexes onto DNA substrates in vitro irrespective of

whether a functional replication origin is present or not (Remus

et al, 2009). Alternatively, it is possible that Mcm2-7 double hexa-

mers may assemble at non-origin sites as well as origin sites, but

only Mcm2-7 double hexamers bound to origins are functional in

replication. To begin to test this, we examined replication on pBS/

ARS1WTA containing a wild-type ARS1 and pBS/ARS1A�B2�, the
same plasmid in which two key origin elements (A and B2) have

been replaced with an XhoI linker (Marahrens & Stillman, 1992;

Remus et al, 2009). Fig 7A shows that both plasmids replicated

equally well in a DDK-dependent manner, indicating that a func-

tional origin is not required for replication in this system. We next

tested an entirely heterologous DNA, the bacteriophage lambda

chromosome. Fig 7B shows that lambda DNA replicates in a DDK-

dependent manner as efficiently as the ARS1-containing plasmid.

To determine whether origin-independent replication is simply

because we are using excessive levels of ORC, we performed an

ORC titration during the pre-RC assembly step (Fig 7C). This exper-

iment shows that replication of the plasmid lacking a functional

origin was also ORC dependent and that reducing ORC concentra-

tion reduced overall replication, but did not confer origin

specificity.

Stricter origin dependency of Mcm2-7 loading can be enforced by

including competitor DNA during pre-RC assembly (Remus et al,

2009). Therefore, we next performed a titration of the non-specific

competitor, poly(dA-dT), which was used because it will not interfere

with detection of 32P-dCTP incorporation into replicated products. As

shown in Fig 7D and E, addition of competitor DNA inhibited the

overall reaction but also generated some origin preference (compare

lanes 2 and 6). We then repeated the ORC titration in the presence of
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an intermediate amount of competitor DNA (Fig 7F and G) and found

that, at intermediate ORC levels, the origin-containing plasmid was

5–10× more efficient compared to the mutant origin plasmid.

Therefore, functional yeast origins are not required for ORC- and

DDK-dependent replication in vitro. Moreover, origin specificity can

be achieved by manipulating levels of ORC and competitor DNA.
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Figure 6. Mass spectrometry analysis of protein composition of replication reactions.

A–C DDK-dependent recruitment of firing factors, RPC components and other replication factors to reconstituted pre-RCs. Note that the y-axis is log10-transformed.
Thus, each unit represents a tenfold difference in abundance. Proteins with iBAQ values ≤ 3 were all assigned a value of 3 to simplify the graph.

D Enrichment of DNA-associated polymerases (Pol a and Pol d) but not RPA under condition of replisome stalling by aphidicolin. In all cases, pre-RCs were incubated
with S-phase extract as described in Materials and Methods.
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Discussion

We have described a soluble, cell-free DNA replication system to

study yeast DNA replication. DNA replication of plasmids in extracts

from S-phase cells is semi-conservative, requires preassembly of

pre-RCs and results in the formation of fully replicated, covalently

closed circular product. Consequently, factors required for elonga-

tion and termination do not appear to be lacking from this extract.

Using a proteomic approach, all three replicative polymerases as

well as virtually all of the other identified components of the RPC

(Gambus et al, 2006, 2009) were found specifically associated with

template DNA in a DDK-dependent manner, suggesting that our

extracts assemble replisomes similar to those generated in vivo.

Surprisingly, few proteins other than known replisome components

and firing factors were found associated in a DDK-dependent man-

ner (Supplementary Table S1), suggesting that most or all core fac-

tors involved in initiation and elongation have been identified. If

true, it should be possible to reconstitute this process with this set

of purified proteins in future.

Only a small fraction of the input plasmid is replicated in these

extracts. Several results suggest that initiation occurs slowly and

asynchronously in the extracts. Firstly, the accumulation of fully

replicated products is relatively slow, occurring over 30–45 min, yet

significant accumulation of replication intermediates does not occur

during the time course. This suggests that, once initiated, elongation

proceeds relatively rapidly, and thus, the rate-limiting step is initia-

tion rather than elongation. Secondly, although the firing factors

Dpb11, Sld2, Sld3 and Sld7 are not believed to play any role in elon-

gation, nor to move with replication forks (Masumoto et al, 2000;

Kanemaki & Labib, 2006), we identified them as amongst the most

abundant factors associated with pre-RCs after DDK treatment and

in fact are almost as abundant as pre-RCs even after 30 min in the

presence of NTPs and dNTPs. This suggests that most pre-RCs are

converted to a pre-IC-like state but do not proceed efficiently beyond

this stage. It may be that some factors involved in the transition to

the complete replisome are limiting in the extract. A candidate for

such a limiting factor is Mcm10. Several recent reports have indi-

cated that Mcm10 is important for initiation after pre-IC assembly

and CMG formation, but before any significant unwinding (Heller

et al, 2011; van Deursen et al, 2012; Kanke et al, 2012; Watase

et al, 2012). Recruitment of Mcm10 is inefficient in our extracts and

occurs at levels similar to most of the elongation factors. Whether it

is Mcm10 itself or something required for Mcm10’s recruitment

which is limiting remains to be determined.

In bacteria and viruses, replication origins are often complex

DNA sequences with precisely arranged binding sites for initiator

proteins and auxiliary factors and other elements like DNA unwind-

ing elements (DUEs) (Challberg & Kelly, 1989; Kowalski & Eddy,

1989; Stillman, 1989; Leonard & Grimwade, 2010; Skarstad & Katay-

ama, 2013). In yeast, the requirement for multiple DNA sequence

elements (Marahrens & Stillman, 1992) might have suggested a

similar complex organisation; however, the enzymology of initiation

is largely conserved across Eukarya, and replication in other systems,

like early Xenopus embryos, does not require specific DNA

sequences (Harland & Laskey, 1980). Two of the most important

sequence elements in the prototypal yeast origin, ARS1, are the ARS

consensus sequence and the B1 element, which both contribute to

ORC binding (Rao & Stillman, 1995; Rowley et al, 1995). Moreover,

these two elements are sufficient for weak origin activity in vivo

(Marahrens & Stillman, 1992), and tethering mammalian ORC to an

array of GAL4 DNA binding sites is sufficient to generate a mamma-

lian replication origin (Takeda et al, 2005). This suggests that ORC

binding is sufficient to determine a eukaryotic replication origin.

Our results contribute to this idea: complex functional DNA repli-

cation origins are not required for DNA replication of naked DNA in

our extract system. Instead, replication competence appears to cor-

relate with ORC binding since conditions that promote sequence-

specific ORC binding (i.e. reduced ORC concentrations and the pres-

ence of competitor DNA) also promote origin dependence. Whilst

yeast origin DNA sequences are not required for replication in our

system, we do not rule out the possibility that ORC is binding to

heterologous sequences with moderate sequence specificity. These

heterologous sequences must be sufficiently simple to be present in

both bacterial plasmids and lambda bacteriophage DNA. Moreover,

we cannot rule out the possibility that some simple DNA sequences

may contribute to events downstream of pre-RC assembly, such as

origin melting. Given that the Mcm2-7 double hexamer can slide on

DNA once loaded (Remus et al, 2009), it is also possible that the

actual site of initiation may not correspond to the initial location of

ORC binding and pre-RC assembly.

Thus far, the templates we have used for replication have been

naked DNA. It is clear from previous work that ORC has important

interactions with nucleosomes (Lipford & Bell, 2001; Hizume et al,

2013). Work from MacAlpine and colleagues has shown that yeast

origins correlate very strongly with ORC binding sites adjacent to

AT-rich sequences which exclude nucleosomes (Eaton et al, 2010).

It will be important to reconstitute pre-RCs and subsequent replica-

tion on chromatinised templates in future. Regardless, we can make

our system dependent on DNA sequences. This should be useful for

future work aimed at mapping protein–DNA interactions, identifying

initial DNA melting events and mapping the positions of replication

initiation at nucleotide resolution.

Figure 7. Origin-independent and dependent DNA replication in vitro.

A, B Replication origin was not required for in vitro DNA replication of the template DNA. Plasmid DNA containing (A) either wild-type ARS1 (WT) or mutant ARS1
(A�B2�) and (B) either wild-type ARS1 plasmid (700 ng) or lambda DNA (700 ng) were used as templates in the in vitro replication reactions. Products were run
on neutral agarose gels (A) or quantified by liquid scintillation counting (B).

C Origin-independent in vitro replication was dependent on ORC. Replication reactions were performed as in (A) in the presence of an increasing concentration of
ORC (0, 1.3, 4, 13, 40 nM).

D–G Competitor DNA restored origin specificity in the in vitro replication reaction. Replication reactions in (D) were performed as in (A) in the presence of an increasing
concentration of the competitor DNA poly(dA-dT) (0, 0.009, 0.028, 0.083 mg/mL). The amount of incorporation was quantified and plotted in (E). Replication
reactions in (F) were performed in the presence of poly(dA-dT) (0.009 mg/mL) and increasing concentrations of ORC (0, 4, 13, 40 nM). The amount of
incorporation was quantified and plotted in (G).

◂

Kin F On et al DNA replication in vitro with purified pre-RCs The EMBO Journal

ª 2014 The Authors The EMBO Journal Vol 33 | No 6 | 2014 617



Materials and Methods

Yeast strains, protein expression vectors, protein expression,
antibodies and electron microsocopy

The strains and expression vectors used in this study are listed in

Supplementary Materials. Detailed protein purifications, antibodies

used and procedures for electron microscopy and single-particle

analysis are included in the Supplementary Materials and Methods.

Preparation of S-phase whole-cell extract

For small-scale extracts, 4 L of S. cerevisiae cells (yKO3) were

grown in YP-raffinose at 25°C to a density of 1 × 107 cells/ml. Protein

expression was induced by adding 2% galactose for 2 h at 25°C.

Cells were then arrested in G1 by a-factor for 3 h. Arrested cells

were collected and resuspended in YP-galactose (prewarmed to

37°C) and a-factor for 45 min. Next, cells were released from

a-factor arrest by three washes in prewarmed YP-galactose. Cells

were harvested 45 min after release. For large-scale extracts, 10 L of

S. cerevisiae cells (yKO3) was grown in a fermentor in YP-raffinose

at 25°C to a density of 1 × 107 cells/ml. Protein expression was

induced by adding 2% galactose for 2 h at 25°C. Cells were then

shifted from to 37°C, grown for 5 h and harvested. Cell harvest was

performed by centrifugation at 2,602 g for 15 min at 4°C. Cell pellet

was washed twice with SE buffer I (50 mM Hepes-KOH pH 7.6,

0.3 M K-glutamate, 2 mM EDTA, 0.8 M sorbitol)/3 mM DTT and

then resuspended in 0.3 volumes of SE buffer II (100 mM Hepes-

KOH pH 7.6, 10 mM Mg(OAc)2, 0.8 M sorbitol)/1.5 M K-glutamate/

5 mM DTT/protease inhibitors (Roche) and frozen dropwise in

liquid nitrogen. Frozen drops of cells were crushed using a freezer

mill (SPEX CertiPrep 6850 Freezer/Mill) with six cycles of 2-min

crushing at a rate of 15. Frozen cell powder was transferred to a pre-

chilled centrifuge tube and allowed to thaw completely on ice. The

lysate was centrifuged for 1 h at 50,000 rpm at 4°C using a Ti 70

rotor (~257,000 g). The clear phase was recovered and dialysed

against SE buffer III (50 mM Hepes-KOH pH 7.6, 0.3 M K-glutamate,

5 mM Mg(OAc)2, 1 mM EGTA, 1 mM EDTA, 10% glycerol)/3 mM

DTT/protease inhibitors (Roche) at 4°C for 3.5 h. The dialysed

extract was recovered and centrifuged at 90,000 rpm for 30 min at

4°C using a TLA 100.3 rotor (~440,000 g). The clear phase was

recovered and stored in aliquots at �80°C.

Replisome assembly assay and mass spectrometry

Mcm2-7 loading was performed as described previously on 300 ng

bead-coupled plasmid DNA template (8.4 kb) at 25°C for 20 min

(Remus et al, 2009). Next, supernatant of the reaction was removed

and the beads were resuspended in a reaction mix containing 5×

bead buffer (125 mM Hepes-KOH pH 7.6, 50 mM Mg(OAc)2, 0.1%

NP-40, 212.5 mM K-glutamate, 25% glycerol), 1 mM DTT, 5 mM

ATP, 1 mM spermine (Sigma-Aldrich) and distilled water. The reac-

tion was supplemented with purified DDK and incubated at 25°C

with agitation for 15 min. The supernatant of the reaction was

removed and beads were resuspended in a reaction mix containing

20× replication buffer (800 mM Hepes-KOH pH 7.6, 160 mM

MgCl2), 1 mM DTT, 5 mM ATP, 100 lM dATP/dCTP/dTTP/dGTP

(Invitrogen) and 200 lM CTP/GTP/UTP (Invitrogen), 40 mM

creatine phosphate (Calbiochem) and 10 lg creatine phosphokinase

(Calbiochem). Seven hundred and fifty micrograms of yKO3 S-phase

extract were added last. The reaction was then incubated at 25°C

with agitation for 20 min. Supernatant of the reaction was removed,

followed by 2 washes with low-salt wash buffer (45 mM Hepes-

KOH pH 7.6, 300 mM K-glutamate, 5 mM Mg(OAc)2, 1 mM EDTA,

1 mM , 0.02% NP-40, 10% glycerol). Next, beads were resuspended

in 40 ll of 1× SDS sample buffer, boiled and analysed by SDS–PAGE

and immunoblotting.

For mass spectrometry, experiments were performed as described

above with the following modifications: 1,250 lg of extract was used

per replisome assembly reaction; DDK phosphorylation step and

extract incubation step were both extended to 30 min; and 4 repli-

some assembly reactions were pooled for each mass spectrometry

sample. For the replisome stalling sample, aphidicolin (7 lg/ml) was

added 15 min after the extract was added to the DDK reaction. Each

SDS–PAGE lane was cut into eight equal-sized pieces and subjected

to in-gel trypsin digestion. Peptide extracts were analysed using a

nanoACQUITY UPLC (Waters Corporation) coupled to a LTQ-

Orbitrap XL (Thermo Fisher Scientific) mass spectrometer via an Advion

Biosciences Nanomate. Protein identification and quantification was

performed using MaxQuant 1.3.0.5. (Cox &Mann, 2008). The Uniprot

S. cerevisiae reference proteome was used as the search database,

and the protein false discovery rate was set to 1%. Protein quantifica-

tion was performed using intensity-based quantification (iBAQ).

In vitro DNA replication assay

Unless otherwise stated, Mcm2-7 loading reactions were performed

either on soluble plasmid DNA templates (200 ng) or bead-coupled

DNA (300 ng). Purified DDK was then added to the Mcm2-7 loading

reaction and incubated at 25°C with agitation for 30 min. Next, a

reaction mix containing 20× replication buffer, 1 mM DTT, 5 mM

ATP, 100 lM dATP/dTTP/dGTP, 200 lM CTP/GTP/UTP, 5 lCi 32P-
a-dCTP, 40 mM creatine phosphate and 10 lg creatine phosphoki-

nase was added to the DDK reaction. Finally, 1,250 lg of yKO3

S-phase extract were added. The reaction was then incubated at

25°C with agitation for 45 min. Replication reactions were quenched

with the addition of 20 mM EDTA. Proteins were denatured and

digested by adding 0.5% SDS and 20 lg proteinase K into the reac-

tion. This mixture was incubated at 37°C with agitation for 30 min,

followed by a 25:24:1 phenol/chloroform/isoamyl alcohol (Invitro-

gen) extraction step. Unincorporated radioactive nucleotides were

then removed by passing the aqueous layer through an Illustra Mi-

croSpin S-400 HR column (GE Healthcare) according to the manu-

facturer’s instructions. Finally, RNA was digested by incubating the

sample with two units of RNase A (Sigma, molecular biology grade)

at 30°C for 15 min. Samples were then analysed by native or dena-

turing agarose gel electrophoresis and autoradiography.

Radioactive products from the in vitro replication assay were

analysed in a CsCl gradient as described previously (Walter et al,

1998). Fractions were collected from the top of the gradient after

centrifugation. Non-radioactive control DNA was generated by PCR

with either dTTP (Light-Light) or BrdUTP (Heavy-Heavy). The resul-

tant DNA products were mixed and separated by CsCl gradient.

Locations of the control DNA were determined by ethidium bromide

staining, whereas the positions of the radioactive replicated prod-

ucts were detected by autoradiography.
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