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Abstract: Several epidemiological studies concluded that inhalation of diesel exhaust particles (DEP)
is associated with an increase in the relative risk of lung cancer. In vitro research evaluating the genetic
damage and/or changes in gene expression have been attempted to explain the relationship between
DEP exposure and carcinogenicity. However, to date, investigations have been largely confined to
studies in immortalized or tumorigenic epithelial cell models. Few studies have investigated damage
at the chromosomal level to DEP exposure in normal cell lines. Here, we present the genotoxic
effects of DEP in normal cells (embryonic human lung fibroblasts) by conventional genotoxicity
testing (micronuclei (MN) and comet assay). We show the differentially expressed genes and enriched
pathways in DEP-exposed WI-38 cells using RNA sequencing data. We observed a significant increase
in single-strand DNA breaks and the frequency of MN in DEP-exposed cells in a dose-dependent
manner. The differentially expressed genes following DEP exposure were significantly enriched in
the pathway for responding to xenobiotics and DNA damage. Taken together, these results show
that DEP exposure induced DNA damage at the chromosomal level in normal human lung cells and
provide information on the expression of genes associated with genotoxic stress.

Keywords: fine particulate matter; diesel exhaust particles; genotoxicity; micronucleus assay;
comet assay; WI-38; gene set enrichment analysis

1. Introduction

In recent decades, various studies have been conducted on the effects of particulate
matter (PM) on human health. There is epidemiological evidence regarding potential
causal relations between inhaled exposures of PM and adverse health outcomes [1,2].
Fine particles (diameters < 2.5 µm (PM2.5)) easily penetrate the respiratory tract and
bloodstream due to their small size and large surface area at the same mass and increases
the risk of cardiovascular and respiratory disease [3,4]. Diesel exhaust particulates (DEP)
are considered to be the major source of air pollutants and PM2.5. DEP are known as
a pulmonary carcinogen on the basis of sufficient evidence showing that exposure is
associated with an increased risk for lung cancer [5,6]. In animal and cell studies, inhaled
DEP have been shown to deposit with high efficiency in the alveolar region of the lungs
and cause local inflammation and oxidative stress that can increase the frequency of
genomic alteration in cells [7–11]. These results suggest a genotoxic response to DEP is the
underlying mechanism for the onset and progression of lung cancer.
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DEP derived from diesel engine combustion processes generally consist of polycyclic
aromatic hydrocarbons (PAHs), nitro-PAHs, oxygenated derivatives of PAH (ketones,
quinones, and diones), heterocyclic compounds, aldehydes, and aliphatic hydrocarbons, as
well as reactive metals such as iron, copper, nickel, zinc, and vanadium [12]. However, DEP
components can vary by region, type of fuel and engine, and season [13]. Physicochemical
properties of the particles (i.e., size, shape, chemical composition, reactivity) determine their
hazard toxicity and the mechanisms by which PM induces adverse effects. The DEP mate-
rial used in this study was national institute of standards and technology (NIST) standard
reference material (SRM) 1650b, which is a well-characterized and stable reference material
for mechanistic toxicology research in vitro. It enables a valid comparison of the carcino-
genic and genotoxic potential of fine particles. SRM 1650 was mutagenic in Salmonella
typhimurium and used as positive control in Ames test for vehicle air pollutants [14,15].

Studies have shown NIST 1650b can reliably observe hazard effects of DEP, including
reactive oxygen species (ROS) generation and inflammatory response as well as DNA
alteration [16–18]. Results from cell culture experimental models have shown that NIST
1650b elevated the mRNA level of pro-inflammatory cytokines and DNA strand breaks in
the adenocarcinoma human alveolar basal epithelial cell line A549 [16,17]. Pohjola et al.
indicated DNA adduct formation in SV40-immortalized human epithelial cells (Beas-2b)
after exposure to NIST 1650b [18]. However, it should be stressed that most of the DNA
damage effects of DEP, including NIST 1650b, was heavily observed in immortalized or
tumorigenic epithelial cell models but minimally observed in human normal cells [19].
Furthermore, none of the team has evaluated the DNA strand breakage and chromosomal
alteration following NIST 1650b exposure in human normal fibroblast cells.

Therefore, it is necessary to use human normal fibroblast cells to recapitulate some
rudimentary toxicological effects of DEP and make these results more relevant to human
physiology [20–22]. In this study, we aim to provide a meaningful interpretation of geno-
toxicity using cytogenetic or gene expression markers induced by DEP in human normal
lung cells as a model of pulmonary tissue.

Here, we show that DNA strand breakage and micronucleus induction are induced in
normal cells (embryonic human lung fibroblasts, WI-38) after exposure to well-characterized
standard DEP (NIST 1650b). We first revealed the genotoxicity of DEP by using the con-
ventional genotoxicity test tool in mammalian WI-38 cells. We show the differentially
expressed genes and enriched pathways in DEP-exposed WI-38.

2. Materials and Methods
2.1. Characterization of the Prepared DEP

DEP (SRM 1650b; National Institute of Standards and Technology, Gaithersburg, MD,
USA) were purchased from Sigma-Aldrich and dispersed in the serum-free cell culture
medium. The prepared DEP were physically and chemically characterized to determine
their impact on the tested biological cells. The DEP samples’ particle sizes were determined
by dynamic light scattering (DLS). Briefly, the fluctuation of the scattered light intensity,
which is caused by the Brownian motion of the particles in suspension, was measured
over time. DLS experiment was performed at 25 ◦C with ELS-1000ZS (Otsuka Electronics,
Osaka, Japan). The polydispersity index (PDI), which indicates the quality concerning the
stability and the extent of uniformity and homogeneity of the particle emulsions, was also
determined. The surface charge of DEP was measured in a serum-free cell culture medium
using the same equipment. pH of the DEP solution was measured with a benchtop pH
meter (Fisher Scientific, Waltham, MA, USA) to evaluate the compatibility of the sample to
the biological experiments. The study of morphology and elemental analysis of DEP was
carried out by scanning electron microscopy (Hitachi SU-70, Tokyo, Japan) equipped with
energy-dispersive X-ray (EDX) spectroscopy (Horiba EMAX 3.0, Kyoto, Japan). The DEP
sample was deposited on a stub paste of sliver (Electron Microscopy Sciences, Hatfield,
PA, USA) and then dehydrated in the air. Finally, Pt was coated on the sample. The SEM
observations were carried out at 40,000 magnification with 15 kV voltage. To obtain a
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relative elemental concentration of the DEP, we performed EDX analysis at 3 spots of the
DEP surface.

2.2. Cell Culture and Treatment

Normal human embryonic lung cells (WI-38) were obtained from the Korean cell line
bank. The cells (1 × 105 cells/mL) were cultured in 24-well or 96-well plates and grown in
minimum essential medium (MEM; Sigma-Aldrich, St. Louis, MO, USA) supplemented
with 10% fetal bovine serum (FBS; Gibco Life Technologies, Carlsbad, CA, USA) and peni-
cillin/streptomycin (100 U, Gibco Life Technologies) in a humidified 5% CO2 atmosphere
at 37 ◦C. The DEP was dispersed in a serum-free cell medium, and cells were incubated
with DEP at 6 concentrations (0, 25, 50, 100, 200, or 400 µg/mL) for 24, 48, or 72 h.

2.3. Cell Viability Assay and Nitric Oxide/Reactive Oxygen Species Assay

To investigate the cytotoxic effect of the DEP, we measured cell proliferation rate using
a CCK-8 assay kit (Dojindo). The assay was performed according to the manufacturer’s in-
structions. As the water-soluble tetrazolium salt CCK-8 reduced by dehydrogenase activities
in cells, the kit measured the number of living cells on the basis of the CCK-8 formazan. The
WI-38 cells were plated in 96-well microplates at 2 × 104 cells per well, treated with DEP
incubated for 24–72 h at 37 ◦C in a 5% CO2 incubator. Thereafter, 10 µL of the cell prolifera-
tion reagent CCK-8 was added to the culture medium and incubation continued for 4 h at
37 ◦C in the 5% CO2 incubator. The samples were then shaken for 1 min on a shaker and
absorbance was measured at 420–480 nm using a microplate reader (Spectra Max M2, Molec-
ular Devices, San Jose, CA, USA). Nitric concentration was determined using a commercial
assay kit (Intron, Nitric Oxide Plus Detection kit, #21023). Intracellular production of ROS
was determined using the cell-permeable probe CM-H2DCFDA (Invitrogen, Waltham, MA,
USA). WI-38 cells were pretreated with DEP for 2 h then treated with phosphate buffered
saline (PBS) containing 2 µM CM-H2DCFDA for 30 min. The fluorescence intensity was
immediately measured using fluorescence microscopy.

2.4. In Vitro Comet Assay (Single Cell Gel Electrophoresis Assay)

According to Singh et al.’s [23] protocol, we carried out single-cell gel electrophoresis
(Comet) assay. For the first layer, the glass microscope slides were coated with 1% normal
melting agarose and fully dried. The harvested human lung embryo fibroblast (WI-38)
cells (2 × 104 cells/10 µL) were then mixed with 85 µL of 0.7% low-melting agarose and
rapidly spread on the first layer. Finally, 85 µL of 0.7% low melting agarose was spread as
the top layer. The prepared slides were then soaked in an alkaline lysis buffer (2.5 M NaCl,
100 mM Na2-ethylenediamine tetraacetic acid (EDTA), 10 mM Tris-HCl, 1% Triton X-100,
and 10% dimethyl sulfoxide (DMSO); pH 10) for 1 h at 4 ◦C. Thereafter, slides were washed
with distilled water for 10 min and placed in a horizontal electrophoresis chamber, followed
by electrophoresis in an alkaline buffer (1 mM Na2-EDTA, 300 mM NaOH; pH 13) for
25 min at 20 V and 275 mA. The slides were then washed in a neutralization buffer (0.4 M
Tris-HCl; pH 7.4) and immersed in 100% ethanol for 1 h. Finally, slides were stained with
100 µL of SYBR Green solution, and images of 300 randomly selected cells were analyzed
from each group using a Comet Assay IV analysis system (Instem-Perceptive Instruments
Ltd., Suffolk, Halstead, UK).

2.5. In Vitro Micronuclei Aassay

Normal human embryonic lung cells (WI-38) were cultured in a 5% CO2 atmosphere
at 37 ◦C. After 24 h of incubation, cultured WI-38 cells were treated with test substances
and incubation continued. After 20 h from the start of treatment, 4 µL/mL cytochalasin-B
(Sigma-Aldrich) was added, and incubation continued for an additional 28 h. The har-
vested cultures were then incubated with a 0.075 M KCl solution for 3 min and fixed using a
methanol/glacial acetic acid solution (3:1 [v/v]). This fixation step was repeated twice, and
resulting cells were dropped onto clean slides. After being air-dried, cells were stained us-
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ing a Giemsa solution and then observed under a light microscope (Carl Zeiss, White Plains,
NY, USA). The micronuclei (MN) were measured per 2000 binucleated cells. Moreover,
500 cells were scored to evaluate the cytokinesis-block proliferation index (CBPI), which
was calculated using the following expression: CBPI = (MI + 2MII + 3(MIII +MIV))/total,
where MI through MIV represents the number of cells with 1 to 4 nuclei, respectively, and
MIII and MIV are both considered to be in their third cycle [24].

2.6. RNA Extraction and RNA-Seq

Total RNA was extracted using Qiazol (Qiagen) according to the manufacturer’s
protocol. The quantity and quality of the total RNA were evaluated using the Agilent
2100 bioanalyzer RNA kit (Agilent, Santa Clara, CA, USA). The isolated total RNA was pro-
cessed for preparing mRNA sequencing library using the Illumina TruSeq Stranded mRNA
Sample preparation kit (Illumina, San Diego, CA, USA) according to the manufacturer’s
protocol. The quality and size of libraries were assessed using the Agilent 2100 bioanalyzer
DNA kit (Agilent, Santa Clara, CA, USA). All libraries were quantified by qPCR using
CFX96 Real-Time System (Biorad, Hercules, CA, USA) and sequenced on the NextSeq500
sequencers (Illumina) with paired-end 75 bp plus single 8 bp index read run.

2.7. Quantifying Gene Expression, Differentially Expressed Gene Analysis, and Gene Set
Enrichment Analysis

Potentially existing sequencing adapters and raw quality bases in the raw reads were
trimmed by Skewer ver 0.2.2. The cleaned high-quality reads after trimming the low-
quality bases and sequencing adapters were mapped to the reference genome by STAR
ver 2.5 software. Since the sequencing libraries were prepared strand-specifically by using
Illumina’s strand-specific library preparation kit, the strand-specific library option-library-
type = fr-first-strand was applied in the mapping process. To quantify the mapped reads
on the reference genome into the gene expression values, we used HTSeq ver 0.9.1 with
the strand-specific library option, –s reverse, and with the option for overlapping features,
–m intersection-nonempty. Other default options were used. The differentially expressed
genes between the two selected biological conditions were analyzed by edgeR ver 3.28.1 R
package with the default options used. To compare the expression profiles among the
samples, we unsupervised clustered the normalized expression values of the selected few
hundred of the differentially expressed genes by in-house R scripts. The scatter plots for the
gene expression values and the volcano plots for the expression-fold changes and p-values
between the 2 selected samples also were drawn by in-house R scripts. Genes were ranked
by adjusted p-value and the sign of the log fold change and gene set enrichment analysis
was performed using gene set enrichment analysis (GSEA) [25] using the hallmark gene
sets from MSigDB [26].

2.8. Statistics

The statistical analyses were performed using SPSS 12.11, and data were expressed as
the mean ± standard error (S.E.). A one-way analysis of variance (ANOVA) was applied to
all experiment data, and a value of p < 0.05 was considered statistically significance.

3. Results
3.1. Physical and Chemical Characteristics of DEP

DEP (NIST1650b) dispersed in serum-free cell culture medium were analyzed to
identify their physiochemical properties. The pH of dispersed DEP was the same as the
most mammalian cell culture media in its typical pH 8 formulation [27]. The average size
of DEP in the culture medium was 284.2 nm (Table 1, Figure 1a), which was confirmed to be
PM2.5. The PDI value of DEP samples was 0.164, which indicates a narrow size distribution
and homogeneous distribution of DEP [28]. Zeta potential of DEP in the medium was
found to be −24.31 mV. This value indicates a weak increase in the agglomerated state of
the nanoparticles. Size and zeta potential of DEP measurement were repeated twice each.
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The SEM image of the DEP is illustrated in Figure 1b. The surface of DEP was seen to be
non-uniform. It showed that fine-sized spherical particles appeared to be aggregated. The
EDX result in Table 2 displays the average of elemental at three spots of the DEP surface.
It indicates the presence of carbon, nickel, copper, bromine, lead, chromium, and sulfur,
which are some of the gaseous particulate matter that causes air pollution.

Table 1. Characteristics of the prepared fine particles.

Particle Media pH Average
Diameter (nm) PDI Zeta Potential

(mV)

DEP (NIST 1650b) MEM 1 8 284.2 0.164 −24.31
1 Minimum essential medium.
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Figure 1. Physical and chemical information on the diesel exhaust particulates (DEP). (a) The size distribution of DEP in the
cell culture medium, average diameter of 284.2 nm; (b) SEM image of DEP (magnification of 40,000×).

Table 2. Elemental composition of diesel exhaust particulate matter (PM).

Element wt % Element wt %

C 95.15 Cl 0.18
Ni 1.34 Ca 0.13
Cu 1.32 Mn 0.12
Br 0.87 Fe 0.02
Pb 0.34 As 0.01
Cr 0.32 Si 0.01
S 0.19

3.2. DEP-Induced Cytotoxicity and NO/ROS Production in WI-38 Cells

To investigate the cytotoxic effect of the DEP, we measured cell proliferation rate
using a CCK-8 assay kit. The cell growth was significantly inhibited at 200–400 µg/mL
at 24 and 48 h (Figure 2a,b). The 72 h treatment significantly inhibited cell growth at 50
to 400 µg/mL concentrations (Figure 2c). The DEP significantly and dose-dependently
inhibited the WI-38 cells growth level after 72 h of treatment.
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diesel exhaust particles (DEP). (a) The 24 h treatment group; (b) the 48 h treatment group; (c) the 72 h treatment group. The
statistically significant difference is indicated by * p < 0.05 and ** p < 0.01 when compared with the negative control. Values
are means of triplicate measurements. NC: negative control (0.2% DMSO); PC: positive control (1% Triton X-100).

The nitric oxide (NO) levels were measured to examine the involvement of oxidative
stress in DEP exposure. Exposure to DEP caused significant increases in the NO level in
WI-38 cells (Figure 3a–c). These results showed that DEP might induce oxidative stress
through the generation of NO in the human lung embryo fibroblast.

To examine whether DEP exposure induces intracellular ROS production, we stained
DEP-treated cells using CM-H2DCFDA. After treatment with DEP, the fluorescence inten-
sity indicative of ROS accumulation was significantly higher compared with the unexposed
control cells (Figure 3d).

3.3. DEP-Induced Genotoxicity in WI-38 Cells

The DNA damaging effect produced by DEP treatment was investigated on the basis of
single-cell gel electrophoresis (comet assay) and a cytokinesis-block micronucleus (CBMN)
assay. Mitomycin C (MMC) was used as a positive control [29]. MMC has been known
as a DNA cross-linking agent [30,31]. For DEP-treated WI-38 cells, the olive tail moment
(OTM) was higher than negative control cells after 24 and 48 h (Figure 4). As regards
the formation of micronuclei (MN), DEP-treated WI-38 cells exhibited many more than
the control cells (Figure 5a). It was observed that the micronuclei frequency was dose-
dependently increased by DEP treatment. However, DEP could not change the cytokinesis
block proliferation index (CBPI), which is a biological index for detecting cytotoxicity or a
cell cycle delay (Figure 5b).
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negative control (0.2% DMSO); PC: positive control (0.4 µg/mL mitomycin C).

3.4. DEP Exposure and the Differential Expression Genes in WI-38 Cells

Gene set enrichment analysis (GSEA) was employed to understand the signaling path-
ways of cellular response to DEP. We performed RNA sequencing to identify genes and
pathways involved in DEP-induced DNA damage and xenobiotic response in WI-38 cells.
Volcano plots for differentially expressed genes are shown in Figure S1. When compared
with vehicle controls, WI-38 cells treated with 200 µg/mL for 24 h displayed 2273 of
19,391 genes with differential expression, 1062 genes had decreased expression levels, and
1211 genes had increased expression levels upon treatment with DEP. GSEA was capable
of clearly detecting biologically relevant molecular signaling enrichment in WI-38 cells
following exposure to DEP. GSEA of hallmark gene sets representing well-defined bio-
logical states showed that 5 gene sets were significantly downregulated and 17 gene sets
were upregulated (false discovery rate (FDR) q-value < 0.25) (Table 3). Among the signifi-
cantly downregulated hallmark pathways were several gene sets important for a genotoxic
response such as signaling through proliferative pathways (G2/M checkpoint), mitotic
spindle assembly, response to ultraviolet (UV) radiation (down), and DNA repair (Table 3).
Among the significantly upregulated hallmark pathways were DNA damage/p53 and
apoptosis, indicating that DEP exposure drives significant cell death signaling. There
was also a statistically significant positive enrichment of the known genes in xenobiotic
metabolism and inflammatory response (Table 3). The hallmark gene set for both Kras sig-
naling and mTORc signaling genes was enriched in the DEP-exposed cells when compared
to those from unexposed cells (Table 3).

We further identified the dose-dependent relationship for the effect of DEP on gene
expression data. We further confirmed the dose dependence of DEP exposure effect on
the gene expression profile. In WI-38 cells, after 24 h of exposure to 100 and 200 µg/mL
of DEP, the expression of gene set of genotoxic stress-related hallmark pathway including
p53, xenobiotic metabolism, inflammatory response, DNA repair, and G2-M DNA damage
checkpoints was amplified (Figure 6).
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Table 3. Gene set enrichment analysis (GSEA) results according to the MSigDB hallmark gene sets.

Hallmark Pathway Number of Genes in Pathway NES Nom p-Value FDR q-Value

Downregulated
1. E2F targets 36 2.28 0 0.002
2. G2M checkpoint 43 2.26 0 0.001
3. Mitotic spindle 28 2.23 0.002 0.001
4. UV response dn 32 1.52 0.056 0.077
5. DNA repair 19 1.46 0.075 0.084

Upregulated
1. TNF-α signaling via nfkb 72 −2.5 0 0.004
2. UV response up 33 −2.35 0 0.002
3. p53 pathway 43 −2.3 0 0.001
4. Estrogen response early 38 −2.13 0.002 0.005
5. Xenobiotic metabolism 29 −2.09 0.002 0.005
6. Interferon gamma response 57 −1.96 0.004 0.013
7. Kras signaling dn 33 −1.78 0.014 0.038
8. Inflammatory response 36 −1.71 0.013 0.058
9. Estrogen response late 41 −1.7 0.027 0.053
10. mTORc1 signaling 30 −1.67 0.025 0.059
11. Apoptosis 30 −1.63 0.027 0.067
12. Adipogenesis 17 −1.62 0.043 0.064
13. Hypoxia 44 −1.6 0.021 0.065
14. Unfolded protein response 18 −1.55 0.055 0.082
15. Interferon-alpha response 36 −1.38 0.101 0.17
16. Myogenesis 27 −1.34 0.131 0.195
17. IL-2 stat5 signaling 47 −1.33 0.120 0.194

GSEA of downregulated or upregulated genes in DEP-treated WI-38 cells (200 µg/mL for 24 h) compared to vehicle control.
NES = normalized enrichment score. Enrichments were considered significant if false discovery rate (FDR) < 0.25. Nom = nominal.
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DEP; high: 200 µg/mL DEP.

4. Discussion

The fine particle in this study was standard reference material generated by diesel
engine emissions (NIST 1650b). This material consists of several PAHs, nitro-PAHs, elemental
carbon, organic compounds, sulfates, nitrates, and trace amounts of metals and other
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elements [32,33] well known to cause ROS, inflammatory reactions, and DNA damage. NIST
SRM 1650b’s characterized mean is 0.18 µm, which makes it feasible to identify the potential
health risk of fine range DEP. In this study, we dispersed DEP in MEM cell culture media
without serum, and physicochemical properties of aqueous DEP were analyzed by DLS and
SEM-EDX. The average size of prepared DEP in media was 0.28 µm, indicating that prepared
DEP in the aqueous environment is in the fine particle range, which is small enough for
penetrating the lung barrier and enter circulation (Table 1). Prepared DEP in MEM remained
approximately stable in the dispersed state. However, the measured zeta potential of DEP
in MEM media was −24.31 mV (Table 1), which was less negative than the certain value,
it indicates better stability of the colloidal suspension [34]. The shape of the DEP was also
analyzed by SEM, which revealed that the particle surface is spherical (Figure 1).

Genotoxic events have been known as a crucial step in the initiation of cancer. In
various cell model research projects, DNA damage appeared as an important mechanism
of action of DEP-induced pulmonary carcinogenesis [35]. The results obtained from several
human cancer cell lines such as A549 (human alveolar carcinoma), THP-1 (human mono-
cyte), HepG2 (human hepatoma), and MCL-5 (human B lymphoblastoid) showed the DEP
or polycyclic organic matter derived from DEP induced significant DNA damage [36–39].
Similar results were observed for the DEP component including NIST 1650a in immortal-
ized human BEAS-2B cells [40–43]. There is a report that used normal human bronchial
epithelial cells (NHBE) for investigating effects of DEP on CYP1A1 level [19]. However, hu-
man normal cells have rarely been used for in vitro genotoxicity tests of DEP. Although the
genotoxic effects of DEP are relatively well-reported, to validate these findings and yield
more biologically relevant data, normal human cells retained most of the characteristics of
normal cell growth and differentiation cell should be compared [44].

In the present study, exposure to DEP induced oxidative stress through generation of
ROS and NO in WI-38 cells (Figure 3). The imbalance between the production and elimina-
tion of ROS causes oxidative stress, which has been associated with aging, carcinogenesis,
and Alzheimer’s disease [45,46]. Genotoxicity testing is important to provide adequate
hazard identification and risk assessment in terms of the carcinogenesis process [47]. It is
well known that fine particle fraction including DEP induces genotoxicity for two main
biological processes: ROS production and increased damage in the cell. The former step
occurs because DEP consists of redox-active components that can trigger ROS generation
upon interaction with a cell [48–50]. In the latter case, these reactions lead to interaction
with the DNA sequence and chromosome, inducing genomic instability and leading to cell
division dysfunction either directly or indirectly inducing microtubule depolymerization
and alterations in the spindle structure [51–54]. As a consequence, structural or numerical
aberrations of the genetic material are induced through this process.

We applied two in vitro genotoxic tests to determine whether the DEP induces ge-
netic alteration in normal human lung cells. Comet assay is the most common method
for DNA strand breakage detection in individual cells [55]. Moreover, most studies have
shown the positive association between DEP exposure and DNA strand breakage using this
test. Therefore, first, we performed an alkaline-based comet assay to sensitively measure
DEP-induced double- and single-strand breaks, alkali labile sites, DNA cross-linking, and
incomplete excision repair sites [23,56]. In this study, we used Comet Assay IV analysis
system, which has high sensitivity compared to Comet Analyzer [57]. As a result of the
comet assay in WI-38 cells, DEP exposure enhanced the OTM value to a statistically sig-
nificant level when compared with the control (Figure 4). Up to 24 h of exposure, the
intensity of toxic expression 200 µg/mL and 400 µg/mL similarly affected cells. However,
at 48 h, 400 µg/mL seemed to be a phenomenon that maintained DNA damage at a higher
level than 200 µg/mL. Our comet assay result is in line with the consistent results from
several previous studies that have shown DNA damage responses following exposure to
DEP [36–39,42]. The study of DNA alteration at the chromosome level is an essential part of
genotoxicity testing because the chromosomal mutation is a critical event in carcinogenesis.
Analyses of micronuclei (MN) formation belong to the most commonly used cytogenetic
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methods to assess a broad-spectrum of DNA damage at the chromosome level including
chromosome breakage, chromosome loss, chromosome rearrangement (nucleoplasmic
bridges), and cell division inhibition [58]. To further elucidate whether the increased level
of DNA strand breaks observed in our comet assay may be related to DNA damage at
the chromosome level, we also applied the cytokinesis-block micronucleus assay. MN
results from a broken chromosome fragment or an entire chromosome that remains outside
the nucleus after mitosis. MN can be formed following direct DNA damage (clastogenic
mechanism) or following secondary disturbance of the mitotic apparatus (indirect aneu-
genic mechanism) [59]. In our MN assay, we showed dose-dependent MN induction
of WI-38 cells upon exposure to DEP, indicating that the DEP can induce disruption or
breakages of chromosomes in normal lung cells (Figure 5). Collectively, our two in vitro
genotoxic tests’ positive results suggest that MN formation after treatment with DEP come
from clastogenic effects, although an aneugenic effect was not excluded. To our knowledge,
there are few in vitro micronucleus tests for DEP exposure or evaluation of genotoxicity of
DEP in normal fibroblast cell lines, and thus this is the first time experimental evidence
of MN induction by DEP has been provided [17,60]. Further studies to determine the
aneugenic effect of DEP should be performed by alternative cytogenetic methods such as
micronucleus assay with fluorescence in situ hybridization [61].

Next, we analyzed the genome-wide expression profiles of normal human lung fi-
broblast WI-38 cells that had been exposed to DEP. To our knowledge, this is the first
study to use an untargeted RNA-sequencing technique to identify differential gene path-
ways for DEP exposure on human normal fibroblasts. The cytotoxic concentration of DEP
(200 ug/mL) for 24 h increased the abundance of differentially expressed downregulated
genes in the cell cycle regulation, E2F and G2M checkpoint, and the mitotic spindle as-
sembly pathway (Table 3). In contrast, differentially expressed upregulated genes were
involved in the cellular response to cytokines (TNF-α signaling via NF-kB), inflammation,
DNA damage, p53, apoptosis, redox sensing signaling (mTORc1), and metabolism of
xenobiotics pathway (Table 3). NIST 1650b dose-dependent transcriptomic response was
enriched in the cellular response to DNA damage (p53, E2F, G2M, mitotic spindle, DNA
repair), xenobiotic metabolism, and inflammation-related pathways (Figure 6). Defects
in DNA damage response (DDR) strongly cause various diseases including cancers [62].
Downregulated E2F pathway-related gene reflects limited cell proliferation in response
to DNA damage. The E2F transcription factors are key players in cell cycle progression
and link the G2M transcription [63]. Cells with a defective G2-M checkpoint, if they enter
M-phase before repairing their DNA, facilitate apoptosis [64]. Collectively, we demonstrate
that DEP induces defects in DDR mechanisms, including check-point activation and DNA
repair, leading to apoptosis in WI-38 cells. Cellular responses to xenobiotic exposure have a
critical role in the mechanisms of chemical carcinogenesis [65]. Xenobiotic metabolism acts
in detoxifying and eliminating potentially harmful compounds. A zebrafish model study
showed that the metabolism of xenobiotics by cytochrome P450 was the critical pathway
in PM-induced toxicity [66,67]. The literature review effectively demonstrates that the
particulate and organic components of DEP alter the enzyme capacity to metabolizing xeno-
biotics [68]. In this study, DEP exposure was also significantly enriched in the pathway for
responding to xenobiotics in human normal cells. This finding indicates that the xenobiotic
metabolic activity may also have a value in predicting response to DEP. Taken together, our
GSEA analysis results indicated that DEP might suppress DNA damage repair mechanism,
disturb xenobiotic metabolism, and actives p53 and apoptosis pathways in normal human
lung cell. However, this finding has the limitation that we did not validate DEG identified
using RNA-sequencing. A further mRNA validation study would be necessary to support
our findings.

5. Conclusions

Our study shows for the first time that exposure to DEP could induce DNA damage
at the chromosomal level and induce marked changes in gene expression patterns in
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human normal lung WI-38 cells. Our data provide comprehensive information on the
chromosomal structural and genome-wide transcriptional changes that are induced by
well-characterized DEP reference materials in normal human lung cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218
-273X/11/2/291/s1, Figure S1: Volcano Plot of differential expressed genes (DEGs), Figure S2:
Representative enriched gene set.
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