
Human Toll-like receptor-
dependent induction of interferons

in protective immunity to viruses

Summary: Five of the 10 human Toll-like receptors (TLRs) (TLR3,
TLR4, TLR7, TLR8, and TLR9), and four of the 12 mouse TLRs
(TLR3, TLR4, TLR7, TLR9) can trigger interferon (IFN)-a, IFN-b,
and IFN-l, which are critical for antiviral immunity. Moreover,
TLR3, TLR7, TLR8, and TLR9 differ from TLR4 in two particularly
important ways for antiviral immunity: they can be activated by
nucleic acid agonists mimicking compounds produced during the viral
cycle, and they are typically present within the cell, along the endocytic
pathway, where they sense viral products in the intraluminal space.
Investigations in mice have demonstrated that the TLR7/9–IFN and
TLR3–IFN pathways are different and critical for protective immunity to
various experimental viral infections. Investigations in humans with
interleukin-1 receptor-associated kinase-4 (IRAK-4) deficiency
(unresponsive to TLR7, TLR8, and TLR9), UNC-93B deficiency
(unresponsive to TLR3, TLR7, TLR8, and TLR9), and TLR3 deficiency
have recently shed light on the role of these two pathways in
antiviral immunity in natural conditions. UNC-93B- and TLR3-deficient
patients appear to be specifically prone to herpes simplex virus 1 (HSV-1)
encephalitis, although clinical penetrance is incomplete, whereas
IRAK-4-deficient patients appear to be normally resistant to most
viruses, including HSV-1. These experiments of nature suggest that the
TLR7-, TLR8-, and TLR9-dependent induction of IFN-a, IFN-b,
and IFN-l is largely redundant in human antiviral immunity, whereas
the TLR3-dependent induction of IFN-a, IFN-b, and IFN-l is
critical for primary immunity to HSV-1 in the central nervous
system in children but redundant for immunity to most other viral
infections.
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Introduction

The first demonstration of Toll involvement in host immunity

was provided in 1996 by the observation that Toll-deficient

Drosophila are vulnerable to experimental infection with certain

fungi (1). A family of proteins structurally related to Drosophila

Toll, known as Toll-like receptors (TLRs), was subsequently

identified in mice and humans (2–6). Toll and TLR genes have

now been described throughout the animal kingdom (7): 10

functional TLRs (from TLR1 to TLR10) have been identified in

humans and 11 (from TLR1 to TLR7, TLR9, and from TLR11 to

TLR13) in mice (8, 9). The TLR signaling pathway shares

multiple components with that of interleukin-1 receptors
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(IL-1Rs), reflecting the intracellular domain common to these

receptors, the Toll–IL-1R (TIR) domain (10). The signaling

pathways triggered by TLRs have been dissected in mice and, to

a lesser extent, in humans (10–12) (Fig. 1). TLRs, with the

exception of TLR3 (at least in mice), can trigger a ‘classical’

myeloid differentiation factor 88 (MyD88)-dependent

signaling pathway (10–12), via the TIR-containing cytosolic

adapter MyD88 (13–16). TLR2 and TLR4 can also trigger this

pathway via the TIR domain-containing adapter protein

(TIRAP) (17–20). Alternatively, TLR3 and TLR4 can trigger a

MyD88-independent ‘alternative’ pathway (10–12, 21) via the

TIR domain-containing adapter inducing IFN-b (TRIF)

(22–24); TLR4 may trigger this pathway by association with

the TRIF-related adapter molecule (TRAM), which bridges

TLR4 and TRIF (25, 26).

The classical MyD88-dependent pathway (Fig. 1) results in

the activation of both nuclear factor-kB (NF-kB) and mitogen-

activated protein kinases (MAPKs), via the IL-1R-associated

kinase (IRAK) complex, which comprises two active kinases

(IRAK-1 and IRAK-4) and two non-catalytic subunits (IRAK-2

and IRAK-M). This classical pathway leads to the synthesis of

inflammatory cytokines and chemokines, such as IL-1b, IL-6,

IL-8, IL-12, and tumor necrosis factor-a (TNF-a) (10–12).

The alternative MyD88-independent pathway (Fig. 1), also

referred to as the TRIF-dependent pathway, results in the

activation of IFN regulatory factor 3 (IRF3) via two kinases,

the inhibitor of NF-kB kinase e (IKK-e) and TANK (TRAF

family member-associated NF-kB activator)-binding kinase-1

(TBK-1). The MyD88-independent pathway leads to the

transcription of a smaller number of genes, including IFN

genes, such as that encoding IFN-b (10–12) and possibly also

the IFN-l gene (27). We now know that the MyD88-

dependent pathway can also activate IRF1 (28), IRF5 (29),

and IRF7 (30–32). The MyD88-dependent pathway may

activate IRF3 via TANK, a molecule that can interact with TNF

receptor-associated factor-6 (TRAF6), NF-kB essential

Fig. 1. An overview of the signaling pathways triggered by the interferon (IFN)-inducing Toll-like receptors (TLRs) (TLR3, TLR4, TLR7, TLR8
and TLR9) and human primary immunodeficiencies involving TLR-signaling pathways. Five TLRs (TLR3, TLR4, TLR7, TLR8, and TLR9) have
been shown to induce the production of IFN-a, IFN-b, and IFN-l. TLR7, TLR8, and TLR9 trigger the ‘classical’ MyD88-dependent TLR pathway, via the
TIR-containing cytosolic adapter MyD88. TLR3 triggers the ‘alternative’ MyD88-independent, TIR domain-containing adapter inducing IFN-b (TRIF)-
dependent pathway via the TRIF. TLR4 triggers the MyD88-dependent TLR pathway, via the TIRAP–MyD88 interaction, and triggers the MyD88-
independent pathway, via the TRIF-related adapter molecule(TRAM)–TRIF interaction. The MyD88-dependent pathway results in the activation of both
nuclear factor-kB (NF-kB) and mitogen-activated protein kinases (MAPKs), via the interleukin-1 receptor-associated kinase (IRAK) complex, which
comprises two active kinases (IRAK-1 and IRAK-4) and two non-catalytic subunits (IRAK-2 and IRAK-M). The MyD88-independent pathway results in
the activation of IRF3 via two kinases: NF-kB kinase e (IKK-e) and TANK-binding kinase-1 (TBK-1). TRAF family member-associated NF-kB activator
(TANK) interacts with NF-kB essential modulator (NEMO), TBK1, and IRF3 and may therefore liaise between the MyD88-dependent and MyD88-
independent pathways. These signaling pathways triggered by TLRs have been dissected in mice and, to a lesser extent, in humans. The three proteins in
the TLR signaling pathways (IRAK-4, UNC-93B, and TLR3) responsible for the human primary immunodeficiencies discussed in this review are shown
in red, the other two proteins in the TLR signaling pathways (NEMO, IkBa) responsible for human primary immunodeficiencies not discussed here are
shown in blue. The principal pathways proposed are indicated by solid arrows, and recently described important associations between molecules are
indicated with dotted arrows.
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modulator (NEMO), TBK-1, and IKK-e, linking the MyD88

pathway to IRF-3 (32–36). Conversely, the TRIF-dependent

pathway may also activate NF-kB, via RIP1 (37) or TRAF6 (38,

39) or via interactions between TRAF3, NEMO, and TANK

(32–36). Although the NEMO–TANK interaction seems to

bridge the IRF3 and NF-kB signaling pathways downstream

from TLRs (35), the detailed molecular mechanisms

underlying these two pathways remain unclear.

The TLR pathways leading to the production of IFN-a/-b
and IFN-l have begun to be unraveled in recent years (11, 12,

40). Five TLRs (TLR3, TLR4, TLR7, TLR8, and TLR9) have been

shown to induce the production of IFN-a, IFN-b, and IFN-l
(11, 12, 40). Four of these TLRs (TLR3, TLR7, TLR8, and

TLR9) are intracellular in most cell types tested. They are found

along the secretory and endocytic pathways and can be

stimulated by nucleic acid agonists mimicking those produced

during viral infections. TLR3 can be activated by double-

stranded RNA (41); TLR7 and TLR8 (in humans only) can be

activated by antiviral derivatives of nucleoside-like imida-

zoquinoline (42, 43) and loxoribine (44) and GU-rich

single-stranded (ss) RNAs (45–47). TLR9 can be activated by

non-methylated double-stranded (ds) CpG-rich DNA (48, 49).

Cell surface-expressed human TLR4 can be stimulated by

LPS and, possibly, by some viral proteins, but it is a much

less potent inducer of IFN-a, IFN-b, and IFN-l (50–52).

TLR3 and TLR4 trigger IFN-b production via TRIF–IRF3

activation, whereas TLR7, TLR8, and TLR9 trigger

IFN-a production via MyD88–IRF7 activation (30, 31) and IFN-

b production via MyD88–IRF1 activation (28) or MyD88–TRAF6-

NEMO–TANK–IRF3 activation (10, 12, 36). The TLR induction of

IFN-a, which are IFN-b-inducible (53), has been studied in less

detail than the induction of IFN-b, and little is known about the

mechanism of IFN-l induction by TLRs.

The innate recognition of viruses by TLRs may lead to the

induction of IFNs (12, 54). One key question concerns the

importance of the TLR–IFN pathway in protective antiviral

immunity. Over the last 10 years, mice lacking individual TLRs

and key molecules of the TLR signaling pathways, such as

MyD88 and IRAK-4, have been shown to display diverse viral

infectious phenotypes, from susceptibility to resistance,

depending on the host gene–pathogen combination (12, 55,

56) (Tables 1 and 2). For example, TLR7-deficient mice

display impaired immunity to vesicular stomatitis virus (VSV)

(47), and TLR9-deficient mice are susceptible to mouse

cytomegalovirus (MCMV) infection (5). However, it remained

unclear whether Toll and TLRs played non-redundant roles, be

they beneficial or detrimental, in natural as opposed to

experimental infections, particularly in viral infections

(57–62). Five human primary immunodeficiencies resulting

in impaired TLR responses have recently been described

(Fig. 1): X-linked recessive NEMO deficiencies in 2001

(63–65), autosomal dominant IkBa deficiency in 2003 (66),

autosomal recessive IRAK-4 deficiency in 2003 (67),

autosomal recessive UNC-93B deficiency in 2006 (68), and

autosomal dominant TLR3 deficiency in 2007 (69). Mutations

in NEMO and IkBa impair many pathways other than TLRs,

and the morbid alleles are hypomorphic and hypermorphic,

respectively, making it difficult to assess antiviral TLR

immunity in these patients. We review here the lessons

learned from the three other primary immunodeficiencies

(IRAK-4, UNC-93B and TLR3) that selectively or almost

selectively impair TLR responses.

IRAK-4 deficiency

The four mammalian IRAK family members are orthologues of

the serine–threonine kinase Pelle, which is required for Toll

signaling in Drosophila (70). IRAK-4 is the most similar to Pelle

and plays an essential role in mediating the signals initiated by

IL-1R and TLR engagement (70–72). Mouse IRAK-4 is 87%

similar and 84% identical to human IRAK-4 (70). Like Pelle

and the other members of the IRAK family, IRAK-4 contains an

N-terminal death domain (DD) and a central kinase domain

(KD) (71). The crystal structures of the IRAK-4 DD and KD

domains have recently been obtained for mice and humans,

revealing structures in these domains of IRAK-4 very different

from those of Pelle and other members of the IRAK family (73,

74). IRAK-4 acts as a kinase downstream from MyD88 and

upstream from IRAK-1 and TRAF-6 (72). IRAK-4-deficient

mouse cells displayed strongly impaired IL-1R and TLR

signaling, and the activation of NF-kB, c-Jun N-terminal

kinase (JNK), and p38 MAPK induced by IL-1 and multiple

TLR agonists, including TLR7 and TLR9 agonists and the non-

specific TLR3 agonist polyinosinic-polycytidylic acid

[poly(I:C)], was profoundly inhibited in IRAK-4-deficient

mouse embryonic fibroblasts (MEFs) and macrophages (71).

Knockin mice with an inactivated IRAK-4 kinase were recently

produced. In these mice, TLR7- and TLR9-mediated signaling

is abolished in bone marrow (BM)-derived macrophages and

plasmacytoid dendritic cells (pDCs). The TLR7- and TLR9-

induced production of IFN-a and IFN-b was abolished in pDCs

isolated from these mice, and the production of IFN-l was not

determined. However, TLR3-mediated signaling was intact in

myeloid DCs (mDCs) from IRAK-4-deficient and IRAK-4-

kinase-inactive knockin mice (75). In mice deficient for IRAK-

1, a molecule immediately downstream from IRAK-4, TLR7-,
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and TLR9-mediated IFN-a production was also abolished (76).

These in vitro data indicate that the TLR7 and TLR9 pathways

governing the production of IFN, or at least of IFN-a and -b, in

response to viral infection are IRAK-4 dependent in mice. In

contrast, the TLR3–IFN pathway appeared to be IRAK-4

independent, at least in mDCs.

IRAK4-deficient mice have been challenged only with

lymphocytic choriomenigitis virus (LCMV). Following

infection with LCMV, IFN-g production was found to be

severely impaired in IRAK-4-deficient mice, but it remains

unclear whether IRAK-4-deficient mice are more susceptible to

LCMV infection than the wildtype (WT) mice (Table 2) (71).

Table 1. Viral infections of mice deficient for TLR3, TLR7, TLR9

TLR Infection

Phenotype

References
Survival
rate Viral load Others

TLR3 Encephalomyocarditis virus (EMCV) NT m in the heart k proinflammatory cytokine and
chemokine expression in the heart

(123)

Mouse cytomegalovirus (MCMV) k m in the spleen k IFN-a/b production (5)
NT NT No difference in CD8 T or CD4 T

response
(128)

Respiratory syncytial virus (RSV) NT No difference m Th2-cytokine production, mucus
production and gob5 expression in the
airways

(124)

Influenza virus (IAV) m m in the lung k inflammatory mediators (IL-6, IL-12) in
the bronchalveolar airspace

(125)

Punta Toro virus (PTV) m NT k liver disease
k IL-6, MCP-1, IFN-g and RANTES levels in
the liver and serum

(126)

West Nile virus (WNV) m k in the brain, m
in the periphery

k IL-6, TNF-a, IFN-a, -b production in the
blood and the brain

(127)

Vesicular stomatitis virus (VSV) NT NT No difference in CD8 T or CD4 T
response

(128)

T3 reovirus NT NT No difference in CNS injury (128)
Lymphocytic choriomenigitis virus (LCMV) NT NT No difference in CD8 T or CD4 T

response
(128)

TLR7 Vesicular stomatitis virus (VSV) NT NT k IFN-a production (47)
TLR9 Mouse cytomegalovirus (MCMV) k m in the spleen k IFN-a/b production and NK cell

activation
(5, 79)

Herpes simplex virus 1 (HSV-1) NT No difference (78)

m increased; k decreased; NT not tested.

Table 2. Viral infections of mice deficient for MyD88, IRAK-4, or UNC-93B components

Component Infection

Phenotype

ReferencesSurvival rate Viral load Other

MyD88 Herpes simplex virus 1 (HSV-1) k m in the brain (77)
NT No difference (78)

Vesicular stomatitis virus (VSV) k m in the brain k IFN-a production (47, 82)
No difference NT (82)

Mouse cytomegalovirus
(MCMV)

k m in the spleen k IFN-a/b production and NK
cell activation

(5, 79)

Lymphocytic choriomenigitis
virus (LCMV)

NT m k CD81 T-cell response (80)

Encephalomyocarditis virus
(EMCV)

k NT k IFN-a in the serum (81)

Respiratory virus (RSV) NT NT k eosinophils and mucus
production in the pulmonary
environment

(83)

Coxsackievirus B3 (CVB3) m k in the heart k inflammatory cytokines, m
IFN-b expression in the heart

(84)

IRAK-4 Lymphocytic choriomenigitis
virus (LCMV)

NT NT k IFN-g production (71)

UNC-93B Mouse cytomegalovirus
(MCMV)

k m in the spleen k Production of IFN-a/b and
other cytokines

(92)

m increased; k decreased; NT not tested.
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Mice lacking MyD88, a molecule acting immediately upstream

from IRAK-4, are prone to herpes simplex virus 1 (HSV-1)

encephalitis (HSE) following intranasal infection (77). In

another model of footpad or corneal infection, no differences

were found between MyD88-deficient and WT mice (78).

MyD88-deficient mice have been shown to be susceptible to

MCMV (5, 79), LCMV (80), encephalomyocarditis virus

(EMCV) (81), and VSV in a route-dependent (intranasal but

not intravenous) manner (47, 82). They are also susceptible,

although to a lesser extent, to respiratory syncytial virus (RSV)

(83). However, MyD88-deficient mice have been shown to be

more resistant to coxsackievirus B3 infection than WT mice

(84) (Table 2). Mice lacking IRAK-4 or MyD88 display impaired

TLR7- and TLR9-mediated induction of IFNs, and they are

more susceptible than WT mice to experimental viral

infections (5, 47, 77–82). The only known exceptions

concern MyD88-deficient mice infected with HSV-1 (78),

coxsakievirus B3 (84), and VSV (intravenous route) (82) in

certain experimental conditions (Table 2). However, the broader

impairment of immunity in these mice, affecting multiple TLR

and IL-1R responses, makes it difficult to draw firm

conclusions as to whether the susceptibility of these mice to

viruses results from the impairment of TLR7- and TLR9-

mediated induction of IFNs.

Human IRAK-4 deficiency was first reported in 2003, in

three children with pyogenic bacterial diseases (67). Up to 28

such patients have since been reported (85). IRAK-4-deficient

cells from these patients, including whole blood cells,

peripheral blood mononuclear cells (PBMCs), individual

myeloid and lymphoid leukocyte subsets, and skin-derived

fibroblasts, displayed impaired response to IL-1 and the TLR

agonists tested, with the exception of TLR3 responses and

TLR4-mediated IFN-a, -b, and -l responses (85, 86) (Fig. 2).

In particular, the induction of IFN-a, -b, and -l in response to

the stimulation of TLR7, TLR8, or TLR9 was found to be

completely abolished in IRAK4-deficient PBMCs (Fig. 2). Unlike

MyD88-deficient mice, IRAK-4-deficient patients appear to

be resistant to most viruses. None of the known 28 IRAK-4-

deficient patients suffered from severe viral disease, although

at least 20 common viruses have a high prevalence among

Fig. 2. Toll-like receptors (TLR)3-, TLR7-,

TLR8-, and TLR9-dependent induction of
interferon (IFN)-a, -b, and -k is largely
redundant in human antiviral immunity.
Four of the five IFN-inducing TLRs (TLR3,
TLR7, TLR8, and TLR9) are intracellular in
most cell types tested. Viral nucleic acids,
including double stranded (ds) RNA, single
stranded (ss) RNA, and DNA, produced
during virus replication are thought to be
detected by TLR3, TLR7/8, and TLR9,
respectively, and to induce IFN production.
The production of IFN-a, -b, and -l in
response to TLR7, TLR8, and TLR9
stimulation is impaired in interleukin-1
receptor-associated kinase (IRAK)-4-deficient
patients, who appear to be resistant to most
viruses. The induction of IFN-a, -b, and -l by
TLR3, TLR7, TLR8, and TLR9 is impaired in
UNC-93B-deficient patients, who are prone to
herpes simplex virus 1 encephalitis (HSE) but
appear to be resistant to most viruses. The
UNC-93B–TLR3–IFN-a, -b, and -l pathway is
presumably essential for primary immunity to
HSV-1 in the central nervous system (CNS) in
children but is redundant for immunity to
most other viral infections. The three proteins
in the TLR signaling pathways (IRAK-4, UNC-
93B, and TLR3) responsible for the human
primary immunodeficiencies discussed in this
review are shown in red; the other two
proteins in the TLR signaling pathways
(NEMO, IkBa) responsible for human
primary immunodeficiencies not discussed
here are shown in blue.
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children worldwide. These viruses include HSV-1, cyto-

megalovirus, Epstein–Barr virus, varicella–zoster virus, human

herpes virus-6, parvovirus B19, RSV, rotavirus, adenovirus,

influenza virus, papilloma virus, enterovirus, and coronavirus

(86) (Table 3). IRAK-4-deficient patients are not susceptible to

HSE (85, 86). These data indicate that the IRAK-4-dependent,

TLR7-, TLR8-, and TLR9-mediated IFN responses are

redundant for protective immunity to most viruses in humans.

Consistent with IRAK-4-deficient patients being no more

susceptible than control subjects to most viruses, IFN

production by IRAK-4-deficient PBMCs and fibroblasts has

been shown to be normal or only slightly subnormal follow-

ing stimulation with most of the viruses tested, with the

possible exception of mumps virus and coxsackie virus (86).

The functional TLR3 pathway in IRAK-4-deficient patients may

contribute to the control of viruses in these patients. Upon

activation by poly(I:C), IRAK-4-deficient fibroblasts display

normal activation of IRF3, NF-kB, and MAPK [p38,

extracellular signal-regulated kinases 1 and 2 (ERK1/2),

JNK1/2](86). Moreover, IFN-a, -b, and -l are produced

normally following poly(I:C) stimulation in IRAK-4-deficient

PBMCs and fibroblasts. Induction of the IFN-inducible

monocyte chemotactic protein-1 (MCP-1) and IP-10 in

PBMCs and of CD40, CD80, and CD86 in monocyte-derived

DCs are also normal upon activation by poly(I:C) (85).

However, poly(I:C) is a non-specific TLR3 agonist. The

question of the TLR3 dependence of poly(I:C) responses

could not be addressed in individual human cell types until

description of the TLR3-deficient human fibrosarcoma cell line

P2.1 (87) and of human patients bearing a germline dominant-

negative TLR3 mutation (69). In any event, whether by means

of TLR3- and IRAK-4-independent responses to dsRNA, TLR3-

dependent but IRAK-4-independent responses to dsRNA, or

responses to other viral intermediates using IRAK-4-

independent pathways, IRAK-4-deficient patients appear to be

normally resistant to most viruses.

UNC-93B deficiency

Unc-93 was first cloned in Caenorhabditis elegans in 1980 (88). It

encodes a regulatory subunit of a SUP-9 two-pore potassium

channel and coordinates muscle contraction (89, 90). Unc-93

has been shown to be conserved in several distantly related

species, including C. elegans, Arabidopsis thaliana, Drosophila

melanogaster, mice, and humans (90). The human UNC93B1

gene has a sequence similar to that of its orthologues in A.

thaliana, C. elegans, D. melanogaster, and mice (91). The human and

mouse UNC-93B proteins each have 12 transmembrane

domains and are found mostly in the endoplasmic reticulum

(92, 93). The crystal structure of UNC-93B has not yet been

described, and the function of this protein remains unclear. In

humans, UNC-93B protein levels are high in the heart and brain

(91). The role of UNC-93B in immunity was revealed by

identification of the ‘3d’ gene in mice with a triple defect (3d)

of impaired responses to TLR3, TLR7, and TLR9 (92, 93) (Table

1). The human orthologue of this gene was subsequently found

to control TLR3, TLR7, TLR8, and TLR9 responses (68). UNC-

93B interacts directly with these TLRs, as it has been shown to

bind the transmembrane domains of TLR3 and TLR9 but not that

of TLR4 (93). However, the way in which UNC-93B participates

in TLR signaling remains to be determined (93).

The H412R mutation in Unc93b1 was found in 3d mice and

was shown to be responsible for the 3d phenotype (92). UNC-

93B-deficient mouse macrophages display impaired responses

to the intracellular, nucleic acid-sensing TLRs (TLR3, TLR7,

and TLR9) for the production of several cytokines, including

IFN-a and -b. The 3d mouse also has a defect in exogenous

antigen processing, as conventional major histocompatibility

Table 3. Viral serological data for patients deficient for IRAK-4, UNC-93B, or TLR3

Genetic
defect Infection

Positive serological tests (with vaccines)

ReferencesdsDNA ssDNA ss�RNA ss1RNA

IRAK-4
(nine patients)

Gram-positive
bacteria

HSV-1, EBV, CMV
VZV, HHV-6
Metapneumovirus

Parvovirus B19 Mumps, measles
RSV

CoxB1, rubella (67, 85, 86)

UNC-93B
(two patients)

HSE HSV-1, EBV, CMV
VZV, HHV-6

Parvovirus B19 Mumps, measles
RSV Influenza A
and B
parainflenzae 1

CoxB1, rubella
poliovirus

(68)

TLR3
(two patients)

HSE HSV-1, EBV, CMV
VZV, HHV-6
HBV

Mumps, measles CoxB1, rubella (69)

Note: Positive serological results in at least one patient are indicated.
HSE, herpes simplex encephalitis; HSV-1, herpes simplex virus-1; VZV, varicella zoster virus; RSV, respiratory syncytial virus; EBV, Epstein–Barr virus;
HHV-6, human herpes virus-6; CoxB1, coxsackievirus B1; CMV, cytomegalovirus; HBV, hepatitis B virus.
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class II (MHC-II) presentation and cross-presentation by class I

MHC (MHC-I) are impaired. The impairment of cross-

presentation, to some extent, may reflect impaired IFN-a/b
production (94). 3d mice are highly susceptible to MCMV,

which was used to identify 3d mutant mice generated by

random mutagenesis (56). These mice are also susceptible to

the Gram-positive extracellular bacterium Staphylococcus aureus

and the Gram-positive intracellular bacterium Listeria

monocytogenes. The particular susceptibility of 3d mice to MCMV

may be accounted for by the impaired activation of TLR3 and

TLR9, as mutations affecting signaling via the TLR3 and TLR9

pathways have also been shown to increase susceptibility to

MCMV in C57BL/6 mice, which normally show robust

resistance to MCMV (5) (Table 2). 3d mice have yet to be

challenged with other viruses.

In humans, homozygous germline mutations in UNC93B1

were reported in 2006, in two unrelated patients who suffered

from HSE, from different consanguineous kindreds (68). The

identification of human UNC-93B deficiency provided the first

genetic etiology of HSE, the most common sporadic viral

encephalitis in Western countries, caused by the almost

ubiquitous and typically innocuous virus HSV-1 (95). The

identification of human UNC-93B deficiency also provided

the first evidence that HSE can result from a monogenic trait.

The 1034del4 and 781G4A mutations in the coding region

of UNC93B1 led to a complete loss of the expression and

function of UNC-93B. PBMCs from UNC-93B-deficient

patients produce no IFN-a, -b, or -l in response to TLR7,

TLR8, or TLR9 stimulation (Fig. 2). The production of IFN-a,

-b, and -l by the patients’ PBMCs in response to HSV-1 and

several other viruses is impaired but not abolished. Fibroblasts

from the patients display impaired IFN-b and -l production

following stimulation with HSV-1, VSV, and the TLR-3 agonist

poly(I:C), and the activation of IRF3, NF-kB, and MAPK (p38)

in response to poly(I:C) stimulation is also impaired. Together

with the lack of poly(I:C) response in the TLR3-deficient

fibrosarcoma cell line P2.1 (87), the normal poly(I:C)

response in UNC-93B-deficient PBMCs and impaired

poly(I:C) response in fibroblasts suggested a cell type-specific

poly(I:C) response: TLR3 dependent in fibroblasts and TLR

independent in PBMCs (68). UNC-93B-deficient mice and

patients have a similar overall biological phenotype, with

abolished TLR3, TLR7, TLR8 (in human), and TLR9

responses, including those involving IFN-a, -b, and -l
production (Fig. 2).

IRAK-4-deficient individuals are normally resistant to HSV-1,

do not develop HSE, and respond normally to TLR3 but not to

TLR7, TLR8, and TLR9 agonists (85, 86). Signal transducer and

activator of transcription 1 (Stat-1)-deficient patients with

impaired cellular responses to IFN-a, -b, and -l are prone to

HSE (96). These observations, together with the impaired TLR3,

TLR7, TLR8, and TLR9 responses of UNC-93B-deficient patients

prone to HSE, strongly suggest that impaired TLR3-triggered,

UNC-93B-dependent, IFN-a, -b, and -l induction may be

involved in HSE. Unlike Stat-1 (96–98) and Tyk-2 (99)

deficiencies, which affect most cells and confer predisposition

to multiple viral diseases, human UNC-93B deficiency seems to

confer a relatively narrow predisposition to viruses, so far

limited to HSE. HSE is not accompanied by the dissemination

of HSV-1 disease via the bloodstream or epithelium (95).

Moreover, HSE patients are typically resistant to other

infections, both before and after HSE, as serological tests have

shown these patients to have been exposed to many other

viruses, with no severe clinical manifestations (68, 69) (Table

3). This finding suggests that UNC-93B-dependent, virus-

induced IFN-a, -b, and -l production may be involved

principally in primary immunity to HSV-1 in the central

nervous system (CNS) in children but redundant for immunity

to most other viral infections. It is currently difficult to compare

the infectious phenotypes of UNC-93B-deficient mice and

humans, as such mice have been inoculated with few

pathogens and only two patients have been described. However,

the infectious phenotype seems to be much narrower in humans

than in mice.

TLR3 deficiency

TLR3 mRNA production has been demonstrated in all

vertebrates studied, including mice and humans (100–102).

TLR3, like other TLRs, consists of an extracellular leucine-rich

repeat (LRR) motif, a transmembrane (TM) domain, and an

intracellular TIR domain (103). The crystal structure of the

TLR3 ectodomain (ECD) has been determined. This domain

has been shown to take the form of a large, horseshoe-shaped

solenoid, potentially providing a large surface area for ligand

interaction and recognition (104, 105). The ECD of TLR3 is

essential for ligand binding and multimerization (104–109).

TRIF recruitment is mediated by interaction with the TLR3 TIR

domain, leading to IRF3 and NF-kB activation (10–12). TLR3

expression has been shown to be cell type specific, with this

receptor preferentially expressed in DCs (110), fibroblasts

(111), epithelial cells (112–115), and CNS-resident cells

(116–120). Many in vitro studies have shown that a functional

TLR3 is expressed in these cell types, which produce IFN-a,

-b, -l and other cytokines and chemokines in response to

poly(I:C) stimulation, presumably via TLR3 (68, 112, 113,
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115, 118, 119, 121). TLR3 is intracellular in most cell types

(122) but has been detected on the surface of a few cell types,

including fibroblasts (111). The cellular compartment in

which dsRNA is efficiently recognized by TLR3 has not yet

been identified. It is also unclear whether the natural dsRNA

produced during viral infection can actually stimulate TLR3.

However, as TLR3 recognizes dsRNA, an almost universal viral

intermediate potentially generated during most viral

infections, it is thought that TLR3 may play a broad role in

antiviral immunity.

TLR3-deficient mice are susceptible to some experimental

viral infections (Table 1). In particular, they are susceptible to

EMCV, displaying impaired induction of proinflammatory

cytokines and chemokines and a significantly higher viral load

in the heart than that of WT mice following infection with this

virus (123). TLR3-deficient mice are also susceptible to MCMV

in some experimental conditions, as shown by the impaired

production of cytokines, including IFN-a and -b in vivo, higher

viral load in the spleen, and lower survival rate of TLR3-

deficient mice than that of WT mice (5). TLR3-deficient mice

are also susceptible to RSV infection, but to a lesser extent

(124). Remarkably, TLR3-deficient mice appear to be more

resistant to other infections than WT mice (Table 1). Following

infection with influenza A virus (IAV) (125), Punta Toro

virus (PTV) (126), or West Nile virus (WNV) (127), TLR3-

deficient mice produce smaller amounts of inflammatory

mediators, such as IFN-a and -b, than WT mice, but had a

higher survival rate. TLR3-deficient mice did not differ from

controls in their ability to generate both CD81 T and CD41 T

IFN-g responses to LCMV, VSV, and MCMV; they were also

similar to WT mice in terms of T3 reovirus-induced injury

in the CNS (128). Most studies have reported low levels

of induction of cytokines or IFN in TLR3-deficient mice,

suggesting that TLR3 is involved in the balance of infla-

mmatory mediators. Nevertheless, infectious phenotypes

varied greatly, from enhanced susceptibility to enhanced

resistance. It is therefore important to determine whether

TLR3 plays a significant role in antiviral immunity during

natural infections.

A germline TLR3 mutation was recently identified in two

children with HSE (69). The impairment of TLR3-triggered,

UNC-93B-dependent IFN-a, -b, and -l induction therefore

seems to be involved in HSE (68). In these two children, from

non-consanguineous families, a heterozygous 1660C4 T

mutation (P554S) was found in TLR3 (69). There was no

founder gene effect, as the two 1660C4 T mutations were in

different TLR3 haplotypes. The 1660C4 T mutant allele is

dominant negative for the response to poly(I:C) in fibroblasts,

in terms of IFN-b and -l induction. Fibroblasts, monocyte-

differentiated DCs, NK cells, and CD81 T cells from the patients

displayed an impaired response to poly(I:C). A defect in the

production of IFN-b and -l by fibroblasts stimulated with HSV-

1, VSV, and poly(I:C) has been observed in TLR3 heterozygous

fibroblasts, like in UNC93B-deficient fibroblasts. Higher virus

titers and enhanced cell mortality upon HSV-1 and VSV

infection were observed in both TLR3 heterozygous

fibroblasts and UNC93B-deficient fibroblasts complemented

with IFN-a and -b and, less efficiently, IFN-l. Impaired TLR3

signaling thus results in abnormally weak IFN-a, -b, and -l
production, enhanced viral replication, and enhanced cell

death in fibroblasts. By inference, this is a plausible

pathogenesis of HSE in the CNS. Indeed, TLR3 is the most

abundantly and widely expressed TLR in CNS-resident cells,

including neurons (118), microglia (116, 119), astrocytes

(116, 119), and oligodendrocytes (116).

The development of HSE in otherwise healthy patients with

TLR3 and UNC-93B deficiency indicates that the UNC-

93B–TLR3–IFN-a, -b, and -l pathway is essential for primary

immunity to HSV-1 in the CNS in children (Fig. 2). Nonetheless,

clinical penetrance is incomplete, as five of the seven TLR3-

deficient individuals and one of the three UNC-93B-deficient

individuals did not develop HSE despite HSV-1 infection (69).

Interestingly, UNC-93B and TLR3 deficiencies seem to confer

predisposition to HSE alone, as the patients do not suffer from

other viral diseases (Table 3) or from HSV-1 infections outside the

CNS (69). TLR3-independent IFN responses to dsRNA, even in

some cells and tissues that express TLR3, may confer protection

against a wide range of viruses in TLR3- and UNC-93B-deficient

patients (54). We have shown that mDCs and keratinocytes

(which normally express TLR3) and pDCs (which do not

normally express TLR3) produce IFN-a, -b, and -l in response

to poly(I:C), in a TLR3-independent manner. The IFN response to

viruses other than VSV and HSV-1 also is strong in TLR3-

heterozygous and UNC-93B-deficient fibroblasts. Moreover, the

production of IFN-a, -b, and -l has been shown to be normal in

PBMCs from TLR3-deficient patients, following stimulation with

the viruses tested (69). These observations account for the TLR3-

IFN pathway being apparently largely redundant for protective

immunity to most viruses, although less so than the TLR7/8/9-

IFNs pathway, which is even redundant for protective immunity

to HSV-1.

Concluding remarks and perspectives

Studies on human IRAK-4 deficiency, UNC-93B deficiency, and

TLR3 deficiency have shed light on the function of the human
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TLR-IFN signaling pathways in protective immunity,

particularly that to viruses. They have indicated that the IRAK-

4- and UNC-93B-dependent, TLR7-, TLR8-, and TLR9-

mediated induction of IFN-a, -b, and -l is redundant for

protective immunity to most viruses (Fig. 2). This finding by no

means suggests that these pathways are not involved in antiviral

immunity; they may be, although in a redundant manner.

Similarly, the IRAK-4-independent, UNC-93B-dependent,

TLR3-mediated induction of IFN-a, -b, and -l is redundant

for protective immunity to most viruses. Nonetheless, this

pathway seems to be selectively critical for protective

immunity to HSV-1 in the CNS upon primary HSV-1

infection, in at least some children (Fig. 2). It is remarkable

that HSV-1 does not spread via the epithelia or bloodstream in

patients with no functional TLR3 or UNC-93B. It would be

interesting to challenge TLR3- and UNC-93B-deficient mice

with HSV-1. The considerable redundancy observed in humans

contrasts with the findings of many studies in mice showing

that both the TLR7/8/9–UNC-93B–MyD88–IRAK-4–IFN

pathway and the TLR3–UNC-93B–TRIF–IFN pathway protect

against experimental viral infections. Data for humans are more

consistent with these pathways having a redundant effect on

immunity to most viruses, and it may even well be that UNC-

93B- and TLR3-deficient patients are more resistant to some

viruses than the general population. In our view, the

differences between data for mice and humans probably result

mostly from the differences between experimental and natural

infections (57, 61), although intrinsic differences between the

species may also have some effect.

The small number of IRAK-4-, UNC-93B-, and TLR3-deficient

patients studied and the ascertainment bias in the recruitment of

patients make it impossible to rule out the possibility that other

patients with any of these three disorders may present with other

infectious diseases, including viral diseases. The precise role of

the two TLR–IFN pathways in protective immunity to viruses has

therefore not been definitively determined. Receptors other than

TLRs involved in sensing viral infections have been described

recently, including cytosolic RNA helicases, retinoic acid-

inducible gene-I (RIG-I), which can be triggered by dsRNA and

50-phosphated ssRNA (129–131), and melanoma differentia-

tion-associated gene 5 (MDA-5), which can be triggered by

dsRNA (132). IFN-inducing cytoplasmic recognition receptors

may be critical for the control of viral infections, as suggested by

in vitro and in vivo investigations in mice (54, 130, 133, 134).

Other viral sensors, such as the IFN-inducing cytoplasmic

dsDNA sensor (135–137), have also been identified and may

also be involved in antiviral immunity. We aim to evaluate the

involvement of these molecules in natural antiviral immunity,

by searching for germline mutations in the genes encoding

these molecules, in patients with unexplained viral diseases.

As viruses have developed multiple strategies for counteracting

host antiviral IFN-mediated immunity (138, 139), these

investigations may improve our understanding of host–virus

interaction and evolution.
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