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Abstract

Different toxicity tests for carbon nanotubes (CNT) have been developed to assess their impact on human health and on
aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the
opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that
injected DiI labelled multi-walled carbon nanotubes (MWCNTs) become incorporated into cells in early Drosophila embryos,
allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in
living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were
excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed
normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural
stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections,
the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of
choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies
including drug delivery.
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Introduction

The first report of the synthesis of carbon nanotubes (CNTs)

two decades ago [1] sparked interest in such diverse fields as

electronics, optics, physics, material sciences, medicine and

biology. The promise CNTs hold for these fields originates from

their unique physical, chemical, electrical and mechanical

properties [2]. Consequently, commercial production and appli-

cations are increasing and CNTS have a growing presence in our

daily lives ([3], see also Woodrow Wilson Nano Inventory).

Accumulation of nanoparticles in our environment is still at the

detection threshold but the continuous release of particles by

production, wear and tear, and waste disposal makes an increased

environmental exposure inevitable [4]. In addition, the future use

of CNTs in medical applications such as drug delivery, biosensors

and surgical scaffolds [5] will increase human contact with CNTs

and justifies international efforts for the development and

standardisation of existing toxicity tests, as well as of new

approaches to test the health impact of CNTs [6].

Environmental concerns and the hazard to human health

associated with CNTs have attracted widespread attention [7,8].

CNTs can cause cellular and tissue damage by stimulating

inflammation and necrosis due to increased production of reactive

oxygen species (ROS) [7,9]. Single walled CNTs tend to be more

damaging than multi-walled CNTs (MWCNTs) [10]. The shape,

length and the addition of side groups also influence CNT toxicity

[7], An increasing numbers of studies indicate that many of the

toxic effects initially reported may be caused by contaminations

deposited during CNT production, an observation explaining

some of the inconsistencies in previous studies [7,9]. Cell cultures

are often the medium of choice for toxicity tests since they offer a

fast, low cost and high-throughput approach. Yet, cell culture

results vary with cell type and culture conditions [9], and results

may not translate directly into the whole organism environment

where, in a temporal and spatially controlled fashion, thousands of

endogenous proteins and hundreds of different cell types interact

with each other. Due to high costs, high throughput toxicity

studies on mammals are scarce. It may be advantageous to opt for

an alternative way, conducting high throughput studies in lower

vertebrates and invertebrates with short generation time and high

fecundity, and validate results obtained in these studies in a limited

number of rodents. Indeed, zebrafish [11,12,13] and the flatworm

C.elegans [14,15] have been recently used to study the toxicity of

CNTs. Both model organisms allow the establishment of basic

mechanisms of CNT toxicity by examining viability, fertility, tissue

and cellular integrity [16]. They also give an insight into

alterations in gene expression changes, which underlie altered

organ function [11,15].

Here we present a third simple animal model system towards

the study of CNT toxicity, Drosophila embryos. Embryos of
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Drosophila do not only offer all the advantages of zebrafish and

C.elegans but also have unique features, which allow an unprec-

edented insight into the mechanisms of cellular toxicity. First,

Drosophila is widely used to understand the biology of human

diseases and also as a tool for gene and drug discovery [17].

Second, during early Drosophila embryogenesis, all nuclei share the

same cytoplasm, which allows CNTs injected into the egg to

interact with nuclei and to become included into the cells forming

about 3 hours into embryogenesis. Injections overcome the

problem of reduced bioavailability of CNTs and permit the study

of CNT effects on cell division, cell survival, organ formation and

function after cellular uptake, a likely occurrence during drug

delivery or scaffold insertions upon surgery in humans [5]. Third,

a plethora of available transgenic flies in which the expression of

fluorescently tagged proteins outlines cellular substructures or

distinct cell types can be used to study intra- and extracellular

distribution of CNTs in living developing embryos [17,18].

Finally, embryogenesis in Drosophila is a well-documented process,

right down to the single cell level [19,20,21]. Hence any

disturbances caused by the presence of CNT in cell movements

or cell communication essential for organ formation or cellular

differentiation can be easily detected.

In this report we used different subcellular markers to follow the

distribution of MWCNTs in living, developing Drosophila embryos

at a single cell resolution. We show that the intra- and extracellular

accumulation of MWCNTs does not interfere with nuclear or

cellular divisions or the overall embryonic development. Interest-

ingly also the amount of DNA double-strand breaks known to

contribute to genotoxic stress and cancer [22] are not significantly

increased, However, MWCNTs induced a decrease in the survival

of ectodermal stem cells, which was not observed in neural stem

cells, suggesting that stem cell types differ in their vulnerability to

MWCNTs exposure. Our study indicates that Drosophila can be

used as a tool to study the toxicity of MWCNTs. The availability

of near unlimited numbers of embryos, the ease of embryo

injections and the low cost of the procedure make Drosophila

embryos a model of choice to study developmental toxicity of

CNTs in whole organisms.

Results

Injected MWCNTs are incorporated into cells and do not
disrupt embryonic development or cell motility

We sought to test the toxicity of MWCNTs for cell division,

cellular differentiation and overall embryonic development by

injecting MWCNTs into Drosophila embryos. In order to visualize

live nuclear or cellular divisions, and subsequent organ formation,

we used transgenic fly strains. either expressing histones coupled to

Yellow Fluorescent Protein (YFP) labeling nuclei/chromosomes or

Green Fluorescent Protein (GFP) trapped into the intron of the

microtubule-binding protein Jupiter [23], labelling the outer cell

membranes and mitotic spindles.

Drosophila embryogenesis starts with the syncytial blastoderm

when embryos only consist of nuclei, which undergo 13 near

synchronous divisions. Before the last 4 divisions, nuclei align

along the embryo surface. After the last nuclear division, an actin-

based movement results in the ingression of cell membranes from

the egg membrane, and each nuclei and its surrounding cytoplasm

is partitioned into a newly formed cell [24]. We injected

MWCNTs and vehicle controls at the time when nuclei reach

the embryonic periphery (Figure 1A). MWCNTs were marked

with the red fluorescent lipophilic dye DiI (Invitrogen) as this dye

has been shown to bind non-covalently to carbon nanotubes [25]

and to be harmless for Drosophila embryogenesis [21]. MWCNTs

were labelled at 1 mg/ml DiI in 100% DMSO. DiI in 100%

DMSO forms a homogenous solution, which does not precipitate

when spun at room temperature at 6000 rpm. However, addition

of MWCNT results in the formation of a reddish-black precipitate.

Microscopic inspection of this precipitate under epifluorescence

visualises small fluorescent puncta with the characteristic shape of

MWCNTs. This observation concurs with previous reports

showing binding of DiI to CNTs with high affinity [25].

MWCNT/DiI was injected as a colloidal suspension in 10%

DMSO/water (see Experimental Section). As control we injected

100 mg/ml DiI in 50% DMSO to visualise the spread and

accumulation of dye not bound to MWCNTs (Figure 1B). In

contrast to 1 mg/ml DiI in DMSO, which diffused easily

throughout the embryo labelling internal membranes (Figure 1B),

injected MWCNTs formed small puncta, which only dispersed

throughout four segments in the ventral half of the embryo

(Figure 1C), equalling about 6% of total embryonic volume. The

emission of unbound dye is no longer detectable after three

nuclear divisions (data not shown) but the dye labelled MWCNT

puncta can be followed throughout embryogenesis (Figure 1D–G)

indicating that the dye remains bound to MWCNTs and does not

diffuse away.

Injected MWCNTs stay mainly in the cytoplasm and rarely

associate with microtubules (Movie S1). Even if MWCNTs collide

with microtubules, microtubule based spindle formation proceeds

normally (arrows, Movie S1). The presence of labelled or

unlabelled MWCNTs does not interfere with the signalling

process controlling the ingression of membranes during cellular-

isation [24]. In addition, MWCNT accumulation does not impede

gastrulation (Movie S2), a highly coordinated movement of

epithelial cells enforced by the apical constriction of actin [26].

Hence, MWCNT do not interfere with the formation and

contraction of the two major motile fibre systems, microtubules

and actin.

After cellularisation, MWCNTs are incorporated into ectoder-

mal stem cells, which give rise to the epidermis (skin, Figure 1D, E)

and into neural stem cells giving rise to neurons and glial cells,

which become part of the central nervous system (CNS).

Interestingly the presence of MWCNTs does not interfere with

the extension and direction of neuronal axons (Figure 1F). At the

end of embryogenesis, MWCNT have been incorporated into the

CNS without causing any visible axonal damage (Figure 1G).

Drosophila embryos possess an innate immune system with a

humoral component consisting of secreted anti-bacterial and anti-

fungal peptides, and a cellular component made up of haemato-

cytes that recognize and engulf foreign bodies and cell fragments

[27]. Due to their increased size and their high motility,

haematocytes can be easily detected and followed in the living

embryo. During embryogenesis not all injected MWCNTs become

incorporated in cells. Some MWCNT stay extracellular and

together with MWCNT released from dying cells (see below)

accumulate in older embryos. We recorded the behaviour of

haematocytes around MWCNT deposits and surprisingly found

that haematocytes do not specifically target these deposits (Movie

S3). Although we detected some haematocytes with engulfed

MWCNTs attached to cell debris (Movie S4), MWCNTs only

seem to invoke a weak immune response in Drosophila embryos.

Finally, we tested the overall viability of embryos injected with

MWCNTs and controls. At the end of development, healthy

embryos will hatch as larvae. Hatching rate can therefore be used

as readout for damage caused during embryogenesis. Hatching

rate is never 100% because the preparation of embryos for

injections always interferes with larval viability. Yet, as expected

from our previous results the injection of either unlabelled or
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Figure 1. MWCNTs do not interfere with gross embryonic development and viability. Ventral views; Anterior is up. Bar, 10 mm. (A) Using a
microcapillary, we injected DiI labelled MWCNTs (red) into the syncytial blastoderm of Drosophila embryos. At this stage of development, all nuclei
(green) share the same cytoplasm permitting an unhindered diffusion (arrows) of the MWCNTs to nuclei adjacent to the injection site. In the next
hour of embryogenesis, invaginating cell membranes will partition the nuclei into single cells incorporating the MWCNTs. (B, C) Live snapshots of
embryos injected with 1 mg/ml DiI in DMSO (red, B, DMSO/DiI) or 1 mg/ml DiI labelled MWCNTs in DMSO (red, C, MWCNT-DiI) immediately after
injection into an embryo with microtubules labelled by GFP (green, GFP-jupiter). MWCNTs remain in the cytoplasm, the darker area surrounding the
microtubules. Note that DiI not bound to MWCNT shows a diffuse membrane stain, whereas DiI bound to MWCNTs can be detected as small puncta
(arrow). (D, E) Live confocal section of the same embryo 8 h (D) and 15 h (E) after injection. Cell outlines are labelled by GFP labelled microtubules
(green, Jupiter-GFP). The majority of MWCNT (red) has been incorporated into the newly formed epidermis cells (arrows). (F, G) Live confocal section
of the developing CNS of the same embryo 8 h (F) and 15 h (G) after injection. Cell outline and axons are labelled by GFP labelled microtubules
(green, Jupiter-GFP). MWCNTs do not interfere with the initial outgrowth of axons (F, arrows) and are incorporated into the axonal scaffold without
visible damage (G, arrows). (H) MWCNT injections do not interfere with embryonic viability. If embryos develop into healthy larvae, the larvae will
hatch out of the egg shell. Hatching rate of embryos injected with water (blue, injection control), 10% DMSO (yellow, vehicle control), 1 mg/ml
MWCNT in 10% DMSO/water (black, MWCNT/DMSO, see also Experimental Section) and 1 mg/ml MWCNT in 10% DMSO labelled with DiI (red,
MWCNT/DiI/DMSO). Pairwise comparison with water injected embryos (t-Test), *, significant (p,0.05); error bars, StDev;. Y-axis, Hatching rate in % of
injected embryos; X-axis, Number of injected embryos (n).
doi:10.1371/journal.pone.0088681.g001
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labelled MWCNTs did not reduce hatching rate as compared to

water-injected controls (Figure 1H).

We conclude that the presence of intracellular MWCNTs has

no observable effect on cell motility, cell communication, tissue

and organ formation, phagocytosis or general viability of

developing Drosophila embryos.

MWCNTs do not arrest DNA replication
The synchronised nuclear divisions in the syncytial blastoderm

of Drosophila embryos offers the unique opportunity to check if the

presence of MWCNTs interferes with DNA replication, and

thereby slowing down or speeding up divisions. In addition, failure

in DNA replication or chromosomal separation can easily be

detected because these nuclei fall out of the embryonic surface into

the yolk [28]. We injected MWCNTs and control vehicles into the

syncytial blastoderm and recorded the last four synchronous

nuclear divisions along the surface of the embryo (Movie S5, S6,

S7). Nuclei surrounded by MWCNTs divided at the same time as

adjacent MWCNT-free nuclei (Figure 2A, B). We did not detect

any difference in the division cycles between control and

MWCNT injected embryos or between injected and non-injected

embryo halves (Figure 2C). We also did not observe any increase

in nuclear fallout between embryos injected with MWCNTs or

controls (data not shown). We conclude that MWCNTs do not

interfere with DNA replication or chromosome separation.

Interestingly, we never detected a nuclear incorporation of

MWCNTs although the breakdown of the nuclear membrane

during nuclear divisions would permit MWCNT entry. This

argues for an yet to be described mechanism, which actively

prevents the nuclear entry of MWCNTs.

MWCNTs do not induce DNA double-strand breaks
A complex DNA repair system in eukaryotes ensures that

during cell divisons chromosomes are segregated faithfully, and the

stability of the genome and its information is preserved [29].

Endogenous recombinations and a multitude of external agents

can cause genome instability resulting in mutations, genome

rearrangements, chromosome fragmentation and chromosome

loss. Genome instability is the major cause of cell death, aging and

cancer [22]. A major trigger of genome instability is the unfaithful

repair of DNA double-strand breaks. DNA double-strand breaks

are marked for repair by a phosphorylated variant of the DNA

binding molecule Histone2, cH2Av [30]. We used an antibody

[31] to detect cH2Av after injection of MWCNTs (Figure 3). We

injected labelled and unlabelled MWCNTs into the syncytial

blastoderm along with vehicle controls (10% DMSO) and a

positive control, Camptothecin, a substance known to cause DNA

double-strand breaks [32]. Nine hours after injection the embryos

were fixed and immunostained for cH2Av. The nuclei of the

injected embryos were marked by the expression of YFP-Histone

2A (Gal4V2h/UAS::YFP::Histone 2A). We scored all cH2Av positive

signal spots colocalising with the nucleus as double-strand breaks

(Figure 3A–E9). Only the 10 truncal segments of the nervous

system which originate from the injection site were analysed. As

expected, we detected a highly significant (p,0.001) increase in

the number of DNA double-strand breaks between non-injected

embryos and Camptothecin injected embryos (Figure 3F). We also

detected a significant (P,0.05) increase of double-strand breaks in

embryos injected with 10% DMSO and DiI labelled MWCNTs.

Yet, these increases seem to be due to DiI or DMSO since

compared to non-injected embryos, the injection of unlabelled

MWCNTs does not increase the frequency of DNA double-strand

breaks (Figure 3F). We conclude that the intracellular presence of

MWCNT does not cause DNA double-strand breaks and hence

does not significantly increase genotoxic stress.

MWCNTs increase cell death of ectodermal stem cells
Injections of MWCNTs into the ventral region of Drosophila

embryos allow following the influence of CNTs on survival,

division pattern and progeny differentiation of two kinds of stem

cells. Ectodermal stem cells, which give rise to the outer body

cover, the larval epidermis and some cells of the sensory nervous

system, and neural stem cells, which generate the neurons and glial

cells in the ventral part of the central nervous system, the

equivalent to the spinal cord in vertebrates [33,34].

We injected MWCNTs and vehicle control (10%DMSO in

water) into the syncytial blastoderm. 1.5 h after injection we

labelled three to six cells at the injection site with the lipophilic dye

DiI [21]. The dye is transferred from the stem cell to the progeny

and labels the cell membrane of all progeny (Figure 4). We allowed

the embryos to complete their development before we processed

them for immunostaining and recorded the progeny. Consistent

Figure 2. MWCNTs do not interfere with cell division. Ventral
views; Anterior is up. Bar equals 10 mm in A, B. (A) Single live confocal
section through the syncytial blastoderm during a division wave.
Microtubules are labelled with GFP (green, Jupiter-GFP). All nuclei are in
the same stage (metaphase) of the cell cycle even if MWCNTs (red,
arrows) are present. (B) Single live confocal section through an embryo
with YFP labelled histones marking chromosomes (green). Regardless of
the presence or absence of MWCNTs (red, arrows), all nuclei are in the
same stage of division (anaphase). (C) The rate of nuclear divisions is
not affected by the presence of MWCNTs. Division times for three nuclei
per embryo half were recorded and division times between non-
injected (non-hatched) and injected (hatched) halves compared. For
non-injected embryos (grey) division times of three randomly chosen
nuclei for each half were recorded. We detect no differences in the
division times between non-injected and injected halves nor between
embryos injected with 10% DMSO (yellow, solvent control), 1 mg/ml
MWCNT in 10% DMSO/water (black, MWCNT/DMSO) and 1 mg/ml
MWCNT in 10% DMSO labelled with DiI (red, MWCNT/DiI/DMSO). Y-axis,
division time in minutes; X-axis, Number of nuclei analysed (n).
doi:10.1371/journal.pone.0088681.g002
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Figure 3. MWCNTs do not cause a significant increase in DNA double-strand breaks. Ventral views; Anterior is up. Bar equals 7 mm in A–E9.
Embryos were allowed to develop for 8 h after MWCNTs injection before fixation and immunohistochemistry. (A–E9) Immunostainings of double-
strand breaks (red; anti-cH2Av) and nuclei (green; YFP-HistoneH2a, anti-GFP) in non-injected embryos and embryos injected with 10% DMSO (DMS0),
1 mg/ml MWCNT in 10% DMSO/water (MWCNT/DMSO), 1 mg/ml MWCNT in 10% DMSO labelled with DiI (MWCNT/DiI/DMSO) and Camptothecin
(media indicated on top of each image). A9–E9 shows red channel only in grey. (F) The presence of MWCNT does not increase the frequency of DNA
double-strand breaks. To assess the number of double-strand breaks we counted all cH2Av puncta located in nuclei of the truncal CNS (1st thoracic to
7th abdominal segment). Camptothecin, an agent known to cause double-strand breaks, served as a positive control. The only highly significant
increase in the frequency of breaks can be observed between non-injected (grey) and Camptothecin (green) injected embryos. We detect a
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with our previous results (Figure 1), immunostaining against

axonal or neuronal surface proteins did not show any gross

morphological disturbances of the nervous sytem. This result is

supported by the observed normal differentiation of epidermal and

neural progeny derived from the labelled stem cells (Figure 4A–F).

Ectodermal stem cells in non-injected embryos can give rise to 2–

12 progeny with an average of 6.07 (+/22.82, n = 202). In

embryos injected with 10% DMSO progeny number varies

between 2–11, average 6.04 (+/22.56, n = 25) and injection of

MWCNTs result in 2–12 daughter cells/ectodermal precursor,

average 6.27 (+/22.78, n = 48). The number of progeny derived

from neural stem cells is stem cell specific [34] and we did not

detect any differences between identical stem cells labelled in non-

injected, 10% DMSO injected, and MWCNT injected embryos.

We conclude that the presence of MWCNTs does not affect the

number of progeny i.e. the division pattern of precursors cells.

If labelled stem cells or progeny die we detect at the end of

embryogenesis labelled cell debris in haematocytes accompanied

by a reduced number or a complete loss of progeny. In 10%

DMSO injected embryos we noticed an increased cell death of

neural stem cells but not ectodermal stem cells. In MWCNT

injected embryos, cell death of neural stem cells is as high as in

10% DMSO injected controls, arguing that DMSO is the insulting

agent. In contrast, cell death of ectodermal stem cells in MWCNT

injected embryos was higher than in embryos injected with 10%

DMSO alone (Figure 4G). We conclude that the intracellular

presence of MWCNTs reduces viability of distinct types of stem

cells.

Discussion

The increased production and application of CNTs makes the

testing of their environmental and health impact an urgent

necessity. The ingestion of CNTs by model organisms such as

mice, Drosophila, C. elegans and zebrafish is a convenient way to

study the impact of CNTs released into the environment (e.g.

[12,15,35,36]). Yet, ingested CNTs mainly reside in the external

digestive system and their cellular uptake is limited [37]. Future

medical applications of CNTs will cause permanent exposure of

internal organs, e.g. by the implantation of CNT coated stents or

scaffolds. Wear of these scaffolds will release CNT particles and

promote the subsequent cellular uptake by phagocytic cells of the

immune and digestive system. In the case of drug delivery systems

to combat cancer or promote stem cell proliferation, uptake into

dividing cells is the ultimate objective [5]. We show that injection

of CNTs into early Drosophila embryos can serve as a cost effective,

convenient and informative testing system to study the biological

effects of cellular uptake of MWCNTs.

We labelled MWCNTs by incubation with the lipophilic dye

DiI dissolved in DMSO. In agreement with previous results [25],

microscopical inspection under epifluorescence of the precipitate

after several washes with DMSO confirms the binding of the dye

to MWCNTs. Injected DiI dissolved in DMSO spreads through

cellular membranes and rapidly becomes diluted during cell

divisions. In contrast, injected MWCNT/DiI/DMSO solutions do

not show any diffusion of the dye into membranes but form puncta

inside the cytoplasm. These puncta can be visualised throughout

embryogenesis, indicating that the dye stays bound to MWCNTs

after injection into embryos.

We show that injection of labelled and unlabelled MWCNTs

into the syncytial blastoderm of the embryo does not interfere with

nuclear divisions and results in the cellular uptake of MWCNTs

when nuclei become enclosed by ingrowing cell membranes. Using

transgenic embryos with cellular substructures labelled by

fluorescent proteins, we detect no accumulation of intracellular

DiI labelled MWCNTs along microtubules, cell membranes or

inside nuclei. Intracellular MWCNTs are dispersed throughout

the cytoplasm and randomly distributed during cell divisions.

Organ formation during embryogenesis relies on cell commu-

nication achieved by an intricate network of molecular signalling

pathways [38]. The extracellular and intracellular presence of

MWCNT seems not to disrupt organ formation and hence does

not reduce embryonic viability. Our single cell analysis of the

developing CNS, the most complex organ, demonstrates that

MWCNTs do not alter stem cell divisions or neuronal and glial

differentiation. Surprisingly, axon outgrowth and guidance,

processes controlled by various signalling pathways [39,40],

proceed normally in the presence of MWCNTs, which even

become incorporated into the mature larval CNS without any

visible disturbances.

Two types of stem cells originate from the injected embryonic

ventral region, ectodermal stem cells, giving rise to the epidermis

and sensory nervous system of the mature larvae, and neural stem

cells giving rise to neurons and glia cells. All the progeny of both

stem cell types have been identified [34,41]. The development and

division pattern of these stem cells is tightly controlled. For

example, following the loss of function of tumour suppressor genes,

an increased number of undifferentiated progeny from neural stem

cells is observed [42]. Yet, the presence of MWCNTs does not

interfere with cell number or differentiation of neural progeny. In

addition, MWCNT injections do not increase the frequency of

DNA double-strand breaks, which are a major cause of genotoxic

stress and carcinogenesis [22].

Surprisingly, we detect that the type of stem cell defines the risk

of damage caused by the cellular uptake of MWCNTs. Ectoder-

mal stem cells exhibit increased cell death but not neural stem

cells. Both stem cell types originate from the same cell layer by cell-

cell interactions from a cluster of about 4–6 cells which are

morphologically and genetically equivalent [43,44]. One cell of

this cluster will become a neural stem cell and the remaining cells

adopt the ectodermal stem cell fate. At the time of the first wave of

selection, shortly after gastrulation, we do not detect an

accumulation of MWCNTs in only one cell but a spread over

adjacent cells (Movie S2). It is unlikely that minor differences in

MWCNT intracellular load increases the possibility to become an

ectodermal stem cell and therefore increases the number of

ectodermal stem cell death. Such an imbalance in cell fate would

also lead to a reduced number of labelled neural stem cells, which

we do not observe. Immediately after their selection both stem cell

types become different from each other not only in their mode and

number of divisions but also in their molecular identity.

Ectodermal stem cells stay in the superficial tissue they originated

in and divide symmetrically and equally, whereas neural stem cells

delaminate to form a new tissue below the ectodermal layer and

divide asymmetrically and unequally [33]. Ectodermal stem cells

significant increase between non-injected embryos and embryos injected with 10% DMSO (yellow, DMSO) or 1 mg/ml MWCNT labelled with DiI in
10% DMSO (red, MWCNT/DiI/DMSO). Yet, injection of 1 mg/ml MWCNT in 10% DMSO/water (black, MWCNT/DMSO) does not cause more double-
strand breaks (pairwise comparison with non-injected embryos; t-Test). n.s., non significant; *, significant (p,0.05); ***, highly significant (p,0.001).
Y-axis, number of breaks/truncal CNS; X-axis, Number of embryos analysed (n).
doi:10.1371/journal.pone.0088681.g003
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give rise to a maximum of 12 progeny but neural stem cells can

give rise to up to 40 progeny [34]. If number of divisions and

hence dilution of the MWCNT load would be crucial for stem cell

survival, we would expect that early born progeny which inherit a

larger load of MWCNT are less viable than later born progeny

resulting in a reduction of the average number of progeny per stem

cell. However, the average number of progeny per stem cell in

injected and non-injected embryos is not different. Hence, the

reduced number of divisions in ectodermal stem cells seems not to

be the cause for the increased cell death. Future studies using for

example current sequencing techniques allowing the rapid

identification of transcripts differentially expressed in both stem

cell types, will aid the identification of the pathways responsible for

the increased susceptibility to MWCNT caused damage in

ectodermal stem cells versus neural stem cells.

We demonstrate that Drosophila embryos can be used as a model

to test the toxicity of CNTs in unprecedented detail. Drosophila

embryos are an excellent system to study developmental toxicity

because of easy and inexpensive maintenance, ready availability

and the possibility of automating embryo injections. Can results

obtained from injections into embryos be used to evaluate toxicity

of CNTs for other animals and even humans? Drosophila has a

long-standing history as genetic model for human diseases [45]. All

signalling pathways and most of the organs in humans have

analogous pathways or organs in Drosophila, which is also expressed

in the high conservation rate of 55% of all genes between the

Drosophila and human genomes [45,46]. Basic cell biological

aspects such as cell division including oncogenesis, transcriptional

regulation, membrane biology, DNA integrity and repair, cell

movement and tissue formation are conserved all over the animal

kingdom, and often have been first studied in Drosophila. These

arguments underline the strength of Drosophila embryos as a novel

model for future studies of CNT developmental toxicity.

Materials and Methods

Fly strains
We used the GAL4 driver, GAL4V2h [47], the protein trap

Jupiter-GFP [23] and UAS-YFP::HistoneH2 [48].

Carbon nanotube labelling and injections
MWCNT were supplied by NanoAmor Europe (Cat.-

No. 1233YJ, ID: 5–15 nm, OD: 50–80 nm, Length 10–20 mm;

analysis by Energy Dispersive X-ray Spectroscopy: C: 97.37%, Cl:

0.2%, Fe: 0.5%, Ni: 1.86%, S: 0.02%). We dissolved 10 mg

MWCNTs in 1 ml 100% DMSO (Sigma, Cat. No. D8418, 99.9%

pure, impurities: ,0.1 water, ,0.001 meq/g titratable acid) with

or without the addition of 1 mg of the lipophilic dye, DiI (Cat.

No. D-282, Invitrogen). Both solutions were vortexed on high

speed for about 2 min to coat MWCNTs with DMSO or DMSO/

DiI. DiI labelled MWCNTs were washed five times with 100%

DMSO to remove excess, unbound dye. After final wash,

MWCNTs were spun down with a benchtop centrifuge at

6000 rpm and checked for fluorescence [206objective, Numerical

aperture (N.A.): 0.75, 106 ocular, excitation: 510–560 nm,

dichroic: 565 nm, Barrier: 590 nm], Stocks were kept at 4uC in

the dark. DiI label of MWCNTs is stable for about 6 weeks. For

Figure 4. MWCNTs do not interfere with differentiation but
increase cell death of ectodermal stem cells. Ventral views;
Anterior is up. Bar equals 5 mm in A–F. Single neural stem cells were
labelled with DiI (red) in embryos injected with 10% DMSO (DMSO; A, C,
E) or with 1 mg/ml MWCNT in 10% DMSO/water (MWCNT/DMSO; B, D,
F). The identification of the stem cell (1-2, 7-3, 3-1) is given on the left.
(A–F) MWCNT does not interfere with neuronal differentiation. Labelled
stem cells were allowed to divide and the progeny were examined for
axonal extension (arrow), cell body position (arrowhead) and cell
number. To examine the overall development of the CNS either all
axons (anti-BP102; C, D) or all neuronal membranes, axons and cell body
(anti-HRP; E, F) were immunostained. We do not detect any differences
between stem cell progeny in non-injected embryos [34], DMSO or
MWCNT/DMSO injected embryos. Note that the difference in branching
pattern of 3-1 progeny (E, F) is caused by their different anterior-
posterior location [34] and not MWCNT injections. (G) Frequency and
kind of progeny obtained from labelled embryonic stem cells.
Compared to non-injected embryos (grey), the injection of DMSO
(yellow) results in an increase of cell death of neural stem cells. Injection
of MWCNT/DMSO (black) affects the survival of epidermal as well as
neural stem cells resulting in a significant (p,0.05) increase in cell

death. The cell death increase observed in the case of neural stem cells
is not higher than upon injection of DMSO only. Y-axis, frequency in %
of epidermal (epidermis; column 1–3) or neural progeny (neural;
column 4–6) or cell death (column 7–9) arisen from labelled stem cells;
X-axis, total number of cells labelled (n). Numbers for non-injected
embryo are taken from Bossing et al., 1996.
doi:10.1371/journal.pone.0088681.g004
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injections we warmed the stock solution and de-ionised water at

65uC for 10 min, added 10 ul of the stock solution into 90 ul of

water and vortexed the solution for 5 min at medium speed. After

vortexing, MWCNTs form a transient colloidal dispersion, which

has to be injected immediately. Before injection, CNTs in the

solution was examined for dispersion and epifluorescence under

2006 magnification (Nikon TE 300, 206 objective, N.A. 0.75,

106 ocular). We injected MWCNTs using borosilicate capillaries

(Harvard Apparatus; ID: 0.75 mm, OD: 1.5 mm, no inner

filament) pulled on a Sutter P-97 micropipette puller and with a

tip bevelled to an angle of 25u using a Bachofer Microtip Grinder.

Embryos were de-chorionated manually on double-sided tape,

aligned on a block of 2.5% Agar and transferred with their ventral

side down onto a coverslip (24 mm660 mm) of which the middle

was coated with glue and to which a plastic frame was attached

(cut out from self adhesive book binding foil, ID: 16 mm616 mm,

OD: 22 mm622 mm). The coverslip was supported with a

microscope slide, embryos were desicated at room temperature

for 5–10 min (depending on humidity) and covered with

halocarbon oil (Voltalef 10 s) to stop further evaporation. Injection

of embryos was controlled with 1006 magnification (106
objective, N.A.0.45, 106 ocular), which allows monitoring of

dispersion of MWCNTs in the capillary. On average about 20 pl

of the 1 mg/ml solution, equalling about 4% of total embryo

volume, was injected equalling 5 pg of MWCNTs/embryo.

MWCNTs only showed a limited diffusion covering about 6%

of total embryo volume. Embryos injected as control with water,

10% DMSO, unlabelled MWCNTs or with Camptothecin were

treated the same way.

Immunohistochemistry
The following antibodies were used BP102 (mouse, 1:1000;

kindly provided by Professor Nipam Patel), anti- cH2Av (1:1000;

kindly provided by Kim McKim) and anti-HRP coupled to FITC

(goat, 1:500, MPbio). Embryos were stained as fillets as previously

described [34]. All antibodies are used for routine stains in

Drosophila embryonic research and their staining pattern has been

well described [49] [31]

Time lapse, Confocal and Image processing
Fixed and live samples were recorded using a Zeiss LSM710.

For time lapse recording of living embryos, recording started

15 min after injection and intervals were set to 30 sec. A

maximum of three Z-levels covering 2 mm were scanned bi-

directionally for each time point. Movies were generated using the

ZEN software (Zeiss) and Image J. Movies and Images were

assembled and labelled using Photoshop CS6.

Supporting Information

Movie S1 MWCNT do not interfere with microtubule
formation. 1 mg/ml MWCNT/DiI/DMSO (red, arrows) was

injected into the syncytial blastoderm. Movie covers 60 min after

injection with a frame taken every 30 sec. Bar, 10 mm.

Microtubules are visualised by the expression of Jupiter-GFP, a

microtubule binding protein. MWCNTs mainly accumulate in the

cytoplasm but can randomly hit microtubules (arrows). These

interactions are transient and do not interfere with the formation

of the mitotic spindle, a structure made of microtubules and

essential for the equal separation of DNA. In total 10 embryos

were injected and recorded.

(MOV)

Movie S2 MWCNT do not interfere with gastrulation, a
major cell movement. 1 mg/ml MWCNT/DiI/DMSO (red,

arrows) was injected into the syncytial blastoderm. MWCNTs

incorporated into the cytoplasm during cell formation. Cells are

outlined by GFP tagged microtubules (green, Jupiter-GFP). Movie

covers 70 min of development with a frame taken every

30 seconds. Bar, 10 mm. Apical cell constrictions form the ventral

furrow (arrowhead) through which the ventral tissue moves into

the embryo. Note that cell movements at the side of MWCNT

deposition (red, arrows) proceed normally. In total, 6 embryos

were injected and recorded.

(MOV)

Movie S3 MWCNTs are not readily engulfed by phago-
cytic cells of the immune system. MWCNT/DiI/DMSO

(red, arrows) were injected into the syncytial blastoderm and

mostly incorporated into the cytoplasm of the newly formed cells.

Cells are outlined by GFP tagged microtubules (green, Jupiter-

GFP). Movie covers 103 min with a frame taken every 1 min. Bar,

10 mm. Haematocytes, phagocytic and migratory cells of the

innate immune system (three arrowheads at beginning of movie),

become active about 600 min after injection (720 min after

fertilisation), clearing cell fragments and foreign substances by

phagocytosis. Uptake of debris involves filopodia, thin cellular

extensions which are highly mobile. At the end of the movie,

labelled MWCNTs (red, arrow) are located close to a haemato-

cyte. The haematocyte extends a filopodium (arrowhead) but this

filopodium although directed towards the MWCNTs does not pull

the MWCNT into the cell, showing that extracellular MWCNT

are not readily recognized by Haematocytes. In total, 5 embryos

were injected and recorded.

(MOV)

Movie S4 Macrophages engulf MWCNTs attached to
cell debris. Same embryo as in movie 2, 840 min after injection

(960 min after fertilisation). At the end of embryogenesis,

macrophages (arrowhead) have engulfed debris of dead cells

(bright green spots) and also show an accumulation of MWCNTs

(red, arrow). Movie covers 120 min with a frame taken every

1 min). In total, 5 embryos were injected and recorded.

(MOV)

Movie S5 Injection of 10% DMSO does not disrupt
nuclear divisions in early embryos. 10% DMSO in water

was injected into the syncytial blastoderm of transgenic embryos

with all nuclei labelled with Histone-YFP (green, GAL4V2h/UAS-

YFP::HistoneH2). Movie starts 15 min after injection and covers 2 h

of embryogenesis. Frame recorded every 30 sec. Bar, 10 mm.

Nuclei on the injected right side continue to divide synchronously

which shows that DMSO injections do not interfere with DNA

replication or the division machinery. 5 embryos were injected and

recorded. See Figure 2C.

(MOV)

Movie S6 Injection of MWCNT/DMSO does not disrupt
nuclear divisions in early embryos. MWCNT (1 mg/ml) in

10% DMSO and water was injected into the syncytial blastoderm

of transgenic embryos with all nuclei labelled with Histone-YFP

(green, GAL4V2h/UAS-YFP::HistoneH2). Movie starts 15 min after

injection and covers 2 h of embryogenesis. Frame recorded every

30 sec. Bar, 10 mm. Nuclei on the injected right side continue to

divide synchronously which shows that MWCNT do not disrupt

DNA replication or the division machinery. 7 embryos were

injected and recorded. See Figure 2C.

(MOV)

Movie S7 Injection of MWCNT/DiI/DMSO does not
interfere with nuclear divisions in early embryos.
MWCNT (1 mg/ml)/DiI/DMSO in water (red) was injected into
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the syncytial blastoderm of transgenic embryos with all nuclei

labelled with Histone-YFP (green, V2hGAL4/UAS-YFP::HistoneH2).

Movie starts 15 min after injection and covers 90 min of

embryogenesis. Frame recorded every 30 sec. Bar, 10 mm. Nuclei

on the injected right side continue to divide synchronously. Note

that MWCNT do not become incorporated into the nuclei. 6

embryos were injected and recorded.

(MOV)
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